Integral Equations and Operator Theory

, Volume 76, Issue 1, pp 55–79 | Cite as

Singular Integrals on Product Homogeneous Groups

  • Yong Ding
  • Shuichi SatoEmail author


We consider singular integral operators with rough kernels on the product space of homogeneous groups. We prove L p boundedness of them for \({p \in (1,\infty)}\) under a sharp integrability condition of the kernels.

Mathematics Subject Classification (2010)

Primary 42B20 


multiple singular integrals homogeneous groups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Qassem H., Pan Y.: L p boundedness for singular integrals with rough kernels on product domains. Hokkaido Math. J. 31, 555–613 (2002)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Al-Salman A., Al-Qassem H., Pan Y.: Singular integrals on product domains. Indiana Univ. Math. J. 55, 369–387 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Calderón A.P., Torchinsky A.: Parabolic maximal functions associated with a distribution. Adv. Math. 16, 1–64 (1975)zbMATHCrossRefGoogle Scholar
  4. 4.
    Calderón A.P., Zygmund A.: On singular integrals. Am. J. Math. 78, 289–309 (1956)zbMATHCrossRefGoogle Scholar
  5. 5.
    Chen Y., Ding Y., Fan D.: A parabolic singular integral operator with rough kernel. J. Aust. Math. Soc. 84, 163–179 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Christ M.: Hilbert transforms along curves I Nilpotent groups. Ann. Math. 122, 575–596 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Coifman, R.R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogenes. Lecture Notes in Math. 242, Springer-Verlag, Berlin and New York (1971)Google Scholar
  8. 8.
    Ding Y., Wu X.: Littlewood-Paley g-functions with rough kernels on homogeneous groups. Studia Math. 195, 51–86 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Duoandikoetxea J.: Multiple singular integrals and maximal functions along hypersurfaces. Ann. Inst. Fourier 36, 185–206 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Duoandikoetxea J., Rubiode Francia J.L.: Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84, 541–561 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fefferman R., Stein E.M.: Singular integrals on product spaces. Adv. Math. 45, 117–143 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Folland G.B., Stein E.M.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton (1982)zbMATHGoogle Scholar
  13. 13.
    Nagel A., Stein E.M.: Lectures on Pseudo-Differential Operators, Mathematical Notes 24. Princeton University Press, Princeton (1979)Google Scholar
  14. 14.
    Ricci F., Stein E.M.: Harmonic analysis on nilpotent groups and singular integrals, I. Oscillatory integrals. J. Func. Anal. 73, 179–194 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ricci F., Stein E.M.: Harmonic analysis on nilpotent groups and singular integrals, II: Singular kernels supported on submanifolds. J. Func. Anal. 78, 56–84 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Rivière N.: Singular integrals and multiplier operators. Ark. Mat. 9, 243–278 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Sato S.: Estimates for singular integrals and extrapolation. Studia Math. 192, 219–233 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Sato S.: Estimates for singular integrals along surfaces of revolution. J. Aust. Math. Soc. 86, 413–430 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Sato S.: Weak type (1,1) estimates for parabolic singular integrals. Proc. Edinb. Math. Soc. 54, 221–247 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Sato S.: A note on L p estimates for singular integrals. Sci. Math. Jpn. 71, 343–348 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Sato S.: Estimates for singular integrals on homogeneous groups. J. Math. Anal. Appl. 400, 311–330 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Seeger A.: Singular integral operators with rough convolution kernels. J. Am. Math. Soc. 9, 95–105 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Stein E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  24. 24.
    Stein E.M., Wainger S.: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84, 1239–1295 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Tao T.: The weak-type (1,1) of Llog L homogeneous convolution operator. Indiana Univ. Math. J. 48, 1547–1584 (1999)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Laboratory of Mathematics and Complex Systems (BNU), Ministry of Education, School of Mathematical SciencesBeijing Normal UniversityBeijingPeople’s Republic of China
  2. 2.Department of Mathematics, Faculty of EducationKanazawa UniversityKanazawaJapan

Personalised recommendations