Integral Equations and Operator Theory

, Volume 66, Issue 2, pp 253–264 | Cite as

Translation-Invariant Bilinear Operators with Positive Kernels

Article

Abstract

We study Lr (or Lr, ∞) boundedness for bilinear translation-invariant operators with nonnegative kernels acting on functions on \({\mathbb {R}^n}\). We prove that if such operators are bounded on some products of Lebesgue spaces, then their kernels must necessarily be integrable functions on \({\mathbb R^{2n}}\), while via a counterexample we show that the converse statement is not valid. We provide certain necessary and some sufficient conditions on nonnegative kernels yielding boundedness for the corresponding operators on products of Lebesgue spaces. We also prove that, unlike the linear case where boundedness from L1 to L1 and from L1 to L1, ∞ are equivalent properties, boundedness from L1 × L1 to L1/2 and from L1 × L1 to L1/2, ∞ may not be equivalent properties for bilinear translation-invariant operators with nonnegative kernels.

Mathematics Subject Classification (2010)

Primary 42A85 Secondary 47A07 

Keywords

Bilinear operators convolution positive kernels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Inc. 1988.Google Scholar
  2. 2.
    Coifman R.R., Meyer Y.: Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28, 177–202 (1978)MATHMathSciNetGoogle Scholar
  3. 3.
    R.R. Coifman and Y. Meyer, Au délà des opérateurs pseudo-différentiels, Astérisque No. 57, Societé Mathematique de France, 1979.Google Scholar
  4. 4.
    Colzani L.: Translation invariant operators on Lorentz spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(14), 257–276 (1987)MathSciNetGoogle Scholar
  5. 5.
    Grafakos L., Kalton N.: Some remarks on multilinear maps and interpolation. Math. Ann. 319, 151–180 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Grafakos L., Torres R.H.: Multilinear Calderón–Zygmund theory. Adv. in Math. 165, 124–164 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hörmander L.: Estimates for translation invariant operators in L p spaces. Acta Math. 104, 93–140 (1960)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kenig C., Stein E.M.: Multilinear estimates and fractional integration. Math. Res. Lett. 6, 1–15 (1999)MATHMathSciNetGoogle Scholar
  9. 9.
    Lacey M., Thiele C.: L p bounds for the bilinear Hilbert transform, p > 2. Ann. of Math. 146, 693–724 (1997)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lacey M., Thiele C.: On Calderón’s conjecture. Ann. of Math. 149, 475–496 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Oberlin D.M.: Translation-invariant operators on L p(G), 0 < p < 1. Michigan Math. J. 23, 119–122 (1976)CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  1. 1.Dept. of MathematicsUniversity of MissouriColumbiaUSA
  2. 2.Dept. Appl. Math. and AnalysisUniversity of BarcelonaBarcelonaSpain

Personalised recommendations