Advertisement

Integral Equations and Operator Theory

, Volume 78, Issue 2, pp 271–300 | Cite as

Eigenvalue Characterization of Radial Operators on Weighted Bergman Spaces Over the Unit Ball

  • Wolfram Bauer
  • Crispin Herrera Yañez
  • Nikolai Vasilevski
Article

Abstract

We study the so-called radial operators, and in particular radial Toeplitz operators, acting on the standard weighted Bergman space on the unit ball in \({\mathbb{C}^n}\). They turn out to be diagonal with respect to the standard monomial basis, and the elements of their eigenvalue sequences depend only on the length of multi-indexes enumerating basis elements. We explicitly characterize the eigenvalue sequences of radial Toeplitz operators by giving a solution for the weighted extension of the classical Hausdorff moment problem, and show that the norm closure of the set of all radial Toeplitz operators with bounded measurable radial symbols coincides with the C*-algebra generated by these Toeplitz operators and is isomorphic and isometric to the C*-algebra of sequences that slowly oscillate in the sense of Schmidt.

Mathematics Subject Classification (2010)

Primary 47B35 Secondary 30H20 30E05 

Keywords

Toeplitz operator Weighted Hausdorff moment problem slowly oscillating sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, W., Herrera Yañez, C., Vasilevski, N.: \({(m,\lambda)}\)-Berezin transform and approximation of operators on weighted Bergman spaces over the unit ball, preprint (2013)Google Scholar
  2. 2.
    Bauer W., Vasilevski N.: On the structure of commutative Banach algebras generated by Toeplitz operators on the unit ball. Quasi-elliptic case. I: Generating subalgebras. J. Funct. Anal. 265, 2956–2990 (2013)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Engliš M.: Density of algebras generated by Toeplitz operators on Bergman spaces. Ark. Mat. 30(2), 227–243 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Gradshteyn I.S., Ryzhik I. M.: Tables of integrals, series, and products. Academic Press, Dublin (1980)Google Scholar
  5. 5.
    Grudsky S.M., Maximenko E.A., Vasilevski N.L.: Radial Toeplitz operators on the unit ball and slowly oscillating sequences. Comm. Math. Anal. 14(2), 77–94 (2013)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Landau E.: Über die Bedeutung einiger neuer Grenzwertsätze der Herren Hardy und Axer. Prace Mat. Fiz. 21, 97–177 (1910)zbMATHGoogle Scholar
  7. 7.
    Maharam D.: The representation of abstract measure functions. Trans. Am. Math. Soc. 65, 279–330 (1948)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Mitkovski, M., Suárez, D., Wick B.D.: (2013) The essential norm of operators on \({{A}^p_{\alpha}(\mathbb{B}_n)}\). Integr. Equ. Oper. Theory 75(2), 197–233Google Scholar
  9. 9.
    Nam K., Zheng D., Zhong C.: m-Berezin transform and compact operators. Rev. Mat. Iberoamericana 22(3), 867–892 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Schmidt R.: Über divergente Folgen und lineare Mittelbildungen. Math. Z. 22, 89–152 (1924)CrossRefGoogle Scholar
  11. 11.
    Stanojević Č.V., Stanojević V.B.: Tauberian retrieval theory. Publications de l’Institut Mathématique 71, 105–111 (2002)CrossRefGoogle Scholar
  12. 12.
    Suárez D.: Approximation and the n-Berezin transform of operators on the Bergman space. J. Reine Angew. Math. 581, 175–192 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Suárez D.: The eigenvalues of limits of radial Toeplitz operators. Bull. Lond. Math. Soc. 40, 631–641 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Widder D. V.: The Laplace transform. Princeton University Press, Princeton (1946)Google Scholar
  15. 15.
    Zhu K.: Spaces of holomorphic functions in the unit ball. Springer, New York (2005)zbMATHGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Wolfram Bauer
    • 1
  • Crispin Herrera Yañez
    • 2
  • Nikolai Vasilevski
    • 2
  1. 1.Mathematisches InstitutGeorg-August-UniversitätGöttingenGermany
  2. 2.Departamento de MatemáticasCINVESTAV del I.P.N.MéxicoMexico

Personalised recommendations