Integral Equations and Operator Theory

, Volume 63, Issue 2, pp 181–215 | Cite as

On the Spectral Analysis of Direct Sums of Riemann-Liouville Operators in Sobolev Spaces of Vector Functions

  • I. Yu. Domanov
  • M. M. Malamud


Let J α k be a real power of the integration operator J k defined on the Sobolev space W k p [0, 1]. We investigate the spectral properties of the operator \(A_{k} = \bigoplus^{n}_{j=1} \lambda_{j}J^{\alpha}_{k}\) defined on \(\bigoplus^{n}_{j=1}W^{k}_{p} [0, 1]\). Namely, we describe the commutant {A k }′, the double commutant \(\{A_k\}\prime\prime\) and the algebra Alg A k . Moreover, we describe the lattices Lat A k and HypLat A k of invariant and hyperinvariant subspaces of A k , respectively. We also calculate the spectral multiplicity \(\mu_{A_k}\) of A k and describe the set Cyc A k of its cyclic subspaces. In passing, we present a simple counterexample for the implication
$${\tt HypLat}(A \oplus B) = {\tt HypLat}\, A \oplus {\tt HypLat}\, B \Rightarrow {\tt Lat}(A \oplus B) = {\tt Lat}\,A \oplus {\tt Lat}\,B$$
to be valid.


Riemann-Liouville operator invariant subspace hyperinvariant subspace commutant double commutant 

Mathematics Subject Classification (2000).

Primary 47A15, 47A16, 47L80 Secondary 47L10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhaueser 2009

Authors and Affiliations

  1. 1.Mathematical Institute, AS CRPraha 1Czech Republic
  2. 2.Institute of Applied Mathematics and MechanicsDonetskUkraine

Personalised recommendations