Advertisement

Integral Equations and Operator Theory

, Volume 81, Issue 1, pp 127–150 | Cite as

Dobrushin’s Ergodicity Coefficient for Markov Operators on Cones

  • Stéphane Gaubert
  • Zheng Qu
Article

Abstract

Doeblin and Dobrushin characterized the contraction rate of Markov operators with respect the total variation norm. We generalize their results by giving an explicit formula for the contraction rate of a Markov operator over a cone in terms of pairs of extreme points with disjoint support in a set of abstract probability measures. By duality, we derive a characterization of the contraction rate of consensus dynamics over a cone with respect to Hopf’s oscillation seminorm (the infinitesimal seminorm associated with Hilbert’s projective metric). We apply these results to Kraus maps (noncommutative Markov chains, representing quantum channels), and characterize the ultimate contraction of the map in terms of the existence of a rank one matrix in a certain subspace.

Keywords

Markov operator Dobrushin’s ergodicity coefficient ordered linear space invariant measure contraction ratio consensus noncommutative Markov chain quantum channel zero error capacity rank one matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliprantis C.D., Border K.C.: Dimensional Analysis. A Hitchiker’s Guide. Springer, New York (1999)Google Scholar
  2. 2.
    Angeli D., Bliman P.-A.: Convergence speed of unsteady distributed consensus: decay estimate along the settling spanning-trees. SIAM J. Control Optim. 48(1), 1–32 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Springer-Verlag, New York (1971) (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57)Google Scholar
  4. 4.
    Boyd S., Ghosh A., Prabhakar B., Shah D.: Randomized gossip algorithms. IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Convergence in multiagent coordination, consensus, and flocking. In: Proceedings of the Joint 44th IEEE Conference on Decision and Control and European Control Conference, pp. 2996–3000. IEEE, New York (2005)Google Scholar
  6. 6.
    Birkhoff G.: Extensions of Jentzsch’s theorem. Trans. Am. Math. Soc. 85, 219–227 (1957)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bougerol Ph.: Kalman filtering with random coefficients and contractions. SIAM J. Control Optim. 31(4), 942–959 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Beigi, S., Shor, P.W.: On the Complexity of Computing Zero-Error and Holevo Capacity of Quantum Channels. arxiv:0709.2090v3 (2008)
  9. 9.
    Bertsekas D.P., Tsitsiklis J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Upper Saddle River (1989)zbMATHGoogle Scholar
  10. 10.
    Bushell P.J.: Hilbert’s metric and positive contraction mappings in a Banach space. Arch. Ration. Mech. Anal. 52, 330–338 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Conway J.B.: A course in functional analysis. Volume 96 of Graduate Texts in Mathematics, 2nd edn. Springer-Verlag, New York (1990)Google Scholar
  12. 12.
    Cao, M., Spielman, D.A., Morse, A.S.: A lower bound on convergence of a distributed network consensus algorithm. In: Proceedings of the Joint 44th IEEE Conference on Decision and Control and European Control Conference, pp. 2356–2361. IEEE, New York (2005)Google Scholar
  13. 13.
    Dobrushin R.: Central limit theorem for non-stationary Markov chains I. Teor. Veroyatnost. i Primen. 1, 72–89 (1956)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ellis A.J.: The duality of partially ordered normed linear spaces. J. Lond. Math. Soc. 39, 730–744 (1964)CrossRefzbMATHGoogle Scholar
  15. 15.
    Eveson S.P., Nussbaum R.D.: An elementary proof of the Birkhoff–Hopf theorem. Math. Proc. Camb. Philos. Soc. 117(1), 31–55 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Gaubert S., Gunawardena J.: The Perron–Frobenius theorem for homogeneous, monotone functions. Trans. AMS 356(12), 4931–4950 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Hirsch M.W.: Convergent activation dynamics in continuous time networks. Neural Netw. 2(5), 331–349 (1989)CrossRefGoogle Scholar
  18. 18.
    Hopf E.: An inequality for positive linear integral operators. J Math. Mech. 12(5), 683–692 (1963)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kohlberg E., Pratt J.W.: The contraction mapping approach to the Perron–Frobenius theory: why Hilbert’s metric?. Math. Oper. Res. 7(2), 198–210 (1982)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence, RI (2009) (with a chapter by James G. Propp and David B. Wilson)Google Scholar
  21. 21.
    Medeiros R.A.C., De Assis F.M.: Quantum zero-error capacity. Int. J. Quanum Inf. 03, 135 (2005)CrossRefGoogle Scholar
  22. 22.
    Moreau L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Mukhamedov F.: The Dobrushin ergodicity coefficient and the ergodicity of noncommutative Markov chains. J. Math. Anal. Appl. 408(1), 364–373 (2013)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Nagel, R.J.: Order unit and base norm spaces. In: Foundations of Quantum Mechanics and Ordered Linear Spaces (Advanced Study Inst., Marburg, 1973), pp. 23–29. Lecture Notes in Physics, vol. 29. Springer, Berlin (1974)Google Scholar
  25. 25.
    Nussbaum, R.D.: Hilbert’s projective metric and iterated nonlinear maps. Mem. Am. Math. Soc. 75(391), iv+137 (1988)Google Scholar
  26. 26.
    Nussbaum R.D.: Finsler structures for the part metric and Hilbert’s projective metric and applications to ordinary differential equations. Differ. Integral Equ. 7(5–6), 1649–1707 (1994)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Olshevsky A., Tsitsiklis J.N.: Convergence speed in distributed consensus and averaging. SIAM J. Control Optim. 48(1), 33–55 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Reeb D., Kastoryano M.J., Wolf M.M.: Hilbert’s projective metric in quantum information theory. J. Math. Phys. 52(8), 082201, 33 (2011)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Sepulchre, R., Sarlette, A., Rouchon, P.: Consensus in noncommutative spaces. In: Proceedings of the 49th IEEE Conference on Decision and Control, pp. 6596–6601, Atlanta (2010)Google Scholar
  30. 30.
    Tsitsiklis J.N., Bertsekas D.P., Athans M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.École PolytechniqueINRIA and CMAP UMR 7641 CNRSPalaiseau CedexFrance
  2. 2.School of MathematicsUniversity of EdinburghEdinburghUK

Personalised recommendations