Weighted Composition Operators on the Space of Bounded Harmonic Functions

Article

Abstract

We determine the norm and the essential norm of the difference of weighted composition operators on the space of bounded harmonic functions on the open unit disk. The argument is done on the boundary.

Mathematics Subject Classification (2010)

Primary 47B38 Secondary 30H10 

Keywords

Weighted composition operator the space of bounded harmonic functions essential norm 

References

  1. 1.
    Choa J.S., Izuchi K.J., Ohno S.: Composition operators on the space of bounded harmonic functions. Integr. Equ. Oper. Theory 61, 167–186 (2008)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Cowen C.C., MacCluer B.D.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)MATHGoogle Scholar
  3. 3.
    Garnett J.B.: Bounded Analytic Functions. Academic Press, New York (1981)MATHGoogle Scholar
  4. 4.
    Hosokawa T., Izuchi K.J., Ohno S.: Topological structure of the space of weighted composition operators on H . Integr. Equ. Oper. Theory 53, 509–526 (2005)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Hosokawa T., Izuchi K.J., Zheng D.: Isolated points and essential components of composition operators on H . Proc. Am. Math. Soc. 130, 1765–1773 (2002)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    MacCluer B.D., Ohno S., Zhao R.: Topological structure of the space of composition operators on H . Integr. Equ. Oper. Theory 40, 481–494 (2001)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Moorhouse J.: Compact differences of composition operators. J. Funct. Anal. 219, 70–92 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Nieminen P.J., Saksman E.: On compactness of the difference of composition operators. J. Math. Anal. Appl. 298, 501–522 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Rudin W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)MATHGoogle Scholar
  10. 10.
    Ryff J.: Subordinate H p functions. Duke Math. J. 33, 347–354 (1966)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Shapiro J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993)MATHGoogle Scholar
  12. 12.
    Shapiro J.H., Sundberg C.: Isolation amongst the composition operators. Pacif. J. Math. 145, 117–152 (1990)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of MathematicsNiigata UniversityNiigataJapan
  2. 2.NiigataJapan
  3. 3.Nippon Institute of TechnologyMiyashiro, Minami-SaitamaJapan

Personalised recommendations