Advertisement

Integral Equations and Operator Theory

, Volume 82, Issue 4, pp 555–573 | Cite as

Coefficients Multipliers of Weighted Spaces of Harmonic Functions

  • Kjersti Solberg Eikrem
  • Eugenia Malinnikova
Article

Abstract

Let \({h_g^\infty}\) be the space of harmonic functions in the unit ball that are bounded by some increasing radial function that tends to infinity as r goes to one; these spaces are called growth spaces. We describe functions in growth spaces by the Cesàro means of their expansions in harmonic polynomials and apply this characterization to study coefficient multipliers between growth spaces. Further, we introduce spaces of harmonic functions of regular growth and show that integral operators considered recently in connection to boundary oscillation of harmonic functions in weighted spaces, can be realized as multipliers that map growth spaces to corresponding spaces of regular growth.

Keywords

Weighted spaces of harmonic functions Cesàro means multipliers spherical harmonics doubling weight 

Mathematics Subject Classification

42B15 46E15 47B38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson J.M.: Coefficient multipliers and solid spaces. J. Anal. 1, 13–19 (1993)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Anderson J.M., Shields A.L.: Coefficient multipliers of Bloch functions. Trans. Am. Math. Soc. 224(2), 255–265 (1976)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bennett G., Stegenga D.A., Timoney R.M.: Coefficients of Bloch and Lipschitz functions. Ill. J. Math. 25(3), 520–531 (1981)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Blasco O.: Multipliers on spaces of analytic functions. Can. J. Math. 47(1), 44–64 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bonami A., Clerc J.-L.: Sommes de Cesàro et multiplicateurs des dé-ve-lop-pe-ments en harmoniques sphériques. Trans. Am. Math. Soc. 183, 223–262 (1973)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Buckley S.M.: Mixed norms and analytic function spaces. Math. Proc. R. Ir. Acad. 100A(1), 1–9 (2000)MathSciNetGoogle Scholar
  7. 7.
    Buckley S.M.: Relative solidity for spaces of holomorphic functions. Math. Proc. R. Ir. Acad. 104A(1), 83–97 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Buckley S.M., Koskela P., Vukotić D.: Fractional integration, differentiation, and weighted Bergman spaces. Math. Proc. Cambr. Philos. Soc. 126(2), 369–385 (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Buckley S.M., Ramanujan M.S., Vukotić D.: Bounded and compact multipliers between Bergman and Hardy spaces. Integral Equ. Oper. Theory 35(1), 1–19 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Dai F., Xu Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  11. 11.
    de Boor C.: Divided differences. Surv. Approx. Theory 1, 46–69 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    de Leeuw K., Katznelson Y., Kahane J.-P.: Sur les coefficientes de Fourier des functions continues. C.R. Acad. Sci. Paris Sér. A-B 285(16), A1001–A1003 (1977)Google Scholar
  13. 13.
    Doubtsov, E.: Characterisations of Hardy growth spaces with doubling weights. Bull. Aust. Math. Soc. 90(2), 275–282 (2014)Google Scholar
  14. 14.
    Eikrem, K.S.: Characterization and boundary behavior of harmonic functions in growth spaces. Ph.D. thesis, Norwegian University of Science and Technology (NTNU) (2013)Google Scholar
  15. 15.
    Eikrem K.S.: Hadamard gap series in growth spaces. Collect. Math. 64(1), 1–15 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Eikrem K.S., Malinnikova E., Mozolyako P.: Wavelet decomposition of harmonic functions in growth spaces. J. Anal. Math. 122, 87–111 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Girela D., Pavlović M., Peláez J.Á.: Spaces of analytic functions of Hardy–Bloch type. J. Anal. Math. 100, 53–81 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kellogg C.N.: An extension of the Hausdorff–Young theorem. Mich. Math. J. 18, 121–127 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kogbetliantz E.: Recherches sur la sommabilité de séries ultraphériques par le méthode des moyennes arithmétiques. J. Math. Pure Appl. Ser. 9 3, 107–187 (1924)zbMATHGoogle Scholar
  20. 20.
    Lusky W.: On weighted spaces of harmonic and holomorphic functions. J. Lond. Math. Soc. 51, 309–320 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lusky W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Math. 175(1), 19–45 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lyubarskii Yu., Malinnikova E.: Radial oscillation of harmonic functions in the Korenblum space. Bull. Lond. Math. Soc. 44(1), 68–84 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nowak M.: Coefficient multipliers of spaces of analytic functions. Ann. Univ. Mariae Curie-Skł odowska Sect. A 52(1), 107–119 (1998)zbMATHGoogle Scholar
  24. 24.
    Pavlović M.: Mixed norm spaces of analytic and harmonic functions, I. Publ. Inst. Math. 40(54), 117–141 (1986)Google Scholar
  25. 25.
    Pavlović M.: Mixed norm spaces of analytic and harmonic functions, II. Publ. Inst. Math. 41(55), 97–110 (1987)Google Scholar
  26. 26.
    Shields A.L., Williams D.L.: Bounded projections, duality, and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971)MathSciNetGoogle Scholar
  27. 27.
    Shields A.L., Williams D.L.: Bounded projections, duality, and multipliers in spaces of harmonic functions. J. Reine Angew. Math. 299/300, 256–279 (1978)MathSciNetGoogle Scholar
  28. 28.
    Szegö, G.: Orthogonal Polynomilas, 4th edn. American Mathematical Society, Providence (1975)Google Scholar
  29. 29.
    Vukotić. D.: On the coefficient multipliers of Bergman spaces. J. Lond. Math. Soc. II. Ser. 50(2), 341–348 (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations