Integral Equations and Operator Theory

, Volume 67, Issue 1, pp 123–149 | Cite as

Generalized Vanishing Mean Oscillation Spaces Associated with Divergence Form Elliptic Operators

Article

Abstract

Let L be a divergence form elliptic operator with complex bounded measurable coefficients, ω a positive concave function on (0, ∞) of strictly critical lower type p ω ∈(0, 1] and ρ(t) = t −1/ω −1(t −1) for \({t\in (0,\infty).}\) In this paper, the authors introduce the generalized VMO spaces \({{\mathop{\rm VMO}_ {\rho, L}({\mathbb R}^n)}}\) associated with L, and characterize them via tent spaces. As applications, the authors show that \({({\rm VMO}_{\rho,L} ({\mathbb R}^n))^\ast=B_{\omega,L^\ast}({\mathbb R}^n)}\), where L * denotes the adjoint operator of L in \({L^2({\mathbb R}^n)}\) and \({B_{\omega,L^\ast}({\mathbb R}^n)}\) the Banach completion of the Orlicz–Hardy space \({H_{\omega,L^\ast}({\mathbb R}^n)}\). Notice that ω(t) = t p for all \({t\in (0,\infty)}\) and \({p\in (0,1]}\) is a typical example of positive concave functions satisfying the assumptions. In particular, when p = 1, then ρ(t) ≡ 1 and \({({\mathop{\rm VMO}_{1, L}({\mathbb R}^n)})^\ast=H_{L^\ast}^1({\mathbb R}^n)}\), where \({H_{L^\ast}^1({\mathbb R}^n)}\) was the Hardy space introduced by Hofmann and Mayboroda.

Mathematics Subject Classification (2000)

Primary 42B35 Secondary 42B30 46E30 

Keywords

Divergence form elliptic operator Gaffney estimate Orlicz function Orlicz–Hardy space BMO VMO CMO molecule dual 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auscher P.: On necessary and sufficient conditions for L p-estimates of Riesz transforms associated to elliptic operators on \({\mathbb R^n}\) and related estimates. Mem. Am. Math. Soc. 186, 1–75 (2007)MathSciNetGoogle Scholar
  2. 2.
    Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces, Unpublished Manuscript, (2005)Google Scholar
  3. 3.
    Auscher P., Hofmann S., Lacey M., McIntosh A., Tchamitchian Ph.: The solution of the Kato square root problem for second order elliptic operators on \({{\mathbb R}^n}\). Ann. Math. (2) 156, 633–654 (2002)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Auscher P., McIntosh A., Russ E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18, 192–248 (2008)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Auscher P., Russ E.: Hardy spaces and divergence operators on strongly Lipschitz domains of \({{\mathbb R}^n}\). J. Funct. Anal. 201, 148–184 (2003)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Auscher P., Tchamitchian P.: Square root problem for divergence operators and related topics. Astérisque 249, 1–172 (1998)Google Scholar
  7. 7.
    Bourdaud G.: Remarques sur certains sous-espaces de \({{\rm BMO}(\mathbb R^n)}\) et de \({{\rm BMO}(\mathbb R^n)}\). Ann. Inst. Fourier (Grenoble) 52, 1187–1218 (2002)MATHMathSciNetGoogle Scholar
  8. 8.
    Coifman R.R., Meyer Y., Stein E.M.: Some new functions and their applications to harmonic analysis. J. Funct. Anal. 62, 304–335 (1985)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Coifman R.R., Weiss G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Deng D., Duong X.T., Song L., Tan C., Yan L.: Functions of vanishing mean oscillation associated with operators and applications. Michigan Math. J. 56, 529–550 (2008)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Duong X.T., Yan L.: New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications. Commun. Pure Appl. Math. 58, 1375–1420 (2005)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Duong X.T., Yan L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Fefferman C., Stein E.M.: H p spaces of several variables. Acta Math. 129, 137–193 (1972)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Frehse J.: An irregular complex valued solution to a scalar uniformly elliptic equation. Calc. Var. Partial Differ Equ 33, 263–266 (2008)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hofmann S., Martell J.M.: L p bounds for Riesz transforms and square roots associated to second order elliptic operators. Publ. Mat. 47, 497–515 (2003)MATHMathSciNetGoogle Scholar
  16. 16.
    Hofmann S., Mayboroda S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344, 37–116 (2009)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hofmann, S., Mayboroda, S.: Correction to Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann., to appear (arXiv: 0907.10129)Google Scholar
  18. 18.
    Janson S.: Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math. J. 47, 959–982 (1980)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Jiang, R., Yang, D.: Predual spaces of Banach completions of Orlicz–Hardy spaces associated with operators. J. Fourier Anal. Appl. doi: 10.1007/s00041-010-9123-8 (arXiv: 0906.1880) (2010)
  20. 20.
    Jiang R., Yang D.: New Orlicz–Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258, 1167–1224 (2010)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Jiang R., Yang D., Zhou Y.: Orlicz–Hardy spaces associated with operators. Sci. China Ser. A 52, 1042–1080 (2009)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    John F., Nirenberg L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415–426 (1961)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Rudin W.: Functional Analysis, Second Edition. McGraw-Hill, Inc., New York (1991)Google Scholar
  24. 24.
    Sarason D.: Functions of vanishing mean oscillation. Trans. Am. Math. Soc. 207, 391–405 (1975)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Viviani B.E.: An atomic decomposition of the predual of BMO(ρ). Rev. Mat. Iberoamericana 3, 401–425 (1987)MATHMathSciNetGoogle Scholar
  26. 26.
    Wang W.: The predual spaces of tent spaces and some characterizations of \({\lambda_\alpha({\mathbb R}^n)}\) spaces. Beijing Daxue Xuebao 24, 535–551 (1988)MATHMathSciNetGoogle Scholar
  27. 27.
    Yan L.: Classes of Hardy spaces associated with operators, duality theorem and applications. Trans. Am. Math. Soc. 360, 4383–4408 (2008)CrossRefMATHGoogle Scholar

Copyright information

© Birkhäuser / Springer Basel AG 2010

Authors and Affiliations

  1. 1.School of Mathematical SciencesBeijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of EducationBeijingPeople’s Republic of China
  2. 2.Department of Mathematics and StatisticsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations