Integral Equations and Operator Theory

, Volume 70, Issue 1, pp 63–99 | Cite as

On the Solvability of Singular Integral Equations with Reflection on the Unit Circle

  • L. P. CastroEmail author
  • E. M. Rojas


The solvability of a class of singular integral equations with reflection in weighted Lebesgue spaces is analyzed, and the corresponding solutions are obtained. The main techniques are based on the consideration of certain complementary projections and operator identities. Therefore, the equations under study are associated with systems of pure singular integral equations. These systems will be then analyzed by means of a corresponding Riemann boundary value problem. As a consequence of such a procedure, the solutions of the initial equations are constructed from the solutions of Riemann boundary value problems. In the final part of the paper, the method is also applied to singular integral equations with the so-called commutative and anti-commutative weighted Carleman shifts.

Mathematics Subject Classification (2010)

Primary 45E05 Secondary 30E20 30E25 45E10 47A68 47G10 


Singular integral equation reflection shift solvability Riemann boundary value problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bastos M.A., Fernandes C.A., Karlovich Y.I.: Spectral measures in C*-algebras of singular integral operators with shifts. J. Funct. Anal. 242, 86–126 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Baturev A.A., Kravchenko V.G., Litvinchuk G.: Approximate methods for singular integral equations with a non-Carleman shift. J. Integral Equations Appl. 8, 1–17 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Boiarskii B.V.: On generalized Hilbert boundary value problems, Soobsh. Akad. Nauk Gruz. SSR 25(4), 385–390 (1960)Google Scholar
  4. 4.
    Carleman T.: Application de la théorie des équations intégrales linéaires aux systémes d’ équations différentielles non linéaires. Acta Math. 59, 63–87 (1932)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Castro L.P., Rojas E.M.: Reduction of singular integral operators with flip and their Fredholm property. Lobachevskii J. Math. 29, 119–129 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Castro L.P., Rojas E.M.: Explicit solutions of Cauchy singular integral equations with weighted Carleman shift. J. Math. Anal. Appl. 371, 128–133 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Castro, L.P., Rojas, E.M.: Invertibility of singular integral operators with flip through explicit operator relations. In: Integral Methods in Science and Engineering, vol. 1, pp. 105–114. Birkhäuser, Boston, (2010)Google Scholar
  8. 8.
    Chaun L.H., Mau N.V., Tuan N.M.: On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel. Complex Var. Elliptic Equ. 53, 117–137 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Chaun L.H., Tuan N.M.: On singular integral equations with the Carleman shifts in the case of the vanishing coefficient. Acta Math. Vietnam. 28, 319–333 (2003)MathSciNetGoogle Scholar
  10. 10.
    Clancey K.F., Gohberg I.: Factorization Matrix Functions and Singular Integral Operators. Operator Theory: Advances and Applications, vol. 3. Birkhäuser, Basel-Boston-Stuttgart (1981)Google Scholar
  11. 11.
    Ferreira J., Litvinchuk G.S., Reis M.D.L.: Calculation of the defect numbers of the generalized Hilbert and Carleman boundary value problems with linear fractional Carleman shift. Integr. Equ. Oper. Theory 57, 185–207 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gakhov F.D.: Boundary Values Problems. Dover, New York (1990)Google Scholar
  13. 13.
    Haseman, C.: Anwendung der Theorie der Integralgleichungen auf einige Randwertaufgaben. Gottingen (1911)Google Scholar
  14. 14.
    Hilbert, D.: Über eine Anwendung der Integralgleichungen auf ein Problem der Funktionentheorie. Verh. d. 3. intern. Math. Kongr. Heidelb. pp 233–240 (1905, in German)Google Scholar
  15. 15.
    Karapetiants N., Samko S.: Singular integral equations on the real line with a fractional-linear Carleman shift. Proc. A. Razmadze Math. Inst. 124, 73–106 (2000)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Karapetiants N., Samko S.: Equations with Involutive Operators. Birkhäuser, Boston (2001)zbMATHGoogle Scholar
  17. 17.
    Karelin A.A.: Applications of operator equalities to singular integral operators and to Riemann boundary value problems. Math. Nachr. 280, 1108–1117 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Kravchenko V.G., Lebre A.B., Litvinchuk G.S., Teixeira F.S.: A normalization problem for a class of singular integral operators with Carleman shift and unbounded coefficients. Integr. Equ. Oper. Theory 21, 342–354 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kravchenko V.G., Lebre A.B., Rodríguez J.S.: Factorization of singular integral operators with a Carleman shift and spectral problems. J. Integr. Equ. Appl. 13, 339–383 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kravchenko V.G., Lebre A.B., Rodríguez J.S.: Factorization of singular integral operators with a Carleman shift via factorization of matrix functions: the anticommutative case. Math. Nachr. 280, 1157–1175 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kravchenko V.G., Litvinchuk G.S.: Introduction to the Theory of Singular Integral Operators with Shift. Kluwer, Amsterdam (1994)zbMATHGoogle Scholar
  22. 22.
    Litvinchuk, G.S.: Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift. Mathematics and its Applications, vol. 523. Kluwer, Dordrecht (2000)Google Scholar
  23. 23.
    Litvinchuk, G.S., Spitkovsky, I.M.: Factorization of Measurable Matrix Functions. Operator Theory: Advances and Applications, vol. 25. Birkhäuser, Basel-Boston (1987)Google Scholar
  24. 24.
    Markouchevitch, A.: Quelques remarques sur les intégrales du type de Cauchy. Učenye Zapiski Moskov. Gos. Univ. 100. Matematika 1, 31–33 (1946, in Russian, French summary)Google Scholar
  25. 25.
    Mikhlin S.G., Prössdorf S.: Singular Integral Operators. Springer, Berlin (1980)Google Scholar
  26. 26.
    Riemann, B.: Lehrsätze aus der analysis situs für die Theorie der Integrale von zweigliedrigen vollständigen Differentialen. J. Reine Angew. Math. 54, 105–110 (1857, in German)Google Scholar
  27. 27.
    Riemann, B.: Gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachträge [Collected mathematical works, scientific Nachlass and addenda] Based on the edition by Heinrich Weber and Richard Dedekind. Teubner-Archiv zur Mathematik [Teubner Archive on Mathematics], Suppl. 1. BSB B. G. Teubner Verlagsgesellschaft, Leipzig; Springer, Berlin (1990, in German)Google Scholar
  28. 28.
    Tuan N.M.: On a class of singular integral equations with rotation. Acta Math. Vietnam. 21, 201–211 (1996)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Vekua, N.P.: On a generalized system of singular integral equations. Soobščeniya Akad. Nauk Gruzin. SSR. 9, 153–160 (1948, in Russian)Google Scholar
  30. 30.
    Vekua, N. P.: The Carleman boundary problem for several unknown functions. Soobščeniya Akad. Nauk Gruzin. SSR. 13, 9–14 (1952, in Russian)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AveiroAveiroPortugal
  2. 2.Departamento de MatemáticasPontificia Universidad JaverianaBogotáColombia

Personalised recommendations