Integral Equations and Operator Theory

, Volume 74, Issue 3, pp 345–362 | Cite as

Exponential Stability and Uniform Boundedness of Solutions for Nonautonomous Periodic Abstract Cauchy Problems. An Evolution Semigroup Approach

  • Constantin Buşe
  • Dhaou Lassoued
  • Thanh Lan Nguyen
  • Olivia Saierli


Let u μ, x, s (., 0) be the solution of the following well-posed inhomogeneous Cauchy Problem on a complex Banach space X
$$\left \{\begin{array}{ll}\dot{u}(t) = A(t)u(t) + e^{i\mu t}x, \quad t > s \\ u(s) = 0. \end{array} \right.$$
Here, x is a vector in Xμ is a real number, q is a positive real number and A(·) is a q-periodic linear operator valued function. Under some natural assumptions on the evolution family \({\mathcal{U} = \{U(t, s): t \geq s\}}\) generated by the family {A(t)}, we prove that if for each μ, each s ≥ 0 and every x the solution u μ, x, s (·, 0) is bounded on R + by a positive constant, depending only on x, then the family \({\mathcal{U}}\) is uniformly exponentially stable. The approach is based on the theory of evolution semigroups.

Mathematics Subject Classification (2010)

47A05 47A30 47D06 47A10 35B15 35B10 


Periodic evolution families uniform exponential stability boundedness evolution semigroup almost periodic functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arendt W., Batty C.J.K., Hieber M., Neubrander F.: Vector Valued Laplace transform. Birkhäuser, Basel (2001)Google Scholar
  2. 2.
    Arshad S., Buşe C., Saierli O.: Connections between exponential stability and boundedness of solutions of a couple of differential time depending and periodic systems. Electron. J. Qualitative Theory Differ. Equ. 90, 1–16 (2011)Google Scholar
  3. 3.
    Balint, S.: On the Perron–Bellman theorem for systems with constant coefficients, Ann. Univ. Timisoara, vol 21, fasc. 1–2, 3–8 (1983)Google Scholar
  4. 4.
    Baroun M., Maniar L., Schnaubelt R.: Almost periodicity of parabolic evolution equations with inhomogeneous boundary values. Integr. Equ. Oper. Theory 65(2), 169–193 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Buşe C.: On the Perron–Bellman theorem for evolutionary processes with exponential growth in Banach spaces. NZ J. Math. 27, 183–190 (1998)zbMATHGoogle Scholar
  6. 6.
    Buşe C., Cerone P., Dragomir S.S., Sofo A.: Uniform stability of periodic discrete system in Banach spaces. J. Differ. Equ. Appl. 11(12), 1081–1088 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Buşe C., Pogan A.: Individual exponential stability for evolution families of bounded and linear operators. NZ J. Math. 30, 15–24 (2001)zbMATHGoogle Scholar
  8. 8.
    Chicone, C., Latushkin, Y.: Evolution semigroups in dynamical systems and differential equations. Mathematical Surveys and Monographs, vol. 70. American Mathematical Society, Providence (1999)Google Scholar
  9. 9.
    Clark S., Latushkin Y., Montgomery-Smith S., Randolph T.: Stability radius and internal versus external stability in banach spaces: an evolution semigroup approach. SIAM J. Control Optim. 38(6), 1757–1793 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Corduneanu C.: Almost Periodic Oscilations and Waves. Springer Sciences+Business Media LLC, Berlin (2009)CrossRefGoogle Scholar
  11. 11.
    Daners D., Medina K.P.: Abstract evolution equations, periodic problems and applications. Pitman Research Notes in Mathematics Series, vol. 279. Longman Scientific & Technical, (1992)Google Scholar
  12. 12.
    Engel K., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)zbMATHGoogle Scholar
  13. 13.
    Greiner G., Voight J., Wolff P.M.: On the spectral bound of the generator of semigroups of positive operators. J. Oper. Theory 5, 245–256 (1981)zbMATHGoogle Scholar
  14. 14.
    Howland S.J.: On a theorem of Gearhart. Integral Equ. Oper. Theory 7, 138–142 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Huang F.: Exponential stability of linear systems in Banach spaces. Chin. Ann. Math. 10, 332–340 (1989)zbMATHGoogle Scholar
  16. 16.
    Mather J.: Characterization of Anosov diffeomorphisms. Indag. Math. 30, 479–483 (1968)MathSciNetGoogle Scholar
  17. 17.
    Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  18. 18.
    Phong, V.Q.: On stability of C 0-semigroups. Proc. Am. Math. Soc. 129, No. 10, 2871–2879 (2001)Google Scholar
  19. 19.
    Nguyenm T.L.: On nonautonomous functional differential equations. J. Math. Anal. Appl. 239(1), 158–174 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nguyen T.L.: On the wellposedness of nonautonomous second order Cauchy problems. East-West J. Math. 1(2), 131–146 (1999)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Van Minh N., Räbiger F., Schnaubelt R.: Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half-line. Integr. Equ. Oper. Theory 32, 332–353 (1998)CrossRefzbMATHGoogle Scholar
  22. 22.
    Neubrander F.: Laplace transform and asymptotic behavior of strongly continuous semigroups. Houston Math. J. 12(4), 549–561 (1986)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Reghiş M., Buşe C.: On the Perron-Bellman theorem for strongly continuous semigroups and periodic evolutionary processes in Banach spaces. Italian J. Pure Appl. Math. 4, 155–166 (1998)zbMATHGoogle Scholar
  24. 24.
    Schnaubelt, R.: Well-posedness and asymptotic behavior of non-autonomous linear evolution equations, Evolution equations, semigroups and functional analysis. Progr. Nonlinear Differential Equations Appl., vol. 50. Birkhäuser, Basel, pp. 311–338 (2002)Google Scholar
  25. 25.
    Stein E.M., Shakarchi R.: Fourier analysis: An introduction. Princeton University Press, Princeton (2003)zbMATHGoogle Scholar
  26. 26.
    van Neerven J.M.A.M.: Individual stability of C 0 semigroups with uniformly bounded local resolvent. Semigroup Forum 53(1), 155–161 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Weis L., Wrobel V.: Asymptotic behavior of C 0-semigroups in Banach spaces. Proc. Am. Math. Soc. 124(12), 3663–3671 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wrobel V.: Asymptotic behavior of C 0-semigroups in B-convex spaces. Indiana Univ. Math. J. 38, 101–114 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zabczyk J.: Mathematical Control Theory: An Introduction Systems and Control. Birkhäuser, Basel (1992)zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Constantin Buşe
    • 1
  • Dhaou Lassoued
    • 2
  • Thanh Lan Nguyen
    • 3
  • Olivia Saierli
    • 1
    • 4
  1. 1.Department of MathematicsWest University of TimisoaraTimisoaraRomânia
  2. 2.Laboratoire SAMM EA543Universite Paris 1 Pantheon-SorbonneParis cedex 13France
  3. 3.Western Kentucky UniversityBowling GreenUS
  4. 4.Department of Computer SciencesTibiscus University of TimisoaraTimisoaraRomânia

Personalised recommendations