Skip to main content

Advertisement

Log in

Pathogenic mechanism and modeling of neuroferritinopathy

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Neuroferritinopathy is a rare autosomal dominant inherited movement disorder caused by alteration of the L-ferritin gene that results in the production of a ferritin molecule that is unable to properly manage iron, leading to the presence of free redox-active iron in the cytosol. This form of iron has detrimental effects on cells, particularly severe for neuronal cells, which are highly sensitive to oxidative stress. Although very rare, the disorder is notable for two reasons. First, neuroferritinopathy displays features also found in a larger group of disorders named Neurodegeneration with Brain Iron Accumulation (NBIA), such as iron deposition in the basal ganglia and extrapyramidal symptoms; thus, the elucidation of its pathogenic mechanism may contribute to clarifying the incompletely understood aspects of NBIA. Second, neuroferritinopathy shows the characteristic signs of an accelerated process of aging; thus, it can be considered an interesting model to study the progress of aging. Here, we will review the clinical and neurological features of neuroferritinopathy and summarize biochemical studies and data from cellular and animal models to propose a pathogenic mechanism of the disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Curtis ARJ, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, Coulthard A, Jackson MJ et al (2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet. https://doi.org/10.1038/ng571

    Article  PubMed  Google Scholar 

  2. Levi S, Girelli D, Perrone F, Pasti M, Beaumont C, Corrocher R, Albertini A, Arosio P (1998) Analysis of ferritins in lymphoblastoid cell lines and in the lens of subjects with hereditary hyperferritinemia-cataract syndrome. Blood. https://doi.org/10.1182/blood.v91.11.4180

    Article  PubMed  Google Scholar 

  3. Levi S, Rovida E (2015) Neuroferritinopathy: From ferritin structure modification to pathogenetic mechanism. Neurobiol Dis 81:134–143. https://doi.org/10.1016/j.nbd.2015.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gregory A, Hayflick SJ (2011) Genetics of neurodegeneration with brain iron accumulation. Curr Neurol Neurosci Rep 11:254–261. https://doi.org/10.1007/s11910-011-0181-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kruer MC, Boddaert N, Schneider A, Houlden H, Bhatia KP, Gregory A, Anderson JC, Rooney WD, Hogarth P, Hayflick SJ (2012) Neuroimaging features of neurodegeneration with brain iron accumulation. Am J Neuroradiol. https://doi.org/10.3174/ajnr.A2677

    Article  PubMed  Google Scholar 

  6. Dusek P, Schneider SA (2012) Neurodegeneration with brain iron accumulation. Curr Opin Neurol 25:499–506. https://doi.org/10.1097/WCO.0b013e3283550cac

    Article  CAS  PubMed  Google Scholar 

  7. Di Meo I, Tiranti V (2018) Classification and molecular pathogenesis of NBIA syndromes. J Paediatr Neurol, Eur. https://doi.org/10.1016/j.ejpn.2018.01.008

    Book  Google Scholar 

  8. Levi S, Tiranti V (2019) Neurodegeneration with brain iron accumulation disorders: valuable models aimed at understanding the pathogenesis of Iron deposition. Pharmaceuticals. https://doi.org/10.3390/ph12010027

    Article  PubMed  PubMed Central  Google Scholar 

  9. McNeill A, Chinnery PF (2012) Neuroferritinopathy: update on clinical features and pathogenesis. Curr Drug Targets. https://doi.org/10.2174/138945012802002375

    Article  PubMed  Google Scholar 

  10. Arosio P, Levi S (2010) Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta Gen Subj 1800:783–792. https://doi.org/10.1016/j.bbagen.2010.02.005

    Article  CAS  Google Scholar 

  11. Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta Bioenerg. https://doi.org/10.1016/0005-2728(96)00022-9

    Article  Google Scholar 

  12. Levi S, Corsi B, Bosisio M, Invernizzi R, Volz A, Sanford D, Arosio P, Drysdale J (2001) A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem. https://doi.org/10.1074/jbc.C100141200

    Article  PubMed  Google Scholar 

  13. Santambrogio P, Biasiotto G, Sanvito F, Olivieri S, Arosio P, Levi S (2007) Mitochondrial ferritin expression in adult mouse tissues. J Histochem Cytochem. https://doi.org/10.1369/jhc.7A7273.2007

    Article  PubMed  PubMed Central  Google Scholar 

  14. Levi S, Arosio P (2004) Mitochondrial ferritin. Int J Biochem Cell Biol. https://doi.org/10.1016/j.biocel.2003.10.020

    Article  PubMed  Google Scholar 

  15. Levi S, Luzzago A, Cesareni G, Cozzi A, Franceschinelli F, Albertini A, Arosio P (1988) Mechanism of ferritin iron uptake: activity of the H-chain and deletion mapping of the ferro-oxidase site. J Biol Chem 5 263(34):18086–18092

    Article  CAS  Google Scholar 

  16. Wade VJ, Levi S, Arosio P et al (1991) Influence of site-directed modifications on the formation of iron cores in ferritin. J Mol Biol. https://doi.org/10.1016/0022-2836(91)90944-2

    Article  PubMed  Google Scholar 

  17. Lawson DM, Treffry A, Artymiuk PJ et al (1989) Identification of the ferroxidase centre in ferritin. FEBS Lett. https://doi.org/10.1016/0014-5793(89)81040-3

    Article  PubMed  Google Scholar 

  18. Sun S, Chasteen ND, Arosio P, Levi S (1993) Ferroxidase kinetics of human liver apoferritin, recombinant H-chain apoferritin, and site-directed mutants. Biochemistry. https://doi.org/10.1021/bi00087a015

    Article  PubMed  Google Scholar 

  19. Santambrogio P, Levi S, Arosio P, Palagi L, Vecchio G, Lawson DM, Yewdall SJ, Artymiuk PJ et al (1992) Evidence that a salt bridge in the light chain contributes to the physical stability difference between heavy and light human ferritins. J Biol Chem 15 267(20):14077–14083

    Article  CAS  Google Scholar 

  20. Levi S, Santambrogio P, Cozzi A, Rovida E, Corsi B, Tamborini E, Spada S, Albertini A, Arosio P (1994) The Role of the L-chain in ferritin iron incorporation. J Mol Biol. https://doi.org/10.1006/jmbi.1994.1325

    Article  PubMed  Google Scholar 

  21. Behera RK, Theil EC (2014) Moving Fe2+from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1318417111

    Article  PubMed  Google Scholar 

  22. Zhao G, Bou-Abdallah F, Yang X et al (2001) Is hydrogen peroxide produced during iron(II) oxidation in mammalian apoferritins. Biochemistry. https://doi.org/10.1021/bi011052j16

    Article  PubMed  Google Scholar 

  23. Watt RK, Hilton RJ, Graff DM (2010) Oxido-reduction is not the only mechanism allowing ions to traverse the ferritin protein shell. Biochim Biophys Acta. https://doi.org/10.1016/j.bbagen.2010.03.001

    Article  PubMed  Google Scholar 

  24. Cozzi A, Corsi B, Levi S, Santambrogio P, Albertini A, Arosio P (2000) Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: In vivo role of ferritin ferroxidase activity. J Biol Chem. https://doi.org/10.1074/jbc.M003797200

    Article  PubMed  Google Scholar 

  25. Torti FM, Torti SV (2002) Regulation of ferritin genes and protein. Blood. https://doi.org/10.1182/bood.v99.10.3505

    Article  PubMed  Google Scholar 

  26. Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to Tango: regulation of mammalian Iron metabolism. Cell. https://doi.org/10.1016/j.cell.2010.06.028

    Article  PubMed  Google Scholar 

  27. Mancias JD, Vaites LP, Nissim S, Biancur DE, Kim AJ et al (2015) Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. Elife. https://doi.org/10.7554/eLife.10308

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kühn LC (2015) Iron regulatory proteins and their role in controlling iron metabolism. Metallomics. https://doi.org/10.1039/c4mt00164h

    Article  PubMed  Google Scholar 

  29. Mancias JD, Wang X, Gygi SP et al (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. https://doi.org/10.1038/nature13148

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cozzi A, Santambrogio P, Privitera D, Broccoli V, Rotundo LI, Garavaglia B, Benz R, Altamura S et al (2013) Human L-ferritin deficiency is characterized by idiopathic generalized seizures and atypical restless leg syndrome. J Exp Med. https://doi.org/10.1084/jem.20130315

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cazzola M, Bergamaschi G, Tonon L, Arbustini E, Grasso M, Vercesi E, Barosi G et al (1997) Hereditary hyperferritinemia-cataract syndrome: Relationship between phenotypes and specific mutations in the iron-responsive element of ferritin light-chain mRNA. Blood. https://doi.org/10.1182/blood.v90.2.814.814_814_821

    Article  PubMed  Google Scholar 

  32. Cremonesi L, Cozzi A, Girelli D et al (2004) Case report: a subject with a mutation in the ATG start codon of L-ferritin has no haematological or neurological symptoms. J Med Genet. https://doi.org/10.1136/jmg.2003.011718

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thurlow V, Vadher B, Bomford A, DeLord C, Kannengiesser C, Beaumont C, Grandchamp B (2012) Two novel mutations in the L ferritin coding sequence associated with benign hyperferritinaemia unmasked by glycosylated ferritin assay. Ann Clin Biochem. https://doi.org/10.1258/acb.2011.011229

    Article  PubMed  Google Scholar 

  34. Kannengiesser C, Jouanolle AM, Hetet G, Mosser A, Muzeau F, Henry D et al (2009) A new missense mutation in the L ferritin coding sequence associated with elevated levels of glycosylated ferritin in serum and absence of iron overload. Haematologica. https://doi.org/10.3324/haematol.2008.000125

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vidal R, Delisle MB, Rascol O, Ghetti B (2003) Hereditary ferritinopathy. J Neurol Sci. https://doi.org/10.1016/s0022-510x(02)00435-5

    Article  PubMed  Google Scholar 

  36. Maciel P, Cruz VT, Constante M, Iniesta I, Costa MC, Gallati S et al (2005) Neuroferritinopathy: Missense mutation in FTL causing early-onset bilateral pallidal involvement. Neurology. https://doi.org/10.1212/01.wnl.0000178224.81169.c2

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mancuso M, Davidzon G, Kurlan RM, Tawil R, Bonilla E et al (2005) Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights. J Neuropathol Exp Neurol. https://doi.org/10.1093/jnen/64.4.280

    Article  PubMed  Google Scholar 

  38. Ohta E, Nagasaka T, Shindo K, Toma S, Nagasaka K, Ohta K, Shiozawa S (2008) Neuroferritinopathy in a Japanese family with a duplication in the ferritin light chain gene. Neurology. https://doi.org/10.1212/01.wnl.0000310428.74624.95

    Article  PubMed  Google Scholar 

  39. Devos D, Tchofo PJ, Vuillaume I et al (2009) Clinical features and natural history of neuroferritinopathy caused by the 458dupA FTL mutation. Brain. https://doi.org/10.1093/brain/awn274

    Article  PubMed  Google Scholar 

  40. Kubota A, Hida A, Ichikawa Y et al (2009) A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype-phenotype correlations. Mov Disord 24:441–445. https://doi.org/10.1002/mds.22435

    Article  PubMed  Google Scholar 

  41. Nishida K, Garringer HJ, Futamura N et al (2014) A novel ferritin light chain mutation in neuroferritinopathy with an atypical presentation. J Neurol Sci. https://doi.org/10.1016/j.jns.2014.03.060

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moutton S, Fergelot P, Trocello JM et al (2014) A novel FTL mutation responsible for neuroferritinopathy with asymmetric clinical features and brain anomalies. Park Relat Disord. https://doi.org/10.1016/j.parkreldis.2014.04.026

    Article  Google Scholar 

  43. Ni W, Li HF, Zheng YC, Wu ZY (2016) FTL mutation in a Chinese pedigree with neuroferritinopathy. Neurol Genet. https://doi.org/10.1212/NXG.0000000000000074

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yoon SH, Kim NY, Kim YJ, Lyoo CH (2019) Novel ferritin light chain gene mutation in a korean patient with neuroferritinopathy. J Mov Disord. https://doi.org/10.14802/jmd.18062

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cozzi A, Orellana DI, Santambrogio P et al (2019) Stem cell modeling of neuroferritinopathy reveals iron as a determinant of senescence and ferroptosis during neuronal aging. Stem Cell Report. https://doi.org/10.1016/j.stemcr.2019.09.002

    Article  Google Scholar 

  46. Chinnery PF, Crompton DE, Birchall D et al (2007) Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain 130:110–119. https://doi.org/10.1093/brain/awl319

    Article  PubMed  Google Scholar 

  47. Storti E, Cortese F, Di Fabio R et al (2013) De novo FTL mutation: a clinical, neuroimaging, and molecular study. Mov Disord. https://doi.org/10.1002/mds.25275

    Article  PubMed  Google Scholar 

  48. Levi S, Cozzi A, Arosio P (2005) Neuroferritinopathy: a neurodegenerative disorder associated with L-ferritin mutation. Best Pract Res Clin Haematol 18:265–276. https://doi.org/10.1016/j.beha.2004.08.021

    Article  CAS  PubMed  Google Scholar 

  49. Kuwata T, Okada Y, Yamamoto T et al (2019) Structure, function, folding, and aggregation of a neuroferritinopathy-related ferritin variant. Biochemistry. https://doi.org/10.1021/acs.biochem.8b01068

    Article  PubMed  Google Scholar 

  50. Vidal R, Ghetti B, Takao M et al (2004) Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J Neuropathol Exp Neurol 63:363–380

    Article  CAS  Google Scholar 

  51. Crompton DE, Chinnery PF, Bates D et al (2005) Spectrum of movement disorders in neuroferritinopathy. Mov Disord. https://doi.org/10.1002/mds.20284

    Article  PubMed  Google Scholar 

  52. Lehn A, Boyle R, Brown H et al (2012) Neuroferritinopathy. Park Relat Disord. https://doi.org/10.1016/j.parkreldis.2012.06.021

    Article  Google Scholar 

  53. Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. https://doi.org/10.1111/jnc.13425

    Article  PubMed  Google Scholar 

  54. Muhoberac BB, Vidal R (2019) Iron, ferritin, hereditary ferritinopathy, and neurodegeneration. Front Neurosci. https://doi.org/10.3389/fnins.2019.01195

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vidal R, Delisle MB, Rascol O, Ghetti B (2011) Hereditary ferritinopathies. In: Neurodegeneration the molecular pathology of dementia and movement disorders, 2nd edition. Oxford: Wiley. Doi: https://doi.org/10.1016/s0022-510x(02)00435-5

  56. Ory-Magne F, Brefel-Courbon C, Payoux P et al (2009) Clinical phenotype and neuroimaging findings in a French family with hereditary ferritinopathy (FTL498-499InsTC). Mov Disord. https://doi.org/10.1002/mds.22669

    Article  PubMed  Google Scholar 

  57. Park CW, Kim NY, Kim YJ et al (2020) A patient with neuroferritinopathy presenting with Juvenile-Onset voice tremor. J Mov Disord. https://doi.org/10.14802/jmd.19038

    Article  PubMed  PubMed Central  Google Scholar 

  58. Muhoberac BB, Vidal R (2013) Abnormal iron homeostasis and neurodegeneration. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2013.00032.eCollection2013

    Article  PubMed  PubMed Central  Google Scholar 

  59. McNeill A, Birchall D, Hayflick SJ et al (2008) T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 70:1614–1619. https://doi.org/10.1212/01.wnl.0000310985.40011.d6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ohta E, Takiyama Y (2012) MRI findings in neuroferritinopathy. Neurol Res Int 2012:197438. https://doi.org/10.1155/2012/197438

    Article  PubMed  Google Scholar 

  61. Abbruzzese G, Cossu G, Balocco M et al (2011) A pilot trial of deferiprone for neurodegeneration with brain iron accumulation. Haematologica 96:1708–1711. https://doi.org/10.3324/haematol.2011.043018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cossu G, Abbruzzese G, Matta G et al (2014) Efficacy and safety of deferiprone for the treatment of pantothenate kinase-associated neurodegeneration (PKAN) and neurodegeneration with brain iron accumulation (NBIA): Results from a four years follow-up. Park Relat Disord. https://doi.org/10.1016/j.parkreldis.2014.03.002

    Article  Google Scholar 

  63. Klopstock T, Tricta F, Neumayr L, Karin I, Zorzi G, Fradette C et al (2019) Safety and efficacy of deferiprone for pantothenate kinase-associated neurodegeneration: a randomised, double-blind, controlled trial and an open-label extension study. Lancet Neurol. https://doi.org/10.1016/S1474-4422(19)30142-5

    Article  PubMed  Google Scholar 

  64. Powers JM (2006) p53-mediated apoptosis, neuroglobin overexpression, and globin deposits in a patient with hereditary ferritinopathy. J Neuropathol Exp Neurol. https://doi.org/10.1097/01.jnen.0000228200.27539.19

    Article  PubMed  Google Scholar 

  65. Kurzawa-Akanbi M, Keogh M, Tsefou E et al (2020) Neuropathological and biochemical investigation of Hereditary Ferritinopathy cases with ferritin light chain mutation: Prominent protein aggregation in the absence of major mitochondrial or oxidative stress. Neuropathol Appl Neurobiol. https://doi.org/10.1111/nan.12634

    Article  PubMed  Google Scholar 

  66. Keogh MJ, Morris CM, Chinnery PF (2013) Neuroferritinopathy. In: Bhatia KP, Schneider SA (eds) International review of neurobiology, vol 110. pp 91–123. Doi: https://doi.org/10.1016/B978-0-12-410502-7.00006-5.

    Chapter  Google Scholar 

  67. Cozzi A, Santambrogio P, Corsi B et al (2006) Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2006.05.004

    Article  PubMed  Google Scholar 

  68. Baraibar MA, Barbeito AG, Muhoberac BB, Vidal R (2008) Iron-mediated aggregation and a localized structural change characterize ferritin from a mutant light chain polypeptide that causes neurodegeneration. J Biol Chem. https://doi.org/10.1074/jbc.M805532200

    Article  PubMed  PubMed Central  Google Scholar 

  69. Baraibar MA, Muhoberac BB, Garringer HJ et al (2010) Unraveling of the E-helices and disruption of 4-fold pores are associated with iron mishandling in a mutant ferritin causing neurodegeneration. J Biol Chem 285:1950–1956. https://doi.org/10.1074/jbc.M109.042986

    Article  CAS  PubMed  Google Scholar 

  70. Luscieti S, Santambrogio P, Langlois d’Estaintot B et al (2010) Mutant ferritin L-chains that cause neurodegeneration act in a dominant-negative manner to reduce ferritin iron incorporation. J Biol Chem 285:11948–11957. https://doi.org/10.1074/jbc.M109.096404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Muhoberac BB, Baraibar MA, Vidal R (2011) Iron loading-induced aggregation and reduction of iron incorporation in heteropolymeric ferritin containing a mutant light chain that causes neurodegeneration. Biochim Biophys Acta Mol Basis Dis. https://doi.org/10.1016/j.bbadis.2010.10.010

    Article  Google Scholar 

  72. Cozzi A, Rovelli E, Frizzale G, Campanella A, Amendola M, Arosio P, Levi S (2010) Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2009.09.009

    Article  PubMed  Google Scholar 

  73. Baraibar MA, Barbeito AG, Muhoberac BB, Vidal R (2012) A mutant light-chain ferritin that causes neurodegeneration has enhanced propensity toward oxidative damage. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2012.02.015

    Article  PubMed  PubMed Central  Google Scholar 

  74. Barbeito AG, Levade T, Delisle MB et al (2010) Abnormal iron metabolism in fibroblasts from a patient with the neurodegenerative disease hereditary ferritinopathy. Mol Neurodegener 5:50. https://doi.org/10.1186/1750-1326-5-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Malatesta M, Giagnacovo M, Renna LV et al (2011) Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence. Eur J Histochem. https://doi.org/10.4081/ejh.2011.e26

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ward RJ, Zucca FA, Duyn JH et al (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. https://doi.org/10.1016/S1474-4422(14)70117-6

    Article  PubMed  PubMed Central  Google Scholar 

  77. Biasiotto G, Di Lorenzo D, Archetti S, Zanella I (2016) Iron and neurodegeneration: is ferritinophagy the link? Mol Neurobiol. https://doi.org/10.1007/s12035-015-9473-y

    Article  PubMed  Google Scholar 

  78. Ndayisaba A, Kaindlstorfer C, Wenning GK (2019) Iron in neurodegeneration—cause or consequence? Front Neurosci. https://doi.org/10.3389/fnins.2019.00180.eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  79. Weiland A, Wang Y, Wu W et al (2019) Ferroptosis and its role in diverse brain diseases. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1403-3

    Article  PubMed  Google Scholar 

  80. Maccarinelli F, Pagani A, Cozzi A et al (2015) A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits. Neurobiol Dis 81:119–133. https://doi.org/10.1016/j.nbd.2014.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barbeito AG, Garringer HJ, Baraibar MA et al (2009) Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene. J Neurochem 109:1067–1078. https://doi.org/10.1111/j.1471-4159.2009.06028.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Deng X, Vidal R, Englander EW (2010) Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy. Neurosci Lett 479:44–48. https://doi.org/10.1016/j.neulet.2010.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maccarinelli F, Asperti M, Capoccia S et al (2013) Animal models of neuroferritinopathy. Am J Hematol 88(5):E156–E157

    Google Scholar 

  84. Capoccia S, Maccarinelli F, Buffoli B et al (2015) Behavioral characterization of mouse models of neuroferritinopathy. PLoS ONE. https://doi.org/10.1371/journal.pone.0118990

    Article  PubMed  PubMed Central  Google Scholar 

  85. Garringer HJ, Irimia JM, Li W et al (2016) Effect of systemic iron overload and a chelation therapy in a mouse model of the neurodegenerative disease hereditary ferritinopathy. PLoS ONE 11:e0161341. https://doi.org/10.1371/journal.pone.0161341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bellelli R, Castellone MD, Guida T et al (2014) NCOA4 transcriptional coactivator inhibits activation of DNA replication origins. Mol Cell. https://doi.org/10.1016/j.molcel.2014.04.031

    Article  PubMed  Google Scholar 

  87. Keogh MJ, Jonas P, Coulthard A et al (2012) Neuroferritinopathy: a new inborn error of iron metabolism. Neurogenetics. https://doi.org/10.1007/s10048-011-0310-9

    Article  PubMed  PubMed Central  Google Scholar 

  88. Arosio P, Levi S (2002) Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med. https://doi.org/10.1016/s0891-5849(02)00842-0

    Article  PubMed  Google Scholar 

  89. Liu JL, Fan YG, Yang ZS et al (2018) Iron and Alzheimer’s disease: From pathogenesis to therapeutic implications. Front Neurosci. https://doi.org/10.3389/fnins.2018.00632.eCollection2018

    Article  PubMed  PubMed Central  Google Scholar 

  90. McLeary F, RcomH’cheoGauthier A, Goulding M et al (2019) Switching on endogenous metal binding proteins in Parkinson’s disease. Cells. https://doi.org/10.3390/cells8020179

    Article  PubMed  PubMed Central  Google Scholar 

  91. Matak P, Matak A, Moustafa S et al (2016) Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1519473113

    Article  PubMed  Google Scholar 

  92. Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of aging: Alzheimer’s disease Parkinson’s disease and atherosclerosis. J Alzheimer’s Dis. https://doi.org/10.3233/JAD-2009-1010

    Article  Google Scholar 

  93. Bartzokis G, Tishler TA, Lu PH et al (2007) Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging. https://doi.org/10.1016/j.neurobiolaging.2006.02.005

    Article  PubMed  Google Scholar 

  94. Connor JR, Menzies SL, St. Martin SM, Mufson EJ (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res. https://doi.org/10.1002/jnr.490310111

    Article  PubMed  Google Scholar 

  95. Timmers PRHJ, Wilson JF, Joshi PK, Deelen J (2020) Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. Nat Commun. https://doi.org/10.1038/s41467-020-17312-3

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wills A (2003) Hereditary neuroferritinopathy presenting with palatal tremor, orofacial dyskinesias, bulbar symptoms, and unsteadiness of gait. Mov Disord 18(9):1057–1057

    Article  Google Scholar 

  97. Chinnery PF, Curtis ARJ, Fey C et al (2003) Neuroferritinopathy in a French family with late onset dominant dystonia. J Med Genet. https://doi.org/10.1136/jmg.40.5.e69

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mir P, Edwards MJ, Curtis ARJ, Bhatia KP, Quinn NP (2004) Adult‐onset generalized dystonia due to a mutation in the neuroferritinopathy gene. Mov Disord 20(2):243–245

    Article  Google Scholar 

  99. Ondo WG, Adam OR, Jankovic J, Chinnery PF (2010) Dramatic response of facial stereotype/tic to tetrabenazine in the first reported cases of neuroferritinopathy in the United States. Mov Disord 25(14):2470–2472

    Article  Google Scholar 

  100. Batla A, Adams ME, Erro R, Ganos C, Balint B, Mencacci NE, Bhatia KP (2015) Cortical pencil lining in neuroferritinopathy: a diagnostic clue. Neurology 84(17):1816–1818

    Article  Google Scholar 

  101. Keogh MJ, Singh B, Chinnery PF (2013) Early neuropsychiatry features in neuroferritinopathy. Mov Disord 28(9):1310–1313

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from TELETHON-ITALIA (Grant Nos. GGP10099, GGP11088 and GGP16234 to SL) and AISNAF (to SL) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Levi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cozzi, A., Santambrogio, P., Ripamonti, M. et al. Pathogenic mechanism and modeling of neuroferritinopathy. Cell. Mol. Life Sci. 78, 3355–3367 (2021). https://doi.org/10.1007/s00018-020-03747-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03747-w

Keywords

Navigation