Integral Equations and Operator Theory

, Volume 80, Issue 3, pp 323–351 | Cite as

On the Zeros of Eigenpolynomials of Hermitian Toeplitz Matrices

  • Florian BüngerEmail author


This article refines a result of Delsarte, Genin, Kamp (Circuits Syst Signal Process 3:207–223, 1984), and Delsarte and Genin (Springer Lect Notes Control Inf Sci 58:194–213, 1984), regarding the number of zeros on the unit circle of eigenpolynomials of complex Hermitian Toeplitz matrices and generalized Caratheodory representations of such matrices. This is achieved by exploring a key observation of Schur (Über einen Satz von C. Carathéodory. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, pp. 4–15, 1912) stated in his proof of a famous theorem of Carathéodory (Rendiconti del Circolo Matematico di Palermo 32:193–217, 1911). In short, Schur observed that companion matrices corresponding to eigenpolynomials of Hermitian Toeplitz matrices H define isometries with respect to (spectrum shifted) submatrices of H. Looking at possible normal forms of these isometries leads directly to the results. This geometric, conceptual approach can be generalized to Hermitian or symmetric Toeplitz matrices over arbitrary fields. Furthermore, as a byproduct, Iohvidov’s law in the jumps of the ranks and the connection between the Iohvidov parameter and the Witt index are established for such Toeplitz matrices.

Mathematics Subject Classification (2010)

Primary 15B05 Secondary 15B57 


Hermitian Toeplitz matrices zeros of eigenpolynomials Iohvidov parameter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aitken, A.C.: Determinants and Matrices. §50, Interscience Publishers Inc. (1962)Google Scholar
  2. 2.
    Carathéodory C.: Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rendiconti del Circolo Matematico di Palermo 32, 193–217 (1911)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ciccariello S., Cervellino A.: Generalization of a theorem of Caratheodory. J. Phys. A. Math. Gen. 39, 14911–14928 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Data L., Morgera S.D.: Comments and Corrections on “On the Eigenvectors of Symmetric Toeplitz Matrices”. IEEE Trans. Acoust. Speech Signal Process. ASSP 32(2), 440–441 (1984)CrossRefGoogle Scholar
  5. 5.
    Delsarte P., Genin Y., Kamp Y.: Parametric Toeplitz systems. Circuits Syst. Signal Process. 3(2), 207–223 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Delsarte P., Genin Y.: Spectral properties of finite Toeplitz matrices. Springer Lect. Notes Control Inf. Sci. 58, 194–213 (1984)MathSciNetGoogle Scholar
  7. 7.
    Fischer E.: Über das Carathéodory’sche Problem, Potenzreihen mit positivem reellen Teil betreffend. Rendiconti del Circolo Matematico di Palermo 32, 240–256 (1911)CrossRefzbMATHGoogle Scholar
  8. 8.
    Frobenius, G.: Ableitung eines Satzes von C. Carathéodory aus einer Formel von Kronecker. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, pp. 16–31 (1912)Google Scholar
  9. 9.
    Genin Y.: A survey of the eigenstructure properties of finite Hermitian Toeplitz matrices. Integr. Equ. Oper. Theory 10, 621–639 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grenander, U., Szegö, G.: Toeplitz Forms and Their Applications. University of California Press, California (1958)Google Scholar
  11. 11.
    Gueguen C.: Linear prediction in the singular case and the stability of eigen models. Acoust. Speech Signal Process. IEEE Int. Conf. ICASSP 6, 881–885 (1981)Google Scholar
  12. 12.
    Ha T.T., Gibson J.A.: A note on the determinant of a functional confluent vandermonde matrix and controllability. Linear Algebra Appl. 30, 69–75 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Huppert, B.: Angewandte Lineare Algebra. de Gruyter (1990)Google Scholar
  14. 14.
    Iohvidov, I.S.: Hankel and Toeplitz Matrices and Forms: Algebraic Theory. Birkhäuser, Basel (1982)Google Scholar
  15. 15.
    Makhul J.: On the eigenvectors of symmetric Toeplitz matrices. IEEE Trans. Acoust. Speech Signal Process. ASSP 29(4), 868–872 (1981)CrossRefGoogle Scholar
  16. 16.
    Pisarenko V.F.: The retrieval of harmonics from a covariance function. Geophys. J. R. Astr. Soc. 33, 347–366 (1973)CrossRefzbMATHGoogle Scholar
  17. 17.
    Quigley, B.J.: Lecture Notes on Differential and Difference equations, Ch. 4. University College Dublin (2005)Google Scholar
  18. 18.
    Reddi S.S.: Eigenvector properties of Toeplitz matrices and their application to spectral analysis of time. Signal Process. 7, 45–56 (1984)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Robinson, E.: Statistical Communication and Detection. Griffin, London (1967)Google Scholar
  20. 20.
    Schur, I.: Über einen Satz von C. Carathéodory. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, pp. 4–15 (1912)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Institute for Reliable ComputingHamburg University of TechnologyHamburgGermany

Personalised recommendations