Skip to main content
Log in

Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Termites are a clade of eusocial wood-feeding roaches with > 3000 described species. Eusociality emerged ~ 150 million years ago in the ancestor of modern termites, which, since then, have acquired and sometimes lost a series of adaptive traits defining of their evolution. Termites primarily feed on wood, and digest cellulose in association with their obligatory nutritional mutualistic gut microbes. Recent advances in our understanding of termite phylogenetic relationships have served to provide a tentative timeline for the emergence of innovative traits and their consequences on the ecological success of termites. While all “lower” termites rely on cellulolytic protists to digest wood, “higher” termites (Termitidae), which comprise ~ 70% of termite species, do not rely on protists for digestion. The loss of protists in Termitidae was a critical evolutionary step that fostered the emergence of novel traits, resulting in a diversification of morphology, diets, and niches to an extent unattained by “lower” termites. However, the mechanisms that led to the initial loss of protists and the succession of events that took place in the termite gut remain speculative. In this review, we provide an overview of the key innovative traits acquired by termites during their evolution, which ultimately set the stage for the emergence of “higher” termites. We then discuss two hypotheses concerning the loss of protists in Termitidae, either through an externalization of the digestion or a dietary transition. Finally, we argue that many aspects of termite evolution remain speculative, as most termite biological diversity and evolutionary trajectories have yet to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cleveland LR (1926) Symbiosis among animals with special reference to termites and their intestinal flagellates. Q Rev Biol 1(1):51–60. https://doi.org/10.1086/394236

    Article  Google Scholar 

  2. Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37(5):699–735. https://doi.org/10.1111/1574-6976.12025

    Article  CAS  PubMed  Google Scholar 

  3. Higashi M, Abe T (1997) Global diversification of termites driven by the evolution of symbiosis and sociality. In: Abe T, Levin SA, Higashi M (eds) Biodiversity: an ecological perspective. Springer, New York, pp 83–112. https://doi.org/10.1007/978-1-4612-1906-4_7

    Chapter  Google Scholar 

  4. Aanen DK, Eggleton P (2017) Symbiogenesis: beyond the endosymbiosis theory? J Theor Biol 434:99–103. https://doi.org/10.1016/j.jtbi.2017.08.001

    Article  PubMed  Google Scholar 

  5. Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, Brune A, Evans TA (2018) Rampant host switching shaped the termite gut microbiome. Curr Biol 28(4):649–654. https://doi.org/10.1016/j.cub.2018.01.035

    Article  CAS  PubMed  Google Scholar 

  6. Nalepa CA (2020) Origin of mutualism between termites and flagellated gut protists: transition from horizontal to vertical transmission. Front Ecol Evol 8:14. https://doi.org/10.3389/fevo.2020.00014

    Article  Google Scholar 

  7. Nalepa CA (2010) Altricial development in wood-feeding cockroaches: the key antecedent of termite eusociality. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 69–95. https://doi.org/10.1007/978-90-481-3977-4_4

    Chapter  Google Scholar 

  8. Nalepa CA (2015) Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol Entomol 40(4):323–335. https://doi.org/10.1111/een.12197

    Article  Google Scholar 

  9. Howard KJ, Thorne BL (2010) Eusocial evolution in termites and Hymenoptera. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 97–132. https://doi.org/10.1007/978-90-481-3977-4_5

    Chapter  Google Scholar 

  10. Lo N, Engel MS, Cameron S, Nalepa CA, Tokuda G, Grimaldi D, Kitade O, Krishna K, Klass K-D, Maekawa K, Miura T, Thompson GJ et al (2007) Save Isoptera: a comment on Inward et al. Biol Lett 3(5):562–563. https://doi.org/10.1098/rsbl.2007.0264

    Article  PubMed  PubMed Central  Google Scholar 

  11. Krishna K, Grimaldi DA, Krishna V, Engel MS (2013) Treatise on the Isoptera of the world. Bull Am Mus Nat Hist 377:1–2704

    Article  Google Scholar 

  12. Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 189–208. https://doi.org/10.1007/978-94-017-3223-9_9

    Chapter  Google Scholar 

  13. Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119. https://doi.org/10.1016/j.cbpa.2015.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bar-On YM, Phillips R, Milo R (2016) The biomass distribution on Earth. Proc Natl Acad Sci USA 115(25):6506–6511. https://doi.org/10.1073/pnas.1711842115

    Article  CAS  Google Scholar 

  15. Eggleton P (2020) The state of the world’s insects. Annu Rev Environ Res. https://doi.org/10.1146/annurev-environ-012420-050035

    Article  Google Scholar 

  16. Jouquet P, Bottinelli N, Shanbhag RR, Bourguignon T, Traoré S, Abbasi SA (2016) Termites: the neglected soil engineers of tropical soils. Soil Sci 181(3–4):157–165. https://doi.org/10.1097/SS.0000000000000119

    Article  CAS  Google Scholar 

  17. Brugerolle G, Radek R (2006) Symbiotic protozoa of termites. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Cham, pp 243–269. https://doi.org/10.1007/3-540-28185-1_10

    Chapter  Google Scholar 

  18. Ohkuma M, Brune A (2010) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 413–438. https://doi.org/10.1007/978-90-481-3977-4_15

    Chapter  Google Scholar 

  19. Eggleton P (2006) The termite gut habitat: its evolution and co-evolution. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 373–404. https://doi.org/10.1007/3-540-28185-1_16

    Chapter  Google Scholar 

  20. Lo N, Eggleton P (2010) Termite phylogenetics and co-cladogenesis with symbionts. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 27–50. https://doi.org/10.1007/978-90-481-3977-4_2

    Chapter  Google Scholar 

  21. Tai V, James ER, Nalepa CA, Scheffrahn RH, Perlman SJ, Keeling PJ (2015) The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol 81(3):1059–1070. https://doi.org/10.1128/AEM.02945-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taerum SJ, De Martini F, Liebig J, Gile GH (2018) Incomplete co-cladogenesis between Zootermopsis termites and their associated protists. Environ Entomol 47(1):184–195. https://doi.org/10.1093/ee/nvx193

    Article  CAS  PubMed  Google Scholar 

  23. Radek R, Meuser K, Strassert JFH, Arslana O, Teßmer A, Šobotník J, Sillam-Dussès D, Nink RA, Brune A (2018) Exclusive gut flagellates of Serritermitidae suggest a major transfaunation Eevent in lower termites: description of Heliconympha glossotermitis gen. nov. spec. nov. J Eucaryot Microbiol 65(1):77–92. https://doi.org/10.1111/jeu.12441

    Article  CAS  Google Scholar 

  24. Mee ED, Gaylor MG, Jasso-Selles DE, Mizumoto N, Gile GH (2020) Molecular phylogenetic position of Hoplonympha natator (Trichonymphea, Parabasalia): horizontal symbiont transfer or differential loss? J Eukaryotic Microbiol 67(2):268–272. https://doi.org/10.1111/jeu.12765

    Article  Google Scholar 

  25. Kitade O, Matsumoto T (1998) Characteristics of the symbiotic flagellate composition within the termite family Rhinotermitidae (Isoptera). Symbiosis 25:271–278

    Google Scholar 

  26. Bignell DE (2016) The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In: Hurst CJ (ed) The mechanistic benefits of microbial symbionts. Springer, Cham, pp 121–172. https://doi.org/10.1007/978-3-319-28068-4_6

    Chapter  Google Scholar 

  27. Bourguignon T, Lo N, Šobotník J, Ho SYW, Iqbal N, Coissac E, Lee M, Jendryka M, Sillam-Dussès D, Křížková B, Roisin Y, Evans TA (2017) Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol Biol Evol 34(3):589–597. https://doi.org/10.1093/molbev/msw253

    Article  CAS  PubMed  Google Scholar 

  28. Buček A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T (2019) Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr Biol 29(21):3728–3734. https://doi.org/10.1016/j.cub.2019.08.076

    Article  CAS  PubMed  Google Scholar 

  29. Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166. https://doi.org/10.1146/annurev-micro-092412-155715

    Article  CAS  PubMed  Google Scholar 

  30. Emerson AE (1938) Termite nests—a study of the phylogeny of behavior. Ecol Monogr 8(2):247–284. https://doi.org/10.2307/1943251

    Article  Google Scholar 

  31. Nalepa CA (2011) Body size and termite evolution. Evol Biol 38(3):243–257. https://doi.org/10.1007/s11692-011-9121-z

    Article  Google Scholar 

  32. Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10(13):801–804. https://doi.org/10.1016/S0960-9822(00)00561-3

    Article  CAS  PubMed  Google Scholar 

  33. Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol lett 3(3):331–335. https://doi.org/10.1098/rsbl.2007.0102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novitates 3650:1–27. https://doi.org/10.1206/651.1

    Article  Google Scholar 

  35. Engel MS, Barden P, Riccio ML, Grimaldi DA (2016) Morphologically specialized termite castes and advanced sociality in the Early Cretaceous. Curr Biol 26(4):522–530. https://doi.org/10.1016/j.cub.2015.12.061

    Article  CAS  PubMed  Google Scholar 

  36. Bourguignon T, Lo N, Cameron SL, Šobotník J, Hayashi Y, Shigenobu S, Watanabe D, Roisin Y, Miura T, Evans TA (2015) The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol Biol Evol 32(2):406–421. https://doi.org/10.1093/molbev/msu308

    Article  CAS  PubMed  Google Scholar 

  37. Watson JAL, Sewell JJ (1985) Caste development in Mastotermes and Kalotermes: which is primitive? In: Watson JAL, Okot-Kotber BM, Noirot C (eds) Current themes in tropical science, caste differentiation in social insects, vol 3. Pergamon Press, Oxford, pp 27–40. https://doi.org/10.1016/B978-0-08-030783-1.50008-2

    Chapter  Google Scholar 

  38. Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J (2018) Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae). ZooKeys 787:91–105. https://doi.org/10.3897/zookeys.787.28195

    Article  Google Scholar 

  39. Roisin Y, Korb J (2010) Social organization and the status of workers in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 133–164. https://doi.org/10.1007/978-90-481-3977-4_6

    Chapter  Google Scholar 

  40. Noirot C, Pasteels JM (1987) Ontogenetic development and evolution of the worker caste in termites. Experientia 43(8):851–860. https://doi.org/10.1007/BF01951642

    Article  Google Scholar 

  41. Noirot C, Pasteels JM (1988) The worker caste is polyphyletic in termites. Sociobiology 14(1):15–20

    Google Scholar 

  42. Roisin Y (1994) Intragroup conflicts and the evolution of sterile castes in termites. Am Nat 143(5):751–765. https://doi.org/10.1086/285631

    Article  Google Scholar 

  43. Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 52–93. https://doi.org/10.1017/CBO9780511721953.005

    Chapter  Google Scholar 

  44. Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Syst 28(1):27–54. https://doi.org/10.1146/annurev.ecolsys.28.1.27

    Article  Google Scholar 

  45. Thorne BL, Traniello JFA (2003) Comparative social biology of basal taxa of ants and termites. Annu Rev Entomol 48(1):283–306. https://doi.org/10.1146/annurev.ento.48.091801.112611

    Article  CAS  PubMed  Google Scholar 

  46. Korb J (2008) The ecology of social evolution in termites. In: Korb J, Heinze J (eds) Ecology of social evolution. Springer, Berlin, pp 151–174

    Chapter  Google Scholar 

  47. Legendre F, Whiting MF, Bordereau C, Cancello EM, Evans TA, Grandcolas P (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol 48(2):615–627. https://doi.org/10.1016/j.ympev.2008.04.017

    Article  CAS  PubMed  Google Scholar 

  48. Watson JAL, Sewell JJ (1981) The origin and evolution of caste systems in termites. Sociobiology 6(1):101–118

    Google Scholar 

  49. Thompson GJ, Kitade O, Lo N, Crozier RH (2000) Phylogenetic evidence for a single, ancestral origin of a ‘true’ worker caste in termites. J Evol Biol 13(6):869–881. https://doi.org/10.1046/j.1420-9101.2000.00237.x

    Article  Google Scholar 

  50. Thompson GJ, Kitade O, Lo N, Crozier RH (2004) On the origin of termite workers: weighing up the phylogenetic evidence. J Evol Biol 17(1):217–220. https://doi.org/10.1046/j.1420-9101.2003.00645.x

    Article  CAS  PubMed  Google Scholar 

  51. Bourguignon T, Chisholm RA, Evans TA (2016) The termite worker phenotype evolved as a dispersal strategy for fertile wingless individuals before eusociality. Am Nat 187(3):372–387. https://doi.org/10.1086/684838

    Article  PubMed  Google Scholar 

  52. Korb J, Buschmann M, Schafberg S, Liebig J, Bagnères A-G (2012) Brood care and social evolution in termites. Proc R Soc B Lond 279(1738):2662–2671. https://doi.org/10.1098/rspb.2011.2639

    Article  Google Scholar 

  53. Nalepa CA (2016) ‘Cost’ of proctodeal trophallaxis in extant termite individuals has no relevance in analysing the origins of eusociality. Ecol Entomol 41(1):27–30. https://doi.org/10.1111/een.12276

    Article  Google Scholar 

  54. Roisin Y (2016) What makes the cost of brood care important for the evolution of termite sociality? Its insignificance. Ecol Entomol 41(1):31–33. https://doi.org/10.1111/een.12278

    Article  Google Scholar 

  55. Bignell DE, Roisin Y, Lo N (2010) Biology of termites: a modern synthesis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3977-4

    Book  Google Scholar 

  56. Cleveland LR, Hall SK, Sanders EP, Collier J (1934) The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17(2):185–342

    Google Scholar 

  57. Nalepa CA (1991) Ancestral transfer of symbionts between cockroaches and termites: an unlikely scenario. Proc R Soc B Lond 246(1316):185–189. https://doi.org/10.1098/rspb.1991.0143

    Article  CAS  Google Scholar 

  58. Dietrich C, Köhler T, Brune A (2014) The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. App Environ Microbiol 80(7):2261–2269. https://doi.org/10.1128/AEM.04206-13

    Article  CAS  Google Scholar 

  59. Klass K-D, Nalepa C, Lo N (2008) Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs Parasphaeria boleiriana. Mol Phylogenet Evol 46(3):809–817. https://doi.org/10.1016/j.ympev.2007.11.028

    Article  PubMed  Google Scholar 

  60. Ohkuma M, Noda S, Hongoh Y, Nalepa CA, Inoue T (2009) Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc R Soc B Lond 276(1655):239–245. https://doi.org/10.1098/rspb.2008.1094

    Article  CAS  Google Scholar 

  61. Nalepa CA, Bignell DE, Bandi C (2001) Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48(3):194–201. https://doi.org/10.1007/PL00001767

    Article  Google Scholar 

  62. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Garcia Martin H, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(169):560–565. https://doi.org/10.1038/nature06269

    Article  CAS  PubMed  Google Scholar 

  63. Yamada A, Inoue T, Noda S, Hongoh Y, Ohkuma M (2007) Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol Ecol 16(18):3768–3777. https://doi.org/10.1111/j.1365-294X.2007.03326.x

    Article  CAS  PubMed  Google Scholar 

  64. Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008) Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322(5904):1108–1109. https://doi.org/10.1126/science.1165578

    Article  CAS  PubMed  Google Scholar 

  65. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632. https://doi.org/10.1146/annurev-ento-112408-085319

    Article  CAS  PubMed  Google Scholar 

  66. Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, Inoue J-I, Darby AC, Hongoh Y (2015) Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proc Acad Natl Sci USA 112(33):10224–10230. https://doi.org/10.1073/pnas.1423979112

    Article  CAS  Google Scholar 

  67. Nalepa CA (1984) Colony composition, protozoan transfer and some life history characteristics of the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behav Ecol Sociobiol 14:273–279. https://doi.org/10.1007/BF00299498

    Article  Google Scholar 

  68. Nalepa CA (1994) Nourishment and the origin of termite eusociality. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, pp 57–104

    Google Scholar 

  69. Korb J, Thorne B (2017) Sociality in termites. In: Rubenstein D, Abbot P (eds) Comparative social evolution. Cambridge University Press, Cambridge, pp 124–153. https://doi.org/10.1017/9781107338319.006

    Chapter  Google Scholar 

  70. Costa JT (2006) The other insect societies. Harvard University Press, Cambridge, p 767

    Google Scholar 

  71. Trumbo ST (2012) Patterns of parental care in invertebrates. In: Royle NJ, Smiseth PT, Kölliker M (eds) The evolution of parental care. Oxford University Press, Oxford, pp 81–100

    Chapter  Google Scholar 

  72. Wong JWY, Meunier J, Kölliker M (2013) The evolution of parental care in insects: the roles of ecology, life history and the social environment. Ecol Entomol 38(2):123–137. https://doi.org/10.1111/een.12000

    Article  Google Scholar 

  73. Nalepa CA, Maekawa K, Shimada K, Saito Y, Arellano C, Matsumoto T (2008) Altricial development in subsocial wood-feeding cockroaches. Zool Sci 25(12):1190–1198. https://doi.org/10.2108/zsj.25.1190

    Article  Google Scholar 

  74. Chouvenc T, Su N-Y (2017) Irreversible transfer of brood care duties and insights into the burden of caregiving in incipient subterranean termite colonies. Ecol Entomol 42(6):777–784. https://doi.org/10.1111/een.12443

    Article  Google Scholar 

  75. Barden P, Engel MS (2020) Fossil social insects. In: Starr CK (ed) Encyclopedia of social insects. Springer International, Cham, pp 1–21. https://doi.org/10.1007/978-3-319-90306-4

    Chapter  Google Scholar 

  76. Zhao Z, Yin X, Shih C, Gao T, Ren D (2020) Termite colonies from mid-Cretaceous Myanmar demonstrate their early eusocial lifestyle in damp wood. Natl Sci Rev 7(2):381–390. https://doi.org/10.1093/nsr/nwz141

    Article  Google Scholar 

  77. Barden P, Ware JL (2017) Relevant relicts: the impact of fossil distributions on biogeographic reconstruction in ants and dragonflies. Insect Syst Div 1(1):73–80. https://doi.org/10.1093/isd/ixx005

    Article  Google Scholar 

  78. Nalepa CA, Lenz M (2000) The ootheca of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae): homology with cockroach oothecae. Proc R Soc B Lond 267(1454):1809–1813. https://doi.org/10.1098/rspb.2000.1214

    Article  CAS  Google Scholar 

  79. Sacchi L, Nalepa CA, Lenz M, Bandi C, Corona S, Grigolo A, Bigliardi E (2000) Transovarial transmission of symbiotic bacteria in Mastotermes darwiniensis (Isoptera: Mastotermitidae): ultrastructural aspects and phylogenetic implications. Ann Entomol Soc Am 93(6):1308–1313. https://doi.org/10.1603/0013-8746(2000)093[1308:TTOSBI]2.0.CO;2

    Article  Google Scholar 

  80. Watson JAL, Metcalf EC, Sewell JJ (1977) A re-examination of the development of castes in Mastotermes darwiniensis Froggatt (Isoptera). Aust J Zool 25(1):25–42. https://doi.org/10.1071/ZO9770025

    Article  Google Scholar 

  81. Hill GF (1925) Notes on Mastotermes darwiniensis Froggatt (Isoptera). Proc R Soc Vic 37:119–124

    Google Scholar 

  82. Sillam-Dussès D, Sémon E, Lacey MJ, Robert A, Lenz M, Bordereau C (2007) Trail-following pheromones in basal termites, with special reference to Mastotermes darwiniensis. J Chem Ecol 33(10):1960–1977. https://doi.org/10.1007/s10886-007-9363-5

    Article  CAS  PubMed  Google Scholar 

  83. Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 95–119. https://doi.org/10.1007/978-94-017-3223-9_5

    Chapter  Google Scholar 

  84. Imms AD (1919) On the structure and biology of Archotermopsis, together with descriptions of new species of intestinal Protozoa, and general observations on the Isoptera. Philos Trans R Soc Lond 209:75–180

    Google Scholar 

  85. Lepage M, Darlington JPEC (2000) Population dynamics of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 333–361. https://doi.org/10.1007/978-94-017-3223-9_16

    Chapter  Google Scholar 

  86. Castle GB (1934) The damp-wood termites of western United States, genus Zootermopsis (formerly Termopsis). In: Kofoid CA (ed) Termites and termite control, 2nd edn. University of California Press, Berkeley, pp 273–310

    Google Scholar 

  87. Morgan FD (1959) The ecology and external morphology of Stolotermes ruficeps Brauer (Isoptera: Hodotermitidae). Trans R Soc N Zeal 86:155–195

    Google Scholar 

  88. Nkunika POY (1990) Field composition and size of the populations of the primitive damp wood termite, Porotermes adamsoni (Isoptera: Termopsidae) in South Australia. Sociobiology 16:251–258

    Google Scholar 

  89. Bordereau C, Pasteels JM (2010) Pheromones and chemical ecology of dispersal and foraging in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 279–320. https://doi.org/10.1007/978-90-481-3977-4_11

    Chapter  Google Scholar 

  90. Myles TG (1986) Reproductive soldiers in the Termopsidae (Isoptera). Pan-Pac Entomol 62(4):293–299

    Google Scholar 

  91. Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Acad Natl Sci USA 100(22):12808–12813. https://doi.org/10.1073/pnas.2133530100

    Article  CAS  Google Scholar 

  92. Watson JAL (1973) The worker caste of the hodotermitid harvester termites. Insect Soc 20(1):1–20. https://doi.org/10.1007/BF02223558

    Article  Google Scholar 

  93. Inward DJG, Vogler AP, Eggleton P (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44(3):953–967. https://doi.org/10.1016/j.ympev.2007.05.014

    Article  CAS  PubMed  Google Scholar 

  94. Engel MS, Grimaldi DA, Krishna K (2007) Primitive termites from the Early Cretaceous of Asia (Isoptera). Stuttgarter Beiträge zur Naturkunde, Serie B, Geologie und Paläontologie 371:1–32

    Google Scholar 

  95. Scheffrahn RH (2019) Expanded new world distributions of genera in the termite family Kalotermitidae. Sociobiology 66(1):136–153. https://doi.org/10.13102/sociobiology.v66i1.3492

    Article  Google Scholar 

  96. Scheffrahn RH, Křeček J, Ripa R, Luppichini P (2009) Endemic origin and vast anthropogeneic dispersal of the West Indian drywood termite. Biol Invas 11(4):787–799. https://doi.org/10.1007/s10530-008-9293-3

    Article  Google Scholar 

  97. Engel MS, Kaulfuss U (2017) Diverse, primitive termites (Isoptera: Kalotermitidae, incertae sedis) from the early Miocene of New Zealand. Aust Entomol 56(1):94–103. https://doi.org/10.1111/aen.12216

    Article  Google Scholar 

  98. Roisin Y, Dejean A, Corbora B, Orivel J, Samaniego M, Leponce M (2006) Vertical stratification of the termite assemblage in a neotropical rainforest. Oecologia 149(2):301–311. https://doi.org/10.1007/s00442-006-0449-5

    Article  PubMed  Google Scholar 

  99. Korb J (2007) Workers of a drywood termite do not work. Front Zool 4:7. https://doi.org/10.1186/1742-9994-4-7

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nutting WL (1966) Colonizing flights and associated activities of termites. I. The desert damp-wood termite Paraneotermes simplicicornis (Kalotermitidae). Psyche 73(2):131–149. https://doi.org/10.1155/1966/59080

    Article  Google Scholar 

  101. Mizumoto N, Bourguignon T (2020) Modern termites inherited the potential of collective construction from their common ancestor. Ecol Evol 10:6775–6784. https://doi.org/10.1002/ece3.6381

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mizumoto N, Bardunias PM, Pratt SC (2020) Complex relationship between tunneling patterns and individual behaviors in termites. Am Nat 196(5):555–565

    Article  Google Scholar 

  103. Thompson GJ, Miller LR, Lenz M, Crozier RH (2000) Phylogenetic analysis and trait evolution in Australian lineages of drywood termites (Isoptera, Kalotermitidae). Mol Phylogenet Evol 17(3):419–429. https://doi.org/10.1006/mpev.2000.0852

    Article  CAS  PubMed  Google Scholar 

  104. Noirot C (1969) Glands and secretions. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, pp 89–123. https://doi.org/10.1016/B978-0-12-395529-6.50008-8

    Chapter  Google Scholar 

  105. Prestwich GD (1984) Defense mechanisms of termites. Annu Rev Entomol 29(1):201–232. https://doi.org/10.1146/annurev.en.29.010184.001221

    Article  CAS  Google Scholar 

  106. Šobotník J, Weyda F, Hanus R, Kyjaková P, Doubský J (2004) Ultrastructure of the frontal gland in Prorhinotermes simplex (Isoptera: Rhinotermitidae) and quantity of the defensive substance. Euro J Entomol 101(1):153–163. https://doi.org/10.14411/eje.2004.020

    Article  Google Scholar 

  107. Šobotník J, Jirošová A, Hanus R (2010) Chemical warfare in termites. J Insect Physiol 56(9):1012–1021. https://doi.org/10.1016/j.jinsphys.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  108. Šobotník J, Sillam-Dussès D, Weyda F, Dejean A, Roisin Y, Hanus R, Bourguignon T (2010) The frontal gland in workers of Neotropical soldierless termites. Naturwissenschaften 97(5):95–503. https://doi.org/10.1007/s00114-010-0664-0

    Article  CAS  Google Scholar 

  109. Piskorski R, Hanus R, Kalinová B, Valterová I, Křeček J, Bourguignon T, Roisin Y, Šobotník J (2009) Temporal and geographic variations in the morphology and chemical composition of the frontal gland in imagoes of Prorhinotermes species (Isoptera: Rhinotermitidae). Biol J Linnean Soc 98(2):384–392. https://doi.org/10.1111/j.1095-8312.2009.01286.x

    Article  Google Scholar 

  110. Kutalová K, Hanus R, Bourguignon T, Roisin Y, Šobotník J (2013) Armed reproductives: evolution of the frontal gland in imagoes of Termitidae. Arthrop Struct Develop 42(4):339–348. https://doi.org/10.1016/j.asd.2013.04.001

    Article  Google Scholar 

  111. Deligne J, Quennedey A, Blum MS (1981) The enemies and defense mechanisms of termites. In: Hermann HR (ed) Social insects, vol 2. Academic Press, New York, pp 1–76. https://doi.org/10.1016/B978-0-12-342202-6.50008-3

    Chapter  Google Scholar 

  112. Quennedey A (1984) Morphology and ultrastructure of termite defense glands. In: Hermann HR (ed) Defensive mechanisms in social insects. Praeger, New York, pp 151–200

    Google Scholar 

  113. Šobotník J, Bourguignon T, Hanus R, Weyda F, Roisin Y (2010) Structure and function of defensive glands in soldiers of Glossotermes oculatus (Isoptera: Serritermitidae). Biol J Linnean Soc 99(4):839–848. https://doi.org/10.1111/j.1095-8312.2010.01392.x

    Article  Google Scholar 

  114. Šobotník J, Hanus R, Kalinová B, Piskorski R, Cvačka J, Bourguignon T, Roisin Y (2008) E, E)-α-farnesene, the alarm pheromone of Prorhinotermes canalifrons (Isoptera: Rhinotermitidae. J Chem Ecol 34(4):478–486. https://doi.org/10.1007/s10886-008-9450-2

    Article  CAS  PubMed  Google Scholar 

  115. Waller DA, La Fage JP (1987) Unpalatability as a defense of Coptotermes formosanus Shiraki soldiers against ant predation. J Appl Entomol 103(15):148–153. https://doi.org/10.1111/j.1439-0418.1987.tb00973.x

    Article  Google Scholar 

  116. Haverty MI (1977) The proportion of soldiers in termite colonies: a list and a bibliography (Isoptera). Sociobiology 2(3):199–216

    Google Scholar 

  117. Labandeira CC, Johnson KR, Wilf P (2002) Impact of the terminal Cretaceous event on plant-insect associations. Proc Natl Acad Sci USA 99(4):2061–2066. https://doi.org/10.1073/pnas.042492999

    Article  CAS  PubMed  Google Scholar 

  118. Barden P (2017) Fossil ants (Hymenoptera: Formicidae): ancient diversity and the rise of modern lineages. Myrmecol News 14:1–30. https://doi.org/10.25849/myrmecol.news_024:001

    Article  Google Scholar 

  119. Tuma J, Eggleton P, Fayle TM (2020) Ant-termite interactions: an important but under-explored ecological linkage. Biol Rev 95(3):555–572. https://doi.org/10.1111/brv.12577

    Article  PubMed  Google Scholar 

  120. Krishna K, Grimaldi DA (2003) The first Cretaceous Rhinotermitidae (Isoptera): a new species, genus, and subfamily in Burmese amber. Am Mus Novitates 3390:1–10. https://doi.org/10.1206/0003-0082(2003)390%3c0001:TFCRIA%3e2.0.CO;2

    Article  Google Scholar 

  121. Wu L-W, Bourguignon T, Šobotník J, Wen P, Liang W-R, Li H-F (2018) Phylogenetic position of the enigmatic termite family Stylotermitidae. Invertebr Syst 32(5):1111–1117. https://doi.org/10.1071/IS17093

    Article  Google Scholar 

  122. Tsai P-H, Ping C-K, Li G-X (1978) Four new species of the genus Stylotermes Holmgren, K. et N. (Isoptera: Rhinotermitidae, Stylotermitinae) from Kwangsi. Acta Entomol Sinica 21:429–436

    Google Scholar 

  123. Roisin Y (1988) Morphology, development and evolutionary significance of the working stages in the caste system of Prorhinotermes (Insecta, Isoptera). Zoomorphol 107(6):339–347. https://doi.org/10.1007/BF00312217

    Article  Google Scholar 

  124. Parmentier D, Roisin Y (2003) Caste morphology and development in Termitogeton nr. planus (Insecta, Isoptera, Rhinotermitidae). J Morphol 255(1):69–79. https://doi.org/10.1002/jmor.10047

    Article  PubMed  Google Scholar 

  125. Bourguignon T, Šobotník J, Hanus R, Roisin Y (2009) Developmental pathways of Glossotermes oculatus (Isoptera, Serritermitidae): at the cross-roads of worker caste evolution in termites. Evol Dev 11(6):659–668. https://doi.org/10.1111/j.1525-142X.2009.00373.x

    Article  PubMed  Google Scholar 

  126. Bourguignon T, Šobotník J, Sillam-Dussès D, Jiroš P, Hanus R, Roisin Y, Miura T (2012) Developmental pathways of Psammotermes hybostoma (Isoptera: Rhinotermitidae): old pseudergates make up a new sterile caste. PLoS ONE 7:e44527. https://doi.org/10.1371/journal.pone.0044527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Barbosa JRC, Constantino R (2017) Polymorphism in the neotropical termite Serritermes serrifer. Entomol Exp Appl 163(1):43–50. https://doi.org/10.1111/eea.12532

    Article  Google Scholar 

  128. Rupf T, Roisin Y (2008) Coming out of the woods: do termites need a specialized worker caste to search for new food sources? Naturwissenschaften 95(9):811–819. https://doi.org/10.1007/s00114-008-0387-7

    Article  CAS  PubMed  Google Scholar 

  129. Su N-Y, Scheffrahn RH (1988) Foraging population and territory of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in an urban environment. Sociobiology 14(2):353–359

    Google Scholar 

  130. Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125–148

    Google Scholar 

  131. Li H-F, Su N-Y (2008) Sand displacement during tunnel excavation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 101(2):456–462. https://doi.org/10.1603/0013-8746(2008)101[456:SDDTEB]2.0.CO;2

    Article  Google Scholar 

  132. Bardunias P, Su N-Y (2009) Opposing headings of excavating and depositing termites facilitate branch formation in the Formosan subterranean termite. Anim Behav 78(3):755–759. https://doi.org/10.1016/j.anbehav.2009.06.024

    Article  Google Scholar 

  133. Rust MK, Su N-Y (2012) Managing social insects of urban importance. Annu Rev Entomol 57:355–375. https://doi.org/10.1146/annurev-ento-120710-100634

    Article  CAS  PubMed  Google Scholar 

  134. Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:455–474. https://doi.org/10.1146/annurev-ento-120811-153554

    Article  CAS  PubMed  Google Scholar 

  135. Bourguignon T, Lo N, Šobotník J, Sillam-Dussès D, Roisin Y, Evans TA (2016) Oceanic dispersal, vicariance, and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc R Soc B Lond 283(1827):1827–1835. https://doi.org/10.1098/rspb.2016.0179

    Article  CAS  Google Scholar 

  136. Chouvenc T, Li H-F, Austin J, Bordereau C, Bourguignon T, Cameron S, Cancello E, Constantino R, Costa-Leonardo A-M, Eggleton P, Evans T, Forschler B, Grace JK, Husseneder C, Křeček J, Lee C-Y, Lee T, Lo N, Messenger M, Mullins A, Robert A, Roisin Y, Scheffrahn RH, Sillam-Dussès D, Šobotník J, Szalanski A, Takematsu Y, Vargo EL, Yamada A, Yoshimura T, Su N-Y (2016) Revisiting Coptotermes (Isoptera: Rhinotermitidae): a global taxonomic roadmap for species validity and distribution of the economically important subterranean termite genus. Syst Entomol 41(2):299–306. https://doi.org/10.1111/syen.12157

    Article  Google Scholar 

  137. Oberst S, Lai JCS, Evans TA (2016) Termites utilise clay to build structural supports and so increase foraging resources. Scie Rep 6(1):20990. https://doi.org/10.1038/srep20990

    Article  CAS  Google Scholar 

  138. Wood TG (1988) Termites and the soil environment. Biol Fertile Soils 6(3):228–236. https://doi.org/10.1007/BF00260819

    Article  Google Scholar 

  139. Chouvenc T, Efstathion CA, Elliott ML, Su N-Y (2013) Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc R Soc B Lond 280(1770):20131885. https://doi.org/10.1098/rspb.2013.1885

    Article  Google Scholar 

  140. Mullins A, Su N-Y (2018) Parental nitrogen transfer and apparent absence of N2 fixation during colony foundation in Coptotermes formosanus Shiraki. Insects 9(2):37. https://doi.org/10.3390/insects9020037

    Article  PubMed Central  Google Scholar 

  141. Chouvenc T, Elliott ML, Šobotník J, Efstathion CA, Su N-Y (2018) The termite fecal nest: a framework for the opportunistic acquisition of beneficial soil Streptomyces (Actinomycetales: Streptomycetaceae). Environ Entomol 47(6):1431–1439. https://doi.org/10.1093/ee/nvy152

    Article  CAS  PubMed  Google Scholar 

  142. Arango RA, Carlson CM, Currie CR, McDonald BR, Book AJ, Green F III, Lebow NK, Raffa KF (2016) Antimicrobial activity of actinobacteria isolated from the guts of subterranean termites. Environ Entomol 45(6):1415–1423. https://doi.org/10.1093/ee/nvw126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Legendre F, Condamine FL (2018) When Darwin’s special difficulty promotes diversification in insects. Syst Biol 67(5):873–887. https://doi.org/10.1093/sysbio/syy014

    Article  PubMed  Google Scholar 

  144. Noirot C (1995) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. I. Lower termites. Ann Soc Entomol France 31(3):197–226

    Google Scholar 

  145. Noirot C (2001) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. II. Higher termites (Termitidae). Ann Soc Entomol France 37(4):431–471

    Google Scholar 

  146. Scholtz OI, MacLeod N, Eggleton P (2008) Termite soldier defence strategies: a reassessment of Prestwich’s classification and an examination of the evolution of defence morphology using extended eigenshape analyses of head morphology. Zool J Linn Soc Lond 153(4):631–650. https://doi.org/10.1111/j.1096-3642.2008.00396.x

    Article  Google Scholar 

  147. Kuan K-C, Chiu C-I, Shih M-C, Chi K-J, Li H-F (2020) Termite’s twisted mandible presents fast, powerful, and precise strikes. Sci Rep 10(9462):1–12. https://doi.org/10.1038/s41598-020-66294-1

    Article  CAS  Google Scholar 

  148. Bourguignon T, Šobotník J, Dahlsjö C, Roisin Y (2016) The soldierless Apicotermitinae: insights into a poorly known and ecologically dominant tropical taxon. Insect Soc 63(1):39–50. https://doi.org/10.1007/s00040-015-0446-y

    Article  Google Scholar 

  149. Bignell DE (2006) Termites as soil engineers and soil processors. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Cham, pp 183–220. https://doi.org/10.1007/3-540-28185-1_8

    Chapter  Google Scholar 

  150. Bourguignon T, Šobotník J, Lepoint G, Martin J-M, Hardy OJ, Dejean A, Roisin Y (2011) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol 36(2):261–269. https://doi.org/10.1111/j.1365-2311.2011.01265.x

    Article  Google Scholar 

  151. Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A (2015) Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24(20):5284–5285. https://doi.org/10.1111/mec.13376

    Article  CAS  PubMed  Google Scholar 

  152. Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26(4):356–366. https://doi.org/10.1046/j.1365-2311.2001.00342.x

    Article  Google Scholar 

  153. Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3(3):336–339. https://doi.org/10.1098/rsbl.2007.0073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chiu C-I (2020) Termite fungal cultivation as a ruminant-like digestive system? In: Proceedings of the 13th conference of the Pacific Rim termite research group, 12 Feb 2020

  155. Garnier-Sillam E, Toutain F, Villemin G, Renoux J (1989) Études préliminaires des meules originales du termite xylophage Sphaerotermes sphaerothorax (Sjöstedt). Insect Soc 36:293–312. https://doi.org/10.1007/BF02224882

    Article  Google Scholar 

  156. Rouland-Lefèvre C, Bignell DE (2001) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Seckbach J (ed) Symbiosis, mechanisms and model systems. Springer, Cham, pp 731–756. https://doi.org/10.1007/0-306-48173-1_46

    Chapter  Google Scholar 

  157. Hyodo F, Tayasu I, Inoue T, Azuma J-I, Kudo T (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17(2):186–193. https://doi.org/10.1046/j.1365-2435.2003.00718.x

    Article  Google Scholar 

  158. Mossebo DC, Essouman EPF, Machouart MC, Gueidan C (2017) Phylogenetic relationships, taxonomic revision and new taxa of Termitomyces (Lyophyllaceae, Basidiomycota) inferred from combined nLSU- and mtSSU-rDNA sequences. Phytotaxa 321(1):71–102. https://doi.org/10.11646/phytotaxa.321.1.3

    Article  Google Scholar 

  159. Grassé P-P (1984) Termitologia. Anatomie–physiologie–biologie–systématique des termites, fondation des societes, construction, vol 2. Masson, Paris

    Google Scholar 

  160. Rouland-Lefèvre C (2000) Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 289–306. https://doi.org/10.1007/978-94-017-3223-9_14

    Chapter  Google Scholar 

  161. Chiu C-I, Ou J-H, Chen C-Y, Li H-F (2019) Fungal nutrition allocation enhances mutualism with fungus-growing termite. Fungal Ecol 41:92–100. https://doi.org/10.1016/j.funeco.2019.04.001

    Article  Google Scholar 

  162. Aanen DK, Boomsma JJ (2005) Evolutionary dynamics of the mutualistic symbiosis between fungus-growing termites and Termitomyces fungi. In: Vega FE, Blackwell M (eds) Insect-fungal associations: ecology and evolution. Oxford University Press, Oxford, pp 191–210

    Google Scholar 

  163. Nobre T, Koné NA, Konaté S, Linsenmair KE, Aanen DK (2011) Dating the fungus-growing termites’ mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Mol Ecol 20(12):2619–2627. https://doi.org/10.1111/j.1365-294X.2011.05090.x

    Article  CAS  PubMed  Google Scholar 

  164. Roberts EM, Todd CN, Aanen DK, Nobre T, Hilbert-Wolf HL, O’Connor PM, Tapanila L, Mtelela C, Stevens NJ (2016) Oligocene termite nests with in situ fungus gardens from the Rukwa Rift basin, Tanzania, support a Paleogene African origin for insect agriculture. PLoS ONE 11(6):e0156847. https://doi.org/10.1371/journal.pone.0156847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ivany LC, Patterson WP, Lohmann KC (2000) Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 407(6806):887–890. https://doi.org/10.1038/35038044

    Article  CAS  PubMed  Google Scholar 

  166. Mueller UG, Schultz TR, Currie CR, Adams RMM, Malloch D (2001) The origin of the attine ant-fungus mutualism. Q Rev Biol 76(2):169–197. https://doi.org/10.1086/393867

    Article  CAS  PubMed  Google Scholar 

  167. Aanen DK, Eggleton P, Rouland-Lefèvre C, Guldberg-Frøslev T, Rosendahl S, Boomsma JJ (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA 99(23):14887–14892. https://doi.org/10.1073/pnas.222313099

    Article  CAS  PubMed  Google Scholar 

  168. Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595. https://doi.org/10.1146/annurev.ecolsys.36.102003.152626

    Article  Google Scholar 

  169. Korb J, Aanen DK (2003) The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav Ecol Sociobiol 53(2):65–71. https://doi.org/10.1007/s00265-002-0559-y

    Article  Google Scholar 

  170. Aanen DK (2006) As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi. Biol Lett 2(2):209–212. https://doi.org/10.1098/rsbl.2005.0424

    Article  PubMed  PubMed Central  Google Scholar 

  171. Nobre T, Aanen DK (2012) Fungiculture or termite husbandry? The ruminant hypothesis. Insects 3(1):307–323. https://doi.org/10.3390/insects3010307

    Article  PubMed  PubMed Central  Google Scholar 

  172. Poulsen M (2015) Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota. Environ Microbiol 17(8):2562–2572. https://doi.org/10.1111/1462-2920.12765

    Article  PubMed  Google Scholar 

  173. Nobre T, Fernandes C, Boomsma JJ, Korb J, Aanen DK (2011) Farming termites determine the genetic population structure of Termitomyces fungal symbionts. Mol Ecol 20(9):2023–2033. https://doi.org/10.1111/j.1365-294X.2011.05064.x

    Article  PubMed  Google Scholar 

  174. da Costa RR, Vreeburg SME, Shik JZ, Aanen DK, Poulsen M (2019) Can interaction specificity in the fungus-farming termite symbiosis be explained by nutritional requirements of the fungal crop? Fungal Ecol 38:54–61. https://doi.org/10.1016/j.funeco.2018.08.009

    Article  Google Scholar 

  175. van de Peppel LJJ, Aanen DK (2020) High diversity and low host-specificity of Termitomyces symbionts cultivated by Microtermes spp. indicate frequent symbiont exchange. Fungal Ecol 45:100917. https://doi.org/10.1016/j.funeco.2020.100917

    Article  Google Scholar 

  176. Aanen DK, Ros VID, de Fine Licht HH, Mitchell J, de Beer ZW, Slippers B, Rouland-LeFèvre C, Boomsma JJ (2007) Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol Biol 7(115):1–11. https://doi.org/10.1186/1471-2148-7-115

    Article  Google Scholar 

  177. Nobre T, Eggleton P, Aanen DK (2010) Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites? Proc R Soc B Lond 277(1680):359–365

    CAS  Google Scholar 

  178. Aanen DK, de Fine Licht HH, Debets AJM, Kerstes NAG, Hoekstra RF, Boomsma JJ (2009) High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 326(5956):1103–1106. https://doi.org/10.1126/science.1173462

    Article  CAS  PubMed  Google Scholar 

  179. Mueller UG, Gerardo N (2002) Fungus farming insects: multiple origins and diverse evolutionary histories. Proc Natl Acad Sci USA 99(24):15247–15249. https://doi.org/10.1073/pnas.242594799

    Article  CAS  PubMed  Google Scholar 

  180. Sands WA (1969) The association of termites and fungi. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, pp 495–524. https://doi.org/10.1016/B978-0-12-395529-6.50020-9

    Chapter  Google Scholar 

  181. Wood TG, Thomas RJ (1989) The mutualistic association between Macrotermitinae and Termitomyces. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions: 14th symposium of the Royal Entomological Society of London in collaboration with the British Mycological Socety. Academic Press, New York, pp 69–92

    Chapter  Google Scholar 

  182. Darlington JPEC (1994) Nutrition and evolution in fungus-growing termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, pp 105–130

    Google Scholar 

  183. Brauman A, Bignell DE, Tayasu I (2000) Soil-feeding termites: biology, microbial associations and digestive mechanisms. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 233–259. https://doi.org/10.1007/978-94-017-3223-9_11

    Chapter  Google Scholar 

  184. Eggleton P (1999) Termite species description rates and the state of termite taxonomy. Insect Soc 46(1):1–5. https://doi.org/10.1007/s000400050105

    Article  Google Scholar 

  185. Davies RG, Eggleton P, Jones DT, Gathorne-Hardy FJ, Hernández LM (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30(6):847–877. https://doi.org/10.1046/j.1365-2699.2003.00883.x

    Article  Google Scholar 

  186. Ackerman IL, Constantino R, Gauch HG, Lehmann J, Riha SJ, Fernandes ECM (2009) Termite (Insecta: Isoptera) species composition in a primary rain forest and agroforests in Central Amazonia. Biotropica 41(2):226–233. https://doi.org/10.1111/j.1744-7429.2008.00479.x

    Article  Google Scholar 

  187. Dahlsjö CAL, Parr CL, Malhi Y, Rahman H, Meir P, Jones DT, Eggleton P (2014) First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. J Trop Ecol 30(2):143–152. https://doi.org/10.1017/S0266467413000898

    Article  Google Scholar 

  188. Abe T, Masumoto T (1979) Studies on the distribution and ecological role of termites in a lowland rain forest of West Malaysia. Food and feeding habits of termites in Pasoh Forest Reserve. Jpn J Ecol 29(4):121–135. https://doi.org/10.18960/seitai.29.4_337

    Article  Google Scholar 

  189. Eggleton P, Bignell DE, Sands WA, Mawdsley NA, Lawton JH, Wood TG, Bignell NC (1996) The diversity, abundance, and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos Trans R Soc Lond B 351(1335):51–68. https://doi.org/10.1098/rstb.1996.0004

    Article  Google Scholar 

  190. Mikaelyan A, Meuser K, Brune A (2017) Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood-and humus-feeding higher termites. FEMS Microbiol Ecol 93(1):fiw10. https://doi.org/10.1093/femsec/fiw210

    Article  CAS  Google Scholar 

  191. Mikaelyan A, Strassert JFH, Tokuda G, Brune A (2014) The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.). Environ Microbiol 16(9):2711–2722. https://doi.org/10.1111/1462-2920.12425

    Article  CAS  Google Scholar 

  192. Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, Brune A (2018) Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc Natl Acad Sci 115(51):E11996–E12004. https://doi.org/10.1073/pnas.1810550115

    Article  CAS  PubMed  Google Scholar 

  193. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudol T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71(11):6590–6599. https://doi.org/10.1128/AEM.71.11.6590-6599.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ji R, Kappler A, Brune A (2000) Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biol Biochem 32(8–9):1281–1291. https://doi.org/10.1016/S0038-0717(00)00046-8

    Article  CAS  Google Scholar 

  195. Ji R, Brune A (2001) Transformation and mineralization of 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes orthognathus. Biol Fertil Soils 33(2):166–174. https://doi.org/10.1007/s003740000310

    Article  CAS  Google Scholar 

  196. Ji R, Brune A (2005) Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biol Biochem 37(9):1648–1655. https://doi.org/10.1016/j.soilbio.2005.01.026

    Article  CAS  Google Scholar 

  197. Ngugi DK, Ji R, Brune A (2011) Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: a 15N-based approach. Biogeochemistry 103(1–3):355–369. https://doi.org/10.1007/s10533-010-9478-6

    Article  CAS  Google Scholar 

  198. Ngugi DK, Brune A (2012) Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ Microbiol 14(4):860–871. https://doi.org/10.1111/j.1462-2920.2011.02648.x

    Article  CAS  PubMed  Google Scholar 

  199. Ji R, Brune A (2006) Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78(3):267–283. https://doi.org/10.1007/s10533-00

    Article  Google Scholar 

  200. Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 209–231. https://doi.org/10.1007/978-94-017-3223-9_10

    Chapter  Google Scholar 

  201. Baerends GP (1958) Comparative methods and the concept of homology in the study of behaviour. Arch Neerl Zool 13(Suppl 1):401–417

    Google Scholar 

  202. Wenzel JW (1992) Behavioral homology and phylogeny. Annu Rev Ecol Syst 23(1):361–381. https://doi.org/10.1146/annurev.es.23.110192.002045

    Article  Google Scholar 

  203. Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci USA 78(7):4601–4605. https://doi.org/10.1073/pnas.78.7.4601

    Article  CAS  PubMed  Google Scholar 

  204. Higashi M, Abe T, Burns TP (1992) Carbon—nitrogen balance and termite ecology. Proc R Soc B Lond 249(1326):303–308. https://doi.org/10.1098/rspb.1992.0119

    Article  Google Scholar 

  205. Machida M, Kitade O, Miura T, Matsumoto T (2001) Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insect Soc 48(1):52–56. https://doi.org/10.1007/PL00001745

    Article  Google Scholar 

  206. Chouvenc T (2020) Limited survival strategy in starving subterranean termite colonies. Insect Soc 67(1):71–82. https://doi.org/10.1007/s00040-019-00729-5

    Article  Google Scholar 

  207. Stadler B, Dixon AFG (1999) Ant attendance in aphids: why different degrees of myrmecophily? Ecol Entomol 24(3):363–369. https://doi.org/10.1046/j.1365-2311.1999.00195.x

    Article  Google Scholar 

  208. Chouvenc T, Elliott ML, Su N-Y (2011) Rich microbial community associated with the nest material of Reticulitermes flavipes (Isoptera: Rhinotermitidae). Florida Entomol 94(1):115–116. https://doi.org/10.1653/024.094.0117

    Article  Google Scholar 

  209. Chouvenc T, Bardunias P, Efstathion CA, Chakrabarti S, Elliott ML, Giblin-Davis R, Su N-Y (2013) Resource opportunities from the nest of dying subterranean termite (Isoptera: Rhinotermitidae) colonies: a laboratory case of ecological succession. Ann Entomol Soc Am 106(6):771–778. https://doi.org/10.1603/AN13104

    Article  Google Scholar 

  210. Schulten HR, Schnitzer M (1997) The chemistry of soil organic nitrogen: a review. Biol Fertil Soils 26(1):1–15. https://doi.org/10.1007/s003740050335

    Article  Google Scholar 

  211. Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic, Dordrecht. https://doi.org/10.1007/0-306-48162-6

    Book  Google Scholar 

  212. Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefevre C, Halder R, Wilmes P, Gawron P, Roisin Y, Delfosse P, Calusinska M (2020) Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre-and soil-feeding higher termites. Microbiome 8(96):1–18. https://doi.org/10.1186/s40168-020-00872-3

    Article  Google Scholar 

  213. Brune A, Kühl M (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42(11–12):1121–1127. https://doi.org/10.1016/S0022-1910(96)00036-4

    Article  CAS  Google Scholar 

  214. Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12(3):168–180. https://doi.org/10.1038/nrmicro3182

    Article  CAS  PubMed  Google Scholar 

  215. Lo N, Tokuda G, Watanabe H (2010) Evolution and function of endogenous termite cellulases. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 51–67. https://doi.org/10.1007/978-90-481-3977-4_3

    Chapter  Google Scholar 

  216. Krishna K, Weesner FM (1969) Biology of termites, vol 1. Academic Press, New York. https://doi.org/10.1016/B978-0-12-395529-6.X5001-6

    Book  Google Scholar 

  217. Grassé P-P (1985) Termitologia. Anatomie–physiologie–biologie–systématique des termites, comportement, socialité, écologie, evolution, systematique, vol 3. Masson, Paris

    Google Scholar 

  218. Engel MS, Grimaldi DA, Nascimbine PC, Singh H (2011) The termites of Early Eocene Cambay amber, with the earliest record of the Termitidae (Isoptera). ZooKeys 148:105–123. https://doi.org/10.3897/zookeys.148.1797

    Article  Google Scholar 

  219. Krishna K, Grimaldi DA (2009) Diverse Rhinotermitidae and Termitidae (Isoptera) in Dominican Amber. Am Mus Novitates 3640:1–48. https://doi.org/10.1206/633.1

    Article  Google Scholar 

  220. Eggleton P (2010) An introduction to termites: biology, taxonomy and functional morphology. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 1–26. https://doi.org/10.1007/978-90-481-3977-4_1

    Chapter  Google Scholar 

  221. Scheffrahn RH, Bourguignon T, Bordereau C, Hernandez-Aguilar RA, Oelze VM, Dieguez P, Šobotník J, Pascual-Garrido A (2017) White-gutted soldiers: simplification of the digestive tube for a non-particulate diet in higher old world termites (Isoptera: Termitidae). Insect Soc 64(4):525–533. https://doi.org/10.1007/s00040-017-0572-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TC thanks Nan-Yao Su, Paul Bardunias, Aaron Mullins for the many discussions over the years about the various aspects of evolutionary trajectories in termites. MSE is grateful to the late Kumar Krishna for his many stimulating discussions regarding termites and their evolution. All authors are thankful to all the participants of the ‘2019 termite course’ (Ft Lauderdale, FL), the event that nurtured this collaboration.

Funding

This study was supported in part by, a grant from USDA National Institute of Food and Agriculture Hatch projects number FLA-FLT 005660 (TC), by a NSF-DEB grant, under the agreement no. 1754083 (TC), by the project IGA 20205014 realized at Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague (JŠ and TB), and by the subsidiary funding to OIST (TB).

Author information

Authors and Affiliations

Authors

Contributions

TC and TB jointly prepared the initial draft, and JŠ and MSE contributed additional information. All authors were actively involved with the development of the main narrative of this review.

Corresponding authors

Correspondence to Thomas Chouvenc or Thomas Bourguignon.

Ethics declarations

Conflict of interest

The author(s) declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouvenc, T., Šobotník, J., Engel, M.S. et al. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci. 78, 2749–2769 (2021). https://doi.org/10.1007/s00018-020-03728-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03728-z

Keywords

Navigation