Integral Equations and Operator Theory

, Volume 84, Issue 1, pp 33–68 | Cite as

Integral Equations for Electromagnetic Scattering at Multi-Screens

  • X. ClaeysEmail author
  • R. Hiptmair


In (X. Claeys and R. Hiptmair, Integral equations on multi-screens. Integral Equ Oper Theory, 77(2):167–197, 2013) we developed a framework for the analysis of boundary integral equations for acoustic scattering at so-called multi-screens, which are arbitrary arrangements of thin panels made of impenetrable material. In this article we extend these considerations to boundary integral equations for electromagnetic scattering. We view tangential multi-traces of vector fields from the perspective of quotient spaces and introduce the notion of single-traces and spaces of jumps. We also derive representation formulas and establish key properties of the involved potentials and related boundary operators. Their coercivity will be proved using a splitting of jump fields. Another new aspect emerges in the form of surface differential operators linking various trace spaces.


Screen integral equation scattering wave propagation Helmholtz junction points 

List of Symbols


Multi-screen with boundary Γ


Finite collection of Lipschitz domains adjacent to Γ, see Definition 2.3

\({{\rm H}^{1}(\mathbb{R}^{3}\backslash \bar\Gamma)}\)

Sobolev space of functions \({\mathbb{R}^{3} \backslash\bar\Gamma \to \mathbb{C}}\), see (3.1)

\({{\bf H}({\rm div},\mathbb{R}^{3}\backslash\bar\Gamma)}\)

Sobolev space of vector fields \({\mathbb{R}^{3}\backslash \bar\Gamma \to \mathbb{C}^{3}}\) with square integrable divergence

\({\mathbb{H}^{\pm \frac{1}{2}}(\Gamma)}\)

Scalar values multi-trace spaces, see Definition 3.1

\({\pi_{\rm {\sc{D}}}}\)

Dirichlet trace (point trace) \({{\rm H}^{1}(\mathbb{R}^{3}\backslash \bar\Gamma)\to \mathbb{H}^{1/2}(\Gamma)}\)

\({\pi_{\rm {\sc{N}}}}\)

Normal component trace \({{\bf H}({\rm div},\mathbb{R}^{3}\backslash\bar\Gamma) \to \mathbb{H}^{-1/2}(\Gamma)}\)


Bilinear duality pairing for scalar functions on Γ, see (3.3)

\({{\rm H}^{\pm \frac{1}{2}}([\Gamma])}\)

Scalar-valued single traces spaces, see Definition 3.2

\({{\bf H}({\bf curl}, \mathbb{R}^{3}\backslash \bar\Gamma)}\)

Sobolev space of vector fields \({\mathbb{R}^{3}\backslash \bar\Gamma \to \mathbb{C}^{3}}\) with square integrable curl

\({\gamma_{\rm \sc{T}}}\)

Standard tangential trace operator, see (4.2), (7.1)

\({\mathbb{H}^{-\frac{1}{2}}({\rm curl_\Gamma},\Gamma)}\)

Tangential multi-trace space, see Definition 4.4

\({\pi_{\rm \sc{T}}}\)

Tangential multi-trace operator; canonical projection onto \({\mathbb{H}^{-\frac{1}{2}}({\rm curl}_\Gamma,\Gamma)}\), see (4.5)


Skew-symmetric duality pairing in \({\mathbb{H}^{-\frac{1}{2}}({\rm curl}_\Gamma,\Gamma)}\), see (4.6), (4.8)

\({{\bf H}^{-\frac{1}{2}}({\rm curl_\Gamma},[\Gamma])}\)

Tangential single-trace space, see Definition 4.12

\({\widetilde{\bf H}\,^{-1/2}({\rm curl_\Gamma},[\Gamma])}\)

Tangential jump space, see Definition 4.13


Jump operator, see (3.5) and Definitions 4.8


Surface gradient, see (5.2)


Surface rotation, see (5.4)

\({\gamma_{\rm {\sc{R}}}}\)

Tangential trace of curl, see (7.1)


Helmholtz fundamental solution with wave number κ

DLκ, SLκ

Vector single and double layer potentials, see (7.6)

\({{\bf \imath}}\)

Imaginary unit

\({{\bf H}^{\frac{1}{2}}_{\times}(\Gamma)}\)

Tangential trace space for \({(\mathbb{H}^{1}(\mathbb{R}^{3}))^{3}}\), see (8.5)

\({\mathcal{E}_{\rm \sc{T}}}\)

Dirichlet harmonic vector fields, see (9.1)

Mathematics Subject Classification

Primary 45A05 Secondary 65R20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amrouche C., Bernardi C., Dauge M., Girault V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Birman, M.Sh., Solomjak, M.Z.: The L 2-theory of the Maxwell operator in domains with nonsmooth boundary. In: Symposium “Partial Differential Equations” (Holzhau, 1988). Teubner-Texte Mathematik, vol. 112, pp. 33–41. Teubner, Leipzig (1989)Google Scholar
  3. 3.
    Buffa, A.: Trace theorems on non-smooth boundaries for functional spaces related to maxwell equations: an overview. In: Computational Electromagnetics. Lecture Notes in Computational Science and Engineering, vol. 28, pp. 23–34. Springer, New York (2003)Google Scholar
  4. 4.
    Buffa A., Christiansen S.H.: The electric field integral equation on Lipschitz screens: definitions and numerical approximation. Numer. Math. 94(2), 229–267 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Buffa A., Costabel M., Schwab C.: Boundary element methods for Maxwell’s equations on non-smooth domains. Numer. Math. 92(4), 679–710 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Buffa A., Costabel M., Sheen D.: On traces for H(curl, Ω) in Lipschitz domains. J. Math. Anal. Appl. 276(2), 845–867 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Buffa, A., Hiptmair, R.: Galerkin boundary element methods for electromagnetic scattering. In: Ainsworth, M., Davis, P., Duncan, D., Martin, P., Rynne, B. (eds.) Topics in Computational Wave Propagation. Direct and Inverse Problems. Lecture Notes in Computational Science and Engineering, vol. 31, pp. 83–124. Springer, Berlin (2003)Google Scholar
  8. 8.
    Carr M., Topsakal E., Volakis J.L.: A procedure for modeling material junctions in 3-D surface integral equation approaches. IEEE Trans. Antennas Propag. 52(5), 1374–1378 (2004)CrossRefGoogle Scholar
  9. 9.
    Claeys X., Hiptmair R.: Integral equations on multi-screens. Integral Equ. Oper. Theory 77(2), 167–197 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Colton D., Kress R.: Inverse acoustic and electromagnetic scattering theory. Applied Mathematical Sciences, vol. 93, 2nd edn. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Cools, K.: Mortar boundary elements for the EFIE applied to the analysis of scattering by PEC junctions. In: 2012 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), pp. 165 –168 (2012)Google Scholar
  12. 12.
    Costabel M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Costabel M., Dauge M.: Maxwell and Lamé eigenvalues on polyhedra. Math. Methods Appl. Sci. 22(3), 243–258 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Girault V., Raviart P.-A.: Finite element methods for Navier–Stokes equations. Springer Series in Computational Mathematics, vol 5. Springer, Berlin (1986)Google Scholar
  15. 15.
    Hiptmair R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hiptmair R., Schwab C.: Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal. 40(1), 66–86 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Leis, R.: Initial-Boundary Value Problems in Mathematical Physics. B.G. Teubner, Stuttgart; Wiley, Chichester (1986)Google Scholar
  18. 18.
    McLean W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  19. 19.
    Monk P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)CrossRefGoogle Scholar
  20. 20.
    Picard R.: On the boundary value problems of electro- and magnetostatics. Proc. R. Soc. Edinb. Sect. A 92(1–2), 165–174 (1982)CrossRefzbMATHGoogle Scholar
  21. 21.
    Picard R., Weck N., Witsch K.-J.: Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles. Analysis (Munich) 21(3), 231–263 (2001)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Putnam J., Medgyesi-Mitschang L.N.: Combined field integral equation formulation for inhomogeneous two and three-dimensional bodies: the junction problem. IEEE Trans. Antennas Propag. 39(5), 667–672 (1991)CrossRefGoogle Scholar
  23. 23.
    Rudin W.: Functional analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill, New York (1991)Google Scholar
  24. 24.
    Sauter S.A., Schwab C.: Boundary element methods. Springer Series in Computational Mathematics, vol 39. Springer, Berlin (2011)Google Scholar
  25. 25.
    Shin, J., Glisson, A.W., Kishk, A.A.: Modeling of general surface junctions of composite objects in an SIE/MoM formulation. In: Report ADA392109, Department of Electrical Engineering, Mississippi University (1998)Google Scholar
  26. 26.
    Ylä-Oijala P., Taskinen M., Sarvas J.: Surface integral equation method for general composite metallic and dielectric structures with junctions. PIER 52, 81–108 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis LionsUPMC Univ. Paris 6, CNRS UMR 7598ParisFrance
  2. 2.INRIA-Paris-Rocquencourt, EPC AlpinesLe Chesnay CedexFrance
  3. 3.Seminar of Applied MathematicsETH ZürichZurichSwitzerland

Personalised recommendations