Skip to main content

Advertisement

Log in

Modeling different types of diabetes using human pluripotent stem cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia as a result of progressive loss of pancreatic β cells, which could lead to several debilitating complications. Different paths, triggered by several genetic and environmental factors, lead to the loss of pancreatic β cells and/or function. Understanding these many paths to β cell damage or dysfunction could help in identifying therapeutic approaches specific for each path. Most of our knowledge about diabetes pathophysiology has been obtained from studies on animal models, which do not fully recapitulate human diabetes phenotypes. Currently, human pluripotent stem cell (hPSC) technology is a powerful tool for generating in vitro human models, which could provide key information about the disease pathogenesis and provide cells for personalized therapies. The recent progress in generating functional hPSC-derived β cells in combination with the rapid development in genomic and genome-editing technologies offer multiple options to understand the cellular and molecular mechanisms underlying the development of different types of diabetes. Recently, several in vitro hPSC-based strategies have been used for studying monogenic and polygenic forms of diabetes. This review summarizes the current knowledge about different hPSC-based diabetes models and how these models improved our current understanding of the pathophysiology of distinct forms of diabetes. Also, it highlights the progress in generating functional β cells in vitro, and discusses the current challenges and future perspectives related to the use of the in vitro hPSC-based strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

C-PEP:

C-PEPTIDE

Ctr-iPSCs:

Control iPSCs

DE:

Definitive endoderm

DM:

Diabetes mellitus

ER:

Endoplasmic reticulum

GSIS:

Glucose-stimulated insulin secretion

GWAS:

Genome-wide association studies

hESCs:

Human embryonic stem cells

INS:

Insulin

INSR:

Insulin receptor

iPSCs:

Induced pluripotent stem cells

IR:

Insulin resistance

KO:

Knockout

MD:

Monogenic diabetes

NDM:

Neonatal diabetes mellitus

ND:

Non-diabetic

PBMCs:

Peripheral blood mononuclear cells

PNDM:

Permanent neonatal diabetes

RNA-seq:

High-throughput RNA sequencing;

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

TF:

Transcription factor

References

  1. Atkinson MA, von Herrath M, Powers AC, Clare-Salzler M (2015) Current concepts on the pathogenesis of type 1 diabetes–considerations for attempts to prevent and reverse the disease. Diabetes Care 38(6):979–988. https://doi.org/10.2337/dc15-0144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanafusa T, Imagawa A (2007) Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Pract Endocrinol Metab 3(1):36–45. https://doi.org/10.1038/ncpendmet0351 (quiz 32p following 69)

    Article  CAS  PubMed  Google Scholar 

  3. Kahn SE, Zraika S, Utzschneider KM, Hull RL (2009) The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia 52(6):1003–1012. https://doi.org/10.1007/s00125-009-1321-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mathis D, Vence L, Benoist C (2001) β-Cell death during progression to diabetes. Nature 414(6865):792–798. https://doi.org/10.1038/414792a

    Article  CAS  PubMed  Google Scholar 

  5. Donath MY, Halban PA (2004) Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47(3):581–589. https://doi.org/10.1007/s00125-004-1336-4

    Article  CAS  PubMed  Google Scholar 

  6. Murphy R, Ellard S, Hattersley AT (2008) Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab 4(4):200–213. https://doi.org/10.1038/ncpendmet0778

    Article  CAS  PubMed  Google Scholar 

  7. Polak M, Cave H (2007) Neonatal diabetes mellitus: a disease linked to multiple mechanisms. Orphanet J Rare Dis 2:12. https://doi.org/10.1186/1750-1172-2-12

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fajans SS, Bell GI (2011) MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care 34(8):1878–1884. https://doi.org/10.2337/dc11-0035

    Article  PubMed  PubMed Central  Google Scholar 

  9. Maassen JA, M’t Hart L, Van Essen E, Heine RJ, Nijpels G, Jahangir Tafrechi RS, Raap AK, Janssen GM, Lemkes HH (2004) Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 53(Suppl 1):S103-109

    Article  CAS  PubMed  Google Scholar 

  10. Hattersley A, Bruining J, Shield J, Njolstad P, Donaghue KC (2009) The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 10(Suppl 12):33–42. https://doi.org/10.1111/j.1399-5448.2009.00571.x

    Article  PubMed  Google Scholar 

  11. Benner C, van der Meulen T, Caceres E, Tigyi K, Donaldson CJ, Huising MO (2014) The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 15:620. https://doi.org/10.1186/1471-2164-15-620

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, Ryu JH, Wagner BK, Shen-Orr SS, Klein AM, Melton DA, Yanai I (2016) A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst 3(4):346-360 e344. https://doi.org/10.1016/j.cels.2016.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shiao MS, Liao BY, Long M, Yu HT (2008) Adaptive evolution of the insulin two-gene system in mouse. Genetics 178(3):1683–1691. https://doi.org/10.1534/genetics.108.087023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deltour L, Leduque P, Blume N, Madsen O, Dubois P, Jami J, Bucchini D (1993) Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo. Proc Natl Acad Sci USA 90(2):527–531. https://doi.org/10.1073/pnas.90.2.527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wentworth BM, Rhodes C, Schnetzler B, Gross DJ, Halban PA, Villa-Komaroff L (1992) The ratio of mouse insulin I:insulin II does not reflect that of the corresponding preproinsulin mRNAs. Mol Cell Endocrinol 86(3):177–186. https://doi.org/10.1016/0303-7207(92)90142-s

    Article  CAS  PubMed  Google Scholar 

  16. Ling Z, Heimberg H, Foriers A, Schuit F, Pipeleers D (1998) Differential expression of rat insulin I and II messenger ribonucleic acid after prolonged exposure of islet beta-cells to elevated glucose levels. Endocrinology 139(2):491–495. https://doi.org/10.1210/endo.139.2.5749

    Article  CAS  PubMed  Google Scholar 

  17. Kakita K, O’Connell K, Permutt MA (1982) Pancreatic content of insulins I and II in laboratory rodents. Anal Immunoelectrophoresis Diabetes 31(10):841–845. https://doi.org/10.2337/diab.31.10.841

    Article  CAS  Google Scholar 

  18. McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL (2011) GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus. Mol Genet Metab 104(4):648–653. https://doi.org/10.1016/j.ymgme.2011.08.026

    Article  CAS  PubMed  Google Scholar 

  19. De Vos A, Heimberg H, Quartier E, Huypens P, Bouwens L, Pipeleers D, Schuit F (1995) Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J Clin Investig 96(5):2489–2495. https://doi.org/10.1172/JCI118308

    Article  PubMed  PubMed Central  Google Scholar 

  20. de la Tour D, Halvorsen T, Demeterco C, Tyrberg B, Itkin-Ansari P, Loy M, Yoo SJ, Hao E, Bossie S, Levine F (2001) Beta-cell differentiation from a human pancreatic cell line in vitro and in vivo. Mol Endocrinol 15(3):476–483. https://doi.org/10.1210/mend.15.3.0604

    Article  PubMed  Google Scholar 

  21. Gartner W, Koc F, Nabokikh A, Daneva T, Niederle B, Luger A, Wagner L (2006) Long-term in vitro growth of human insulin-secreting insulinoma cells. Neuroendocrinology 83(2):123–130. https://doi.org/10.1159/000094875

    Article  CAS  PubMed  Google Scholar 

  22. Demeterco C, Itkin-Ansari P, Tyrberg B, Ford LP, Jarvis RA, Levine F (2002) c-Myc controls proliferation versus differentiation in human pancreatic endocrine cells. J Clin Endocrinol Metab 87(7):3475–3485. https://doi.org/10.1210/jcem.87.7.8700

    Article  CAS  PubMed  Google Scholar 

  23. Narushima M, Kobayashi N, Okitsu T, Tanaka Y, Li SA, Chen Y, Miki A, Tanaka K, Nakaji S, Takei K, Gutierrez AS, Rivas-Carrillo JD, Navarro-Alvarez N, Jun HS, Westerman KA, Noguchi H, Lakey JR, Leboulch P, Tanaka N, Yoon JW (2005) A human beta-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol 23(10):1274–1282. https://doi.org/10.1038/nbt1145

    Article  CAS  PubMed  Google Scholar 

  24. Ravassard P, Hazhouz Y, Pechberty S, Bricout-Neveu E, Armanet M, Czernichow P, Scharfmann R (2011) A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. J Clin Investig 121(9):3589–3597. https://doi.org/10.1172/JCI58447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grotz AK, Abaitua F, Navarro-Guerrero E, Hastoy B, Ebner D, Gloyn AL (2019) A CRISPR/Cas9 genome editing pipeline in the EndoC-betaH1 cell line to study genes implicated in beta cell function. Wellcome Open Res 4:150. https://doi.org/10.12688/wellcomeopenres.15447.2

    Article  CAS  PubMed  Google Scholar 

  26. Abdelalim EM, Bonnefond A, Bennaceur-Griscelli A, Froguel P (2014) Pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes. Stem Cell Rev Rep 10(3):327–337. https://doi.org/10.1007/s12015-014-9503-6

    Article  CAS  PubMed  Google Scholar 

  27. Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM (2018) Pathways governing development of stem cell-derived pancreatic beta cells: lessons from embryogenesis. Biol Rev 93(1):364–389. https://doi.org/10.1111/brv.12349

    Article  PubMed  Google Scholar 

  28. Balboa D, Prasad RB, Groop L, Otonkoski T (2019) Genome editing of human pancreatic beta cell models: problems, possibilities and outlook. Diabetologia 62(8):1329–1336. https://doi.org/10.1007/s00125-019-4908-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eizirik DL, Sammeth M, Bouckenooghe T, Bottu G, Sisino G, Igoillo-Esteve M, Ortis F, Santin I, Colli ML, Barthson J, Bouwens L, Hughes L, Gregory L, Lunter G, Marselli L, Marchetti P, McCarthy MI, Cnop M (2012) The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet 8(3):e1002552. https://doi.org/10.1371/journal.pgen.1002552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bradfield JP, Qu HQ, Wang K, Zhang H, Sleiman PM, Kim CE, Mentch FD, Qiu H, Glessner JT, Thomas KA, Frackelton EC, Chiavacci RM, Imielinski M, Monos DS, Pandey R, Bakay M, Grant SF, Polychronakos C, Hakonarson H (2011) A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet 7(9):e1002293. https://doi.org/10.1371/journal.pgen.1002293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, Payne AJ, Steinthorsdottir V, Scott RA, Grarup N, Cook JP, Schmidt EM, Wuttke M, Sarnowski C, Magi R, Nano J, Gieger C, Trompet S, Lecoeur C, Preuss MH, Prins BP, Guo X, Bielak LF, Below JE, Bowden DW, Chambers JC, Kim YJ, Ng MCY, Petty LE, Sim X, Zhang W, Bennett AJ, Bork-Jensen J, Brummett CM, Canouil M, Ec Kardt KU, Fischer K, Kardia SLR, Kronenberg F, Lall K, Liu CT, Locke AE, Luan J, Ntalla I, Nylander V, Schonherr S, Schurmann C, Yengo L, Bottinger EP, Brandslund I, Christensen C, Dedoussis G, Florez JC, Ford I, Franco OH, Frayling TM, Giedraitis V, Hackinger S, Hattersley AT, Herder C, Ikram MA, Ingelsson M, Jorgensen ME, Jorgensen T, Kriebel J, Kuusisto J, Ligthart S, Lindgren CM, Linneberg A, Lyssenko V, Mamakou V, Meitinger T, Mohlke KL, Morris AD, Nadkarni G, Pankow JS, Peters A, Sattar N, Stancakova A, Strauch K, Taylor KD, Thorand B, Thorleifsson G, Thorsteinsdottir U, Tuomilehto J, Witte DR, Dupuis J, Peyser PA, Zeggini E, Loos RJF, Froguel P, Ingelsson E, Lind L, Groop L, Laakso M, Collins FS, Jukema JW, Palmer CNA, Grallert H, Metspalu A, Dehghan A, Kottgen A, Abecasis GR, Meigs JB, Rotter JI, Marchini J, Pedersen O, Hansen T, Langenberg C, Wareham NJ, Stefansson K, Gloyn AL, Morris AP, Boehnke M, McCarthy MI (2018) Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 50(11):1505–1513. https://doi.org/10.1038/s41588-018-0241-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, Julier C, Morahan G, Nerup J, Nierras C, Plagnol V, Pociot F, Schuilenburg H, Smyth DJ, Stevens H, Todd JA, Walker NM, Rich SS, Type 1 Diabetes Genetics C (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41(6):703–707. https://doi.org/10.1038/ng.381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amin S, Cook B, Zhou T, Ghazizadeh Z, Lis R, Zhang T, Khalaj M, Crespo M, Perera M, Xiang JZ, Zhu Z, Tomishima M, Liu C, Naji A, Evans T, Huangfu D, Chen S (2018) Discovery of a drug candidate for GLIS3-associated diabetes. Nat Commun 9(1):2681. https://doi.org/10.1038/s41467-018-04918-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL, Lindgren CM, Magi R, Morris AP, Randall J, Johnson T, Elliott P, Rybin D, Thorleifsson G, Steinthorsdottir V, Henneman P, Grallert H, Dehghan A, Hottenga JJ, Franklin CS, Navarro P, Song K, Goel A, Perry JR, Egan JM, Lajunen T, Grarup N, Sparso T, Doney A, Voight BF, Stringham HM, Li M, Kanoni S, Shrader P, Cavalcanti-Proenca C, Kumari M, Qi L, Timpson NJ, Gieger C, Zabena C, Rocheleau G, Ingelsson E, An P, O’Connell J, Luan J, Elliott A, McCarroll SA, Payne F, Roccasecca RM, Pattou F, Sethupathy P, Ardlie K, Ariyurek Y, Balkau B, Barter P, Beilby JP, Ben-Shlomo Y, Benediktsson R, Bennett AJ, Bergmann S, Bochud M, Boerwinkle E, Bonnefond A, Bonnycastle LL, Borch-Johnsen K, Bottcher Y, Brunner E, Bumpstead SJ, Charpentier G, Chen YD, Chines P, Clarke R, Coin LJ, Cooper MN, Cornelis M, Crawford G, Crisponi L, Day IN, de Geus EJ, Delplanque J, Dina C, Erdos MR, Fedson AC, Fischer-Rosinsky A, Forouhi NG, Fox CS, Frants R, Franzosi MG, Galan P, Goodarzi MO, Graessler J, Groves CJ, Grundy S, Gwilliam R, Gyllensten U, Hadjadj S, Hallmans G, Hammond N, Han X, Hartikainen AL, Hassanali N, Hayward C, Heath SC, Hercberg S, Herder C, Hicks AA, Hillman DR, Hingorani AD, Hofman A, Hui J, Hung J, Isomaa B, Johnson PR, Jorgensen T, Jula A, Kaakinen M, Kaprio J, Kesaniemi YA, Kivimaki M, Knight B, Koskinen S, Kovacs P, Kyvik KO, Lathrop GM, Lawlor DA, Le Bacquer O, Lecoeur C, Li Y, Lyssenko V, Mahley R, Mangino M, Manning AK, Martinez-Larrad MT, McAteer JB, McCulloch LJ, McPherson R, Meisinger C, Melzer D, Meyre D, Mitchell BD, Morken MA, Mukherjee S, Naitza S, Narisu N, Neville MJ, Oostra BA, Orru M, Pakyz R, Palmer CN, Paolisso G, Pattaro C, Pearson D, Peden JF, Pedersen NL, Perola M, Pfeiffer AF, Pichler I, Polasek O, Posthuma D, Potter SC, Pouta A, Province MA, Psaty BM, Rathmann W, Rayner NW, Rice K, Ripatti S, Rivadeneira F, Roden M, Rolandsson O, Sandbaek A, Sandhu M, Sanna S, Sayer AA, Scheet P, Scott LJ, Seedorf U, Sharp SJ, Shields B, Sigurethsson G, Sijbrands EJ, Silveira A, Simpson L, Singleton A, Smith NL, Sovio U, Swift A, Syddall H, Syvanen AC, Tanaka T, Thorand B, Tichet J, Tonjes A, Tuomi T, Uitterlinden AG, van Dijk KW, van Hoek M, Varma D, Visvikis-Siest S, Vitart V, Vogelzangs N, Waeber G, Wagner PJ, Walley A, Walters GB, Ward KL, Watkins H, Weedon MN, Wild SH, Willemsen G, Witteman JC, Yarnell JW, Zeggini E, Zelenika D, Zethelius B, Zhai G, Zhao JH, Zillikens MC, Consortium D, Consortium G, Global BC, Borecki IB, Loos RJ, Meneton P, Magnusson PK, Nathan DM, Williams GH, Hattersley AT, Silander K, Salomaa V, Smith GD, Bornstein SR, Schwarz P, Spranger J, Karpe F, Shuldiner AR, Cooper C, Dedoussis GV, Serrano-Rios M, Morris AD, Lind L, Palmer LJ, Hu FB, Franks PW, Ebrahim S, Marmot M, Kao WH, Pankow JS, Sampson MJ, Kuusisto J, Laakso M, Hansen T, Pedersen O, Pramstaller PP, Wichmann HE, Illig T, Rudan I, Wright AF, Stumvoll M, Campbell H, Wilson JF, Anders Hamsten on behalf of Procardis C, investigators M, Bergman RN, Buchanan TA, Collins FS, Mohlke KL, Tuomilehto J, Valle TT, Altshuler D, Rotter JI, Siscovick DS, Penninx BW, Boomsma DI, Deloukas P, Spector TD, Frayling TM, Ferrucci L, Kong A, Thorsteinsdottir U, Stefansson K, van Duijn CM, Aulchenko YS, Cao A, Scuteri A, Schlessinger D, Uda M, Ruokonen A, Jarvelin MR, Waterworth DM, Vollenweider P, Peltonen L, Mooser V, Abecasis GR, Wareham NJ, Sladek R, Froguel P, Watanabe RM, Meigs JB, Groop L, Boehnke M, McCarthy MI, Florez JC, Barroso I (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42(2):105–116. https://doi.org/10.1038/ng.520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cho YS, Chen CH, Hu C, Long J, Ong RT, Sim X, Takeuchi F, Wu Y, Go MJ, Yamauchi T, Chang YC, Kwak SH, Ma RC, Yamamoto K, Adair LS, Aung T, Cai Q, Chang LC, Chen YT, Gao Y, Hu FB, Kim HL, Kim S, Kim YJ, Lee JJ, Lee NR, Li Y, Liu JJ, Lu W, Nakamura J, Nakashima E, Ng DP, Tay WT, Tsai FJ, Wong TY, Yokota M, Zheng W, Zhang R, Wang C, So WY, Ohnaka K, Ikegami H, Hara K, Cho YM, Cho NH, Chang TJ, Bao Y, Hedman AK, Morris AP, McCarthy MI, Consortium D, Mu TC, Takayanagi R, Park KS, Jia W, Chuang LM, Chan JC, Maeda S, Kadowaki T, Lee JY, Wu JY, Teo YY, Tai ES, Shu XO, Mohlke KL, Kato N, Han BG, Seielstad M (2011) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 44(1):67–72. https://doi.org/10.1038/ng.1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H, Gan W, Lu L, Dong X, Han X, Hu C, Yang Z, Sun L, Bao W, Li P, He M, Sun L, Wang Y, Zhu J, Ning Q, Tang Y, Zhang R, Wen J, Wang D, Zhu X, Guo K, Zuo X, Guo X, Yang H, Zhou X, Consortium D, Consortium A-TD, Zhang X, Qi L, Loos RJ, Hu FB, Wu T, Liu Y, Liu L, Yang Z, Hu R, Jia W, Ji L, Li Y, Lin X (2013) A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes 62(1):291–298. https://doi.org/10.2337/db12-0454

    Article  CAS  PubMed  Google Scholar 

  37. Goodarzi MO, Guo X, Cui J, Jones MR, Haritunians T, Xiang AH, Chen YD, Taylor KD, Buchanan TA, Hsueh WA, Raffel LJ, Rotter JI (2013) Systematic evaluation of validated type 2 diabetes and glycaemic trait loci for association with insulin clearance. Diabetologia 56(6):1282–1290. https://doi.org/10.1007/s00125-013-2880-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeng H, Guo M, Zhou T, Tan L, Chong CN, Zhang T, Dong X, Xiang JZ, Yu AS, Yue L, Qi Q, Evans T, Graumann J, Chen S (2016) An isogenic human ESC platform for functional evaluation of genome-wide-association-study-identified diabetes genes and drug discovery. Cell Stem Cell 19(3):326–340. https://doi.org/10.1016/j.stem.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo M, Zhang T, Dong X, Xiang JZ, Lei M, Evans T, Graumann J, Chen S (2017) Using hESCs to probe the interaction of the diabetes-associated genes CDKAL1 and MT1E. Cell Rep 19(8):1512–1521. https://doi.org/10.1016/j.celrep.2017.04.070

    Article  CAS  PubMed  Google Scholar 

  40. Dwivedi OP, Lehtovirta M, Hastoy B, Chandra V, Krentz NAJ, Kleiner S, Jain D, Richard AM, Abaitua F, Beer NL, Grotz A, Prasad RB, Hansson O, Ahlqvist E, Krus U, Artner I, Suoranta A, Gomez D, Baras A, Champon B, Payne AJ, Moralli D, Thomsen SK, Kramer P, Spiliotis I, Ramracheya R, Chabosseau P, Theodoulou A, Cheung R, van de Bunt M, Flannick J, Trombetta M, Bonora E, Wolheim CB, Sarelin L, Bonadonna RC, Rorsman P, Davies B, Brosnan J, McCarthy MI, Otonkoski T, Lagerstedt JO, Rutter GA, Gromada J, Gloyn AL, Tuomi T, Groop L (2019) Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nat Genet 51(11):1596–1606. https://doi.org/10.1038/s41588-019-0513-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Memon B, Abdelalim EM (2020) Stem cell therapy for diabetes: beta cells versus pancreatic progenitors. Cells. https://doi.org/10.3390/cells9020283

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nostro MC, Sarangi F, Yang C, Holland A, Elefanty AG, Stanley EG, Greiner DL, Keller G (2015) Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Rep 4(4):591–604. https://doi.org/10.1016/j.stemcr.2015.02.017

    Article  CAS  Google Scholar 

  43. Memon B, Karam M, Al-Khawaga S, Abdelalim EM (2018) Enhanced differentiation of human pluripotent stem cells into pancreatic progenitors co-expressing PDX1 and NKX6.1. Stem Cell Res Ther 9(1):15. https://doi.org/10.1186/s13287-017-0759-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aigha II, Memon B, Elsayed AK, Abdelalim EM (2018) Differentiation of human pluripotent stem cells into two distinct NKX6.1 populations of pancreatic progenitors. Stem Cell Res Ther 9(1):83. https://doi.org/10.1186/s13287-018-0834-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Memon B, Younis I, Abubaker F, Abdelalim EM (2020) PDX1(-) /NKX6.1(+) progenitors derived from human pluripotent stem cells as a novel source of insulin-secreting cells. Diabetes Metab Res Rev. https://doi.org/10.1002/dmrr.3400

    Article  PubMed  Google Scholar 

  46. Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159(2):428–439. https://doi.org/10.1016/j.cell.2014.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O’Dwyer S, Quiskamp N, Mojibian M, Albrecht T, Yang YH, Johnson JD, Kieffer TJ (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32(11):1121–1133. https://doi.org/10.1038/nbt.3033

    Article  CAS  PubMed  Google Scholar 

  48. Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR (2020) Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol 38(4):460–470. https://doi.org/10.1038/s41587-020-0430-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Velazco-Cruz L, Song J, Maxwell KG, Goedegebuure MM, Augsornworawat P, Hogrebe NJ, Millman JR (2019) Acquisition of dynamic function in human stem cell-derived beta cells. Stem Cell Rep 12(2):351–365. https://doi.org/10.1016/j.stemcr.2018.12.012

    Article  CAS  Google Scholar 

  50. Nair GG, Liu JS, Russ HA, Tran S, Saxton MS, Chen R, Juang C, Li ML, Nguyen VQ, Giacometti S, Puri S, Xing Y, Wang Y, Szot GL, Oberholzer J, Bhushan A, Hebrok M (2019) Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived beta cells. Nat Cell Biol 21(2):263–274. https://doi.org/10.1038/s41556-018-0271-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, Guo T, Puri S, Haataja L, Cirulli V, Blelloch R, Szot GL, Arvan P, Hebrok M (2015) Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J 34(13):1759–1772. https://doi.org/10.15252/embj.201591058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JH, Harb G, Poh YC, Sintov E, Gurtler M, Pagliuca FW, Peterson QP, Melton DA (2019) Charting cellular identity during human in vitro beta-cell differentiation. Nature 569(7756):368–373. https://doi.org/10.1038/s41586-019-1168-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rosado-Olivieri EA, Anderson K, Kenty JH, Melton DA (2019) YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing beta cells. Nat Commun 10(1):1464. https://doi.org/10.1038/s41467-019-09404-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mamidi A, Prawiro C, Seymour PA, de Lichtenberg KH, Jackson A, Serup P, Semb H (2018) Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 564(7734):114–118. https://doi.org/10.1038/s41586-018-0762-2

    Article  CAS  PubMed  Google Scholar 

  55. Toyoda T, Kimura A, Tanaka H, Ameku T, Mima A, Hirose Y, Nakamura M, Watanabe A, Osafune K (2017) Rho-associated kinases and non-muscle myosin iis inhibit the differentiation of human iPSCs to pancreatic endoderm. Stem Cell Rep 9(2):419–428. https://doi.org/10.1016/j.stemcr.2017.07.005

    Article  CAS  Google Scholar 

  56. Ghazizadeh Z, Kao DI, Amin S, Cook B, Rao S, Zhou T, Zhang T, Xiang Z, Kenyon R, Kaymakcalan O, Liu C, Evans T, Chen S (2017) ROCKII inhibition promotes the maturation of human pancreatic beta-like cells. Nat Commun 8(1):298. https://doi.org/10.1038/s41467-017-00129-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kelly OG, Chan MY, Martinson LA, Kadoya K, Ostertag TM, Ross KG, Richardson M, Carpenter MK, D’Amour KA, Kroon E, Moorman M, Baetge EE, Bang AG (2011) Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 29(8):750–756. https://doi.org/10.1038/nbt.1931

    Article  CAS  PubMed  Google Scholar 

  58. Ameri J, Borup R, Prawiro C, Ramond C, Schachter KA, Scharfmann R, Semb H (2017) Efficient generation of glucose-responsive beta cells from isolated GP2(+) human pancreatic progenitors. Cell Rep 19(1):36–49. https://doi.org/10.1016/j.celrep.2017.03.032

    Article  CAS  PubMed  Google Scholar 

  59. Cogger KF, Sinha A, Sarangi F, McGaugh EC, Saunders D, Dorrell C, Mejia-Guerrero S, Aghazadeh Y, Rourke JL, Screaton RA, Grompe M, Streeter PR, Powers AC, Brissova M, Kislinger T, Nostro MC (2017) Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors. Nat Commun 8(1):331. https://doi.org/10.1038/s41467-017-00561-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ramond C, Glaser N, Berthault C, Ameri J, Kirkegaard JS, Hansson M, Honoré C, Semb H, Scharfmann R (2017) Reconstructing human pancreatic differentiation by mapping specific cell populations during development. Elife. https://doi.org/10.7554/eLife.27564

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gylfe E, Tengholm A (2014) Neurotransmitter control of islet hormone pulsatility. Diabetes Obes Metab 16(Suppl 1):102–110. https://doi.org/10.1111/dom.12345

    Article  CAS  PubMed  Google Scholar 

  62. Rodriguez-Diaz R, Molano RD, Weitz JR, Abdulreda MH, Berman DM, Leibiger B, Leibiger IB, Kenyon NS, Ricordi C, Pileggi A, Caicedo A, Berggren PO (2018) Paracrine interactions within the pancreatic islet determine the glycemic set point. Cell Metab 27(3):549-558 e544. https://doi.org/10.1016/j.cmet.2018.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rorsman P, Ashcroft FM (2018) Pancreatic beta-cell electrical activity and insulin secretion: of mice and men. Physiol Rev 98(1):117–214. https://doi.org/10.1152/physrev.00008.2017

    Article  CAS  PubMed  Google Scholar 

  64. Kailey B, van de Bunt M, Cheley S, Johnson PR, MacDonald PE, Gloyn AL, Rorsman P, Braun M (2012) SSTR2 is the functionally dominant somatostatin receptor in human pancreatic beta- and alpha-cells. Am J Physiol Endocrinol Metab 303(9):E1107-1116. https://doi.org/10.1152/ajpendo.00207.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van der Meulen T, Donaldson CJ, Caceres E, Hunter AE, Cowing-Zitron C, Pound LD, Adams MW, Zembrzycki A, Grove KL, Huising MO (2015) Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat Med 21(7):769–776. https://doi.org/10.1038/nm.3872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Benninger RK, Piston DW (2014) Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics. Trends Endocrinol Metab 25(8):399–406. https://doi.org/10.1016/j.tem.2014.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arda HE, Li L, Tsai J, Torre EA, Rosli Y, Peiris H, Spitale RC, Dai C, Gu X, Qu K, Wang P, Wang J, Grompe M, Scharfmann R, Snyder MS, Bottino R, Powers AC, Chang HY, Kim SK (2016) Age-dependent pancreatic gene regulation reveals mechanisms governing human beta cell function. Cell Metab 23(5):909–920. https://doi.org/10.1016/j.cmet.2016.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lam CJ, Cox AR, Jacobson DR, Rankin MM, Kushner JA (2018) Highly proliferative alpha-cell-related islet endocrine cells in human pancreata. Diabetes 67(4):674–686. https://doi.org/10.2337/db17-1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang YJ, Golson ML, Schug J, Traum D, Liu C, Vivek K, Dorrell C, Naji A, Powers AC, Chang KM, Grompe M, Kaestner KH (2016) Single-cell mass cytometry analysis of the human endocrine pancreas. Cell Metab 24(4):616–626. https://doi.org/10.1016/j.cmet.2016.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A, Rizza RA, Butler PC (2008) Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 57(6):1584–1594. https://doi.org/10.2337/db07-1369

    Article  CAS  PubMed  Google Scholar 

  71. Qiu WL, Zhang YW, Feng Y, Li LC, Yang L, Xu CR (2017) Deciphering pancreatic islet beta cell and alpha cell maturation pathways and characteristic features at the single-cell level. Cell Metab 25(5):1194-1205 e1194. https://doi.org/10.1016/j.cmet.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  72. Zeng C, Mulas F, Sui Y, Guan T, Miller N, Tan Y, Liu F, Jin W, Carrano AC, Huising MO, Shirihai OS, Yeo GW, Sander M (2017) Pseudotemporal ordering of single cells reveals metabolic control of postnatal beta cell proliferation. Cell Metab 25(5):1160–1175. https://doi.org/10.1016/j.cmet.2017.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sousa M, Bruges-Armas J (2020) Monogenic diabetes: genetics and relevance on diabetes mellitus personalized medicine. Curr Diabetes Rev 16(8):807–819. https://doi.org/10.2174/1573399816666191230114352

    Article  PubMed  Google Scholar 

  74. Letourneau LR, Greeley SAW (2018) Congenital forms of diabetes: the beta-cell and beyond. Curr Opin Genet Dev 50:25–34. https://doi.org/10.1016/j.gde.2018.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rubio-Cabezas O, Ellard S (2013) Diabetes mellitus in neonates and infants: genetic heterogeneity, clinical approach to diagnosis, and therapeutic options. Horm Res Paediatr 80(3):137–146. https://doi.org/10.1159/000354219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15(1):106–110. https://doi.org/10.1038/ng0197-106

    Article  CAS  PubMed  Google Scholar 

  77. Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK, Goodwin G, Houlston RS (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36(12):1301–1305. https://doi.org/10.1038/ng1475

    Article  CAS  PubMed  Google Scholar 

  78. Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT (2010) Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 59(9):2326–2331. https://doi.org/10.2337/db10-0011

    Article  PubMed  PubMed Central  Google Scholar 

  79. Smith SB, Qu HQ, Taleb N, Kishimoto NY, Scheel DW, Lu Y, Patch AM, Grabs R, Wang J, Lynn FC, Miyatsuka T, Mitchell J, Seerke R, Desir J, Vanden Eijnden S, Abramowicz M, Kacet N, Weill J, Renard ME, Gentile M, Hansen I, Dewar K, Hattersley AT, Wang R, Wilson ME, Johnson JD, Polychronakos C, German MS (2010) Rfx6 directs islet formation and insulin production in mice and humans. Nature 463(7282):775–780. https://doi.org/10.1038/nature08748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Flanagan SE, De Franco E, Lango Allen H, Zerah M, Abdul-Rasoul MM, Edge JA, Stewart H, Alamiri E, Hussain K, Wallis S, de Vries L, Rubio-Cabezas O, Houghton JA, Edghill EL, Patch AM, Ellard S, Hattersley AT (2014) Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man. Cell Metab 19(1):146–154. https://doi.org/10.1016/j.cmet.2013.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bonnefond A, Vaillant E, Philippe J, Skrobek B, Lobbens S, Yengo L, Huyvaert M, Cave H, Busiah K, Scharfmann R, Polak M, Abdul-Rasoul M, Froguel P, Vaxillaire M (2013) Transcription factor gene MNX1 is a novel cause of permanent neonatal diabetes in a consanguineous family. Diabetes Metab 39(3):276–280. https://doi.org/10.1016/j.diabet.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  82. Senee V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC, Charon C, Nicolino M, Boileau P, Cavener DR, Bougneres P, Taha D, Julier C (2006) Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 38(6):682–687. https://doi.org/10.1038/ng1802

    Article  CAS  PubMed  Google Scholar 

  83. Shaw-Smith C, De Franco E, Lango Allen H, Batlle M, Flanagan SE, Borowiec M, Taplin CE, van Alfen-van der Velden J, Cruz-Rojo J, Perez de Nanclares G, Miedzybrodzka Z, Deja G, Wlodarska I, Mlynarski W, Ferrer J, Hattersley AT, Ellard S (2014) GATA4 mutations are a cause of neonatal and childhood-onset diabetes. Diabetes 63(8):2888–2894. https://doi.org/10.2337/db14-0061

    Article  CAS  PubMed  Google Scholar 

  84. Allen HL, Flanagan SE, Shaw-Smith C, De Franco E, Akerman I, Caswell R, International Pancreatic Agenesis C, Ferrer J, Hattersley AT, Ellard S (2011) GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 44(1):20–22. https://doi.org/10.1038/ng.1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Haumaitre C, Fabre M, Cormier S, Baumann C, Delezoide AL, Cereghini S (2006) Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1beta/MODY5 mutations. Hum Mol Genet 15(15):2363–2375. https://doi.org/10.1093/hmg/ddl161

    Article  CAS  PubMed  Google Scholar 

  86. De Franco E, Shaw-Smith C, Flanagan SE, Shepherd MH, International NDMC, Hattersley AT, Ellard S (2013) GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine insufficiency. Diabetes 62(3):993–997. https://doi.org/10.2337/db12-0885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanne-Chantelot C, Ellard S, Gloyn AL (2009) Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 30(11):1512–1526. https://doi.org/10.1002/humu.21110

    Article  CAS  PubMed  Google Scholar 

  88. Sansbury FH, Flanagan SE, Houghton JA, Shuixian Shen FL, Al-Senani AM, Habeb AM, Abdullah M, Kariminejad A, Ellard S, Hattersley AT (2012) SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion. Diabetologia 55(9):2381–2385. https://doi.org/10.1007/s00125-012-2595-0

    Article  CAS  PubMed  Google Scholar 

  89. Stoy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, Below JE, Hayes MG, Cox NJ, Lipkind GM, Lipton RB, Greeley SA, Patch AM, Ellard S, Steiner DF, Hattersley AT, Philipson LH, Bell GI, Neonatal Diabetes International Collaborative G (2007) Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA 104(38):15040–15044. https://doi.org/10.1073/pnas.0707291104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Al-Khawaga S, Mohammed I, Saraswathi S, Haris B, Hasnah R, Saeed A, Almabrazi H, Syed N, Jithesh P, El Awwa A, Khalifa A, AlKhalaf F, Petrovski G, Abdelalim EM, Hussain K (2019) The clinical and genetic characteristics of permanent neonatal diabetes (PNDM) in the state of Qatar. Mol Genet Genomic Med 7(10):e00753. https://doi.org/10.1002/mgg3.753

    Article  PubMed  PubMed Central  Google Scholar 

  91. Elsayed AK, Aghadi M, Al-Khawaga S, Hussain K, Abdelalim EM (2020) Derivation of a human induced pluripotent stem cell line (QBRIi007-A) from a patient carrying a homozygous intronic mutation (c.613–7T>G) in the SLC2A2 gene. Stem Cell Res 44:101736. https://doi.org/10.1016/j.scr.2020.101736

    Article  CAS  PubMed  Google Scholar 

  92. Aguilar-Bryan L, Bryan J (2008) Neonatal diabetes mellitus. Endocr Rev 29(3):265–291. https://doi.org/10.1210/er.2007-0029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cnop M, Toivonen S, Igoillo-Esteve M, Salpea P (2017) Endoplasmic reticulum stress and eIF2alpha phosphorylation: the Achilles heel of pancreatic beta cells. Mol Metab 6(9):1024–1039. https://doi.org/10.1016/j.molmet.2017.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Morrisey EE, Tang Z, Sigrist K, Lu MM, Jiang F, Ip HS, Parmacek MS (1998) GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12(22):3579–3590. https://doi.org/10.1101/gad.12.22.3579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Carrasco M, Delgado I, Soria B, Martin F, Rojas A (2012) GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Investig 122(10):3504–3515. https://doi.org/10.1172/JCI63240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xuan S, Borok MJ, Decker KJ, Battle MA, Duncan SA, Hale MA, Macdonald RJ, Sussel L (2012) Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J Clin Investig 122(10):3516–3528. https://doi.org/10.1172/JCI63352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bonnefond A, Sand O, Guerin B, Durand E, De Graeve F, Huyvaert M, Rachdi L, Kerr-Conte J, Pattou F, Vaxillaire M, Polak M, Scharfmann R, Czernichow P, Froguel P (2012) GATA6 inactivating mutations are associated with heart defects and inconsistently, with pancreatic agenesis and diabetes. Diabetologia 55(10):2845–2847. https://doi.org/10.1007/s00125-012-2645-7

    Article  CAS  PubMed  Google Scholar 

  98. Catli G, Abaci A, Flanagan SE, De Franco E, Ellard S, Hattersley A, Guleryuz H, Bober E (2013) A novel GATA6 mutation leading to congenital heart defects and permanent neonatal diabetes: a case report. Diabetes Metab 39(4):370–374. https://doi.org/10.1016/j.diabet.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  99. Stanescu DE, Hughes N, Patel P, De Leon DD (2015) A novel mutation in GATA6 causes pancreatic agenesis. Pediatr Diabetes 16(1):67–70. https://doi.org/10.1111/pedi.12111

    Article  CAS  PubMed  Google Scholar 

  100. Suzuki S, Nakao A, Sarhat AR, Furuya A, Matsuo K, Tanahashi Y, Kajino H, Azuma H (2014) A case of pancreatic agenesis and congenital heart defects with a novel GATA6 nonsense mutation: evidence of haploinsufficiency due to nonsense-mediated mRNA decay. Am J Med Genet A 164A(2):476–479. https://doi.org/10.1002/ajmg.a.36275

    Article  CAS  PubMed  Google Scholar 

  101. Yorifuji T, Kawakita R, Hosokawa Y, Fujimaru R, Yamaguchi E, Tamagawa N (2012) Dominantly inherited diabetes mellitus caused by GATA6 haploinsufficiency: variable intrafamilial presentation. J Med Genet 49(10):642–643. https://doi.org/10.1136/jmedgenet-2012-101161

    Article  CAS  PubMed  Google Scholar 

  102. Yu L, Bennett JT, Wynn J, Carvill GL, Cheung YH, Shen Y, Mychaliska GB, Azarow KS, Crombleholme TM, Chung DH, Potoka D, Warner BW, Bucher B, Lim FY, Pietsch J, Stolar C, Aspelund G, Arkovitz MS, University of Washington Center for Mendelian G, Mefford H, Chung WK (2014) Whole exome sequencing identifies de novo mutations in GATA6 associated with congenital diaphragmatic hernia. J Med Genet 51(3):197–202. https://doi.org/10.1136/jmedgenet-2013-101989

    Article  CAS  PubMed  Google Scholar 

  103. Shi ZD, Lee K, Yang D, Amin S, Verma N, Li QV, Zhu Z, Soh CL, Kumar R, Evans T, Chen S, Huangfu D (2017) Genome editing in hPSCs reveals GATA6 haploinsufficiency and a genetic interaction with GATA4 in human pancreatic development. Cell Stem Cell 20(5):675-688 e676. https://doi.org/10.1016/j.stem.2017.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tiyaboonchai A, Cardenas-Diaz FL, Ying L, Maguire JA, Sim X, Jobaliya C, Gagne AL, Kishore S, Stanescu DE, Hughes N, De Leon DD, French DL, Gadue P (2017) GATA6 plays an important role in the induction of human definitive endoderm, development of the pancreas, and functionality of pancreatic beta cells. Stem Cell Rep 8(3):589–604. https://doi.org/10.1016/j.stemcr.2016.12.026

    Article  CAS  Google Scholar 

  105. Chia CY, Madrigal P, Denil S, Martinez I, Garcia-Bernardo J, El-Khairi R, Chhatriwala M, Shepherd MH, Hattersley AT, Dunn NR, Vallier L (2019) GATA6 cooperates with EOMES/SMAD2/3 to deploy the gene regulatory network governing human definitive endoderm and pancreas formation. Stem Cell Rep 12(1):57–70. https://doi.org/10.1016/j.stemcr.2018.12.003

    Article  CAS  Google Scholar 

  106. Decker K, Goldman DC, Grasch CL, Sussel L (2006) Gata6 is an important regulator of mouse pancreas development. Dev Biol 298(2):415–429. https://doi.org/10.1016/j.ydbio.2006.06.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mauney JR, Ramachandran A, Yu RN, Daley GQ, Adam RM, Estrada CR (2010) All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms. PLoS ONE 5(7):e11513. https://doi.org/10.1371/journal.pone.0011513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ma S, Viola R, Sui L, Cherubini V, Barbetti F, Egli D (2018) β cell replacement after gene editing of a neonatal diabetes-causing mutation at the insulin locus. Stem Cell Rep 11(6):1407–1415. https://doi.org/10.1016/j.stemcr.2018.11.006

    Article  CAS  Google Scholar 

  109. Balboa D, Saarimaki-Vire J, Borshagovski D, Survila M, Lindholm P, Galli E, Eurola S, Ustinov J, Grym H, Huopio H, Partanen J, Wartiovaara K, Otonkoski T (2018) Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. Elife. https://doi.org/10.7554/eLife.38519

    Article  PubMed  PubMed Central  Google Scholar 

  110. Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Allen HL, De Franco E, McDonald TJ, Rajala H, Ramelius A, Barton J, Heiskanen K, Heiskanen-Kosma T, Kajosaari M, Murphy NP, Milenkovic T, Seppanen M, Lernmark A, Mustjoki S, Otonkoski T, Kere J, Morgan NG, Ellard S, Hattersley AT (2014) Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet 46(8):812–814. https://doi.org/10.1038/ng.3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Saarimaki-Vire J, Balboa D, Russell MA, Saarikettu J, Kinnunen M, Keskitalo S, Malhi A, Valensisi C, Andrus C, Eurola S, Grym H, Ustinov J, Wartiovaara K, Hawkins RD, Silvennoinen O, Varjosalo M, Morgan NG, Otonkoski T (2017) An activating STAT3 mutation causes neonatal diabetes through premature induction of pancreatic differentiation. Cell Rep 19(2):281–294. https://doi.org/10.1016/j.celrep.2017.03.055

    Article  CAS  PubMed  Google Scholar 

  112. Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, Gradwohl G, Grapin-Botton A (2007) Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 12(3):457–465. https://doi.org/10.1016/j.devcel.2007.02.010

    Article  CAS  PubMed  Google Scholar 

  113. Zhu Z, Li QV, Lee K, Rosen BP, Gonzalez F, Soh CL, Huangfu D (2016) Genome editing of lineage determinants in human pluripotent stem cells reveals mechanisms of pancreatic development and diabetes. Cell Stem Cell 18(6):755–768. https://doi.org/10.1016/j.stem.2016.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kang HS, Kim YS, ZeRuth G, Beak JY, Gerrish K, Kilic G, Sosa-Pineda B, Jensen J, Pierreux CE, Lemaigre FP, Foley J, Jetten AM (2009) Transcription factor Glis3, a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression. Mol Cell Biol 29(24):6366–6379. https://doi.org/10.1128/MCB.01259-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401. https://doi.org/10.1038/nbt1259

    Article  CAS  PubMed  Google Scholar 

  116. Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, Micallef SJ, Park IH, Basford C, Wheeler MB, Daley GQ, Elefanty AG, Stanley EG, Keller G (2011) Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138(5):861–871. https://doi.org/10.1242/dev.055236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang J, Cortina G, Wu SV, Tran R, Cho JH, Tsai MJ, Bailey TJ, Jamrich M, Ament ME, Treem WR, Hill ID, Vargas JH, Gershman G, Farmer DG, Reyen L, Martin MG (2006) Mutant neurogenin-3 in congenital malabsorptive diarrhea. N Engl J Med 355(3):270–280. https://doi.org/10.1056/NEJMoa054288

    Article  CAS  PubMed  Google Scholar 

  118. McGrath PS, Watson CL, Ingram C, Helmrath MA, Wells JM (2015) The basic helix-loop-helix transcription factor NEUROG3 is required for development of the human endocrine pancreas. Diabetes 64(7):2497–2505. https://doi.org/10.2337/db14-1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pinney SE, Oliver-Krasinski J, Ernst L, Hughes N, Patel P, Stoffers DA, Russo P, De Leon DD (2011) Neonatal diabetes and congenital malabsorptive diarrhea attributable to a novel mutation in the human neurogenin-3 gene coding sequence. J Clin Endocrinol Metab 96(7):1960–1965. https://doi.org/10.1210/jc.2011-0029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rubio-Cabezas O, Jensen JN, Hodgson MI, Codner E, Ellard S, Serup P, Hattersley AT (2011) Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes 60(4):1349–1353. https://doi.org/10.2337/db10-1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rubio-Cabezas O, Codner E, Flanagan SE, Gomez JL, Ellard S, Hattersley AT (2014) Neurogenin 3 is important but not essential for pancreatic islet development in humans. Diabetologia 57(11):2421–2424. https://doi.org/10.1007/s00125-014-3349-y

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 97(4):1607–1611. https://doi.org/10.1073/pnas.97.4.1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang S, Yan J, Anderson DA, Xu Y, Kanal MC, Cao Z, Wright CV, Gu G (2010) Neurog3 gene dosage regulates allocation of endocrine and exocrine cell fates in the developing mouse pancreas. Dev Biol 339(1):26–37. https://doi.org/10.1016/j.ydbio.2009.12.009

    Article  CAS  PubMed  Google Scholar 

  124. Concepcion JP, Reh CS, Daniels M, Liu X, Paz VP, Ye H, Highland HM, Hanis CL, Greeley SA (2014) Neonatal diabetes, gallbladder agenesis, duodenal atresia, and intestinal malrotation caused by a novel homozygous mutation in RFX6. Pediatr Diabetes 15(1):67–72. https://doi.org/10.1111/pedi.12063

    Article  CAS  PubMed  Google Scholar 

  125. Soyer J, Flasse L, Raffelsberger W, Beucher A, Orvain C, Peers B, Ravassard P, Vermot J, Voz ML, Mellitzer G, Gradwohl G (2010) Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development. Development 137(2):203–212. https://doi.org/10.1242/dev.041673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chandra V, Albagli-Curiel O, Hastoy B, Piccand J, Randriamampita C, Vaillant E, Cave H, Busiah K, Froguel P, Vaxillaire M, Rorsman P, Polak M, Scharfmann R (2014) RFX6 regulates insulin secretion by modulating Ca2+ homeostasis in human beta cells. Cell Rep 9(6):2206–2218. https://doi.org/10.1016/j.celrep.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  127. Piccand J, Strasser P, Hodson DJ, Meunier A, Ye T, Keime C, Birling MC, Rutter GA, Gradwohl G (2014) Rfx6 maintains the functional identity of adult pancreatic beta cells. Cell Rep 9(6):2219–2232. https://doi.org/10.1016/j.celrep.2014.11.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li H, Arber S, Jessell TM, Edlund H (1999) Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet 23(1):67–70. https://doi.org/10.1038/12669

    Article  CAS  PubMed  Google Scholar 

  129. Fukuda A, Kawaguchi Y, Furuyama K, Kodama S, Horiguchi M, Kuhara T, Kawaguchi M, Terao M, Doi R, Wright CV, Hoshino M, Chiba T, Uemoto S (2008) Reduction of Ptf1a gene dosage causes pancreatic hypoplasia and diabetes in mice. Diabetes 57(9):2421–2431. https://doi.org/10.2337/db07-1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shang L, Hua H, Foo K, Martinez H, Watanabe K, Zimmer M, Kahler DJ, Freeby M, Chung W, LeDuc C, Goland R, Leibel RL, Egli D (2014) beta-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes 63(3):923–933. https://doi.org/10.2337/db13-0717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Maxwell KG, Augsornworawat P, Velazco-Cruz L, Kim MH, Asada R, Hogrebe NJ, Morikawa S, Urano F, Millman JR (2020) Gene-edited human stem cell-derived beta cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aax9106

    Article  PubMed  PubMed Central  Google Scholar 

  132. Vethe H, Bjorlykke Y, Ghila LM, Paulo JA, Scholz H, Gygi SP, Chera S, Raeder H (2017) Probing the missing mature beta-cell proteomic landscape in differentiating patient iPSC-derived cells. Sci Rep 7(1):4780. https://doi.org/10.1038/s41598-017-04979-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ng NHJ, Jasmen JB, Lim CS, Lau HH, Krishnan VG, Kadiwala J, Kulkarni RN, Raeder H, Vallier L, Hoon S, Teo AKK (2019) HNF4A haploinsufficiency in MODY1 abrogates liver and pancreas differentiation from patient-derived induced pluripotent stem cells. iScience 16:192–205. https://doi.org/10.1016/j.isci.2019.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Braverman-Gross C, Nudel N, Ronen D, Beer NL, McCarthy MI, Benvenisty N (2018) Derivation and molecular characterization of pancreatic differentiated MODY1-iPSCs. Stem Cell Res 31:16–26. https://doi.org/10.1016/j.scr.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  135. Ellard S, Colclough K (2006) Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 27(9):854–869. https://doi.org/10.1002/humu.20357

    Article  CAS  PubMed  Google Scholar 

  136. Lausen J, Thomas H, Lemm I, Bulman M, Borgschulze M, Lingott A, Hattersley AT, Ryffel GU (2000) Naturally occurring mutations in the human HNF4alpha gene impair the function of the transcription factor to a varying degree. Nucleic Acids Res 28(2):430–437. https://doi.org/10.1093/nar/28.2.430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Weedon MN, Owen KR, Shields B, Hitman G, Walker M, McCarthy MI, Love-Gregory LD, Permutt MA, Hattersley AT, Frayling TM (2004) Common variants of the hepatocyte nuclear factor-4alpha P2 promoter are associated with type 2 diabetes in the U.K. population. Diabetes 53(11):3002–3006. https://doi.org/10.2337/diabetes.53.11.3002

    Article  CAS  PubMed  Google Scholar 

  138. Gunton JE, Kulkarni RN, Yim S, Okada T, Hawthorne WJ, Tseng YH, Roberson RS, Ricordi C, O’Connell PJ, Gonzalez FJ, Kahn CR (2005) Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122(3):337–349. https://doi.org/10.1016/j.cell.2005.05.027

    Article  CAS  PubMed  Google Scholar 

  139. Pontoglio M, Sreenan S, Roe M, Pugh W, Ostrega D, Doyen A, Pick AJ, Baldwin A, Velho G, Froguel P, Levisetti M, Bonner-Weir S, Bell GI, Yaniv M, Polonsky KS (1998) Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice. J Clin Investig 101(10):2215–2222. https://doi.org/10.1172/JCI2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cardenas-Diaz FL, Osorio-Quintero C, Diaz-Miranda MA, Kishore S, Leavens K, Jobaliya C, Stanescu D, Ortiz-Gonzalez X, Yoon C, Chen CS, Haliyur R, Brissova M, Powers AC, French DL, Gadue P (2019) Modeling monogenic diabetes using human ESCs reveals developmental and metabolic deficiencies caused by mutations in HNF1A. Cell Stem Cell 25(2):273–289. https://doi.org/10.1016/j.stem.2019.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Haliyur R, Tong X, Sanyoura M, Shrestha S, Lindner J, Saunders DC, Aramandla R, Poffenberger G, Redick SD, Bottino R, Prasad N, Levy SE, Blind RD, Harlan DM, Philipson LH, Stein RW, Brissova M, Powers AC (2019) Human islets expressing HNF1A variant have defective beta cell transcriptional regulatory networks. J Clin Investig 129(1):246–251. https://doi.org/10.1172/JCI121994

    Article  PubMed  Google Scholar 

  142. Collombat P, Mansouri A, Hecksher-Sorensen J, Serup P, Krull J, Gradwohl G, Gruss P (2003) Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 17(20):2591–2603. https://doi.org/10.1101/gad.269003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Edghill EL, Bingham C, Ellard S, Hattersley AT (2006) Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 43(1):84–90. https://doi.org/10.1136/jmg.2005.032854

    Article  CAS  PubMed  Google Scholar 

  144. De Vas MG, Kopp JL, Heliot C, Sander M, Cereghini S, Haumaitre C (2015) Hnf1b controls pancreas morphogenesis and the generation of Ngn3+ endocrine progenitors. Development 142(5):871–882. https://doi.org/10.1242/dev.110759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Teo AK, Lau HH, Valdez IA, Dirice E, Tjora E, Raeder H, Kulkarni RN (2016) Early developmental perturbations in a human stem cell model of MODY5/HNF1B pancreatic hypoplasia. Stem Cell Rep 6(3):357–367. https://doi.org/10.1016/j.stemcr.2016.01.007

    Article  CAS  Google Scholar 

  146. Wang L, Coffinier C, Thomas MK, Gresh L, Eddu G, Manor T, Levitsky LL, Yaniv M, Rhoads DB (2004) Selective deletion of the Hnf1beta (MODY5) gene in beta-cells leads to altered gene expression and defective insulin release. Endocrinology 145(8):3941–3949. https://doi.org/10.1210/en.2004-0281

    Article  CAS  PubMed  Google Scholar 

  147. Ashery-Padan R, Zhou X, Marquardt T, Herrera P, Toube L, Berry A, Gruss P (2004) Conditional inactivation of Pax6 in the pancreas causes early onset of diabetes. Dev Biol 269(2):479–488. https://doi.org/10.1016/j.ydbio.2004.01.040

    Article  CAS  PubMed  Google Scholar 

  148. Stoffers DA, Ferrer J, Clarke WL, Habener JF (1997) Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 17(2):138–139. https://doi.org/10.1038/ng1097-138

    Article  CAS  PubMed  Google Scholar 

  149. Wang X, Sterr M, Ansarullah BI, Bottcher A, Beckenbauer J, Siehler J, Meitinger T, Haring HU, Staiger H, Cernilogar FM, Schotta G, Irmler M, Beckers J, Wright CVE, Bakhti M, Lickert H (2019) Point mutations in the PDX1 transactivation domain impair human beta-cell development and function. Mol Metab 24:80–97. https://doi.org/10.1016/j.molmet.2019.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang X, Chen S, Burtscher I, Sterr M, Hieronimus A, Machicao F, Staiger H, Haring HU, Lederer G, Meitinger T, Lickert H (2016a) Generation of a human induced pluripotent stem cell (iPSC) line from a patient with family history of diabetes carrying a C18R mutation in the PDX1 gene. Stem Cell Res 17(2):292–295. https://doi.org/10.1016/j.scr.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  151. Wang X, Chen S, Burtscher I, Sterr M, Hieronimus A, Machicao F, Staiger H, Haring HU, Lederer G, Meitinger T, Lickert H (2016b) Generation of a human induced pluripotent stem cell (iPSC) line from a patient carrying a P33T mutation in the PDX1 gene. Stem Cell Res 17(2):273–276. https://doi.org/10.1016/j.scr.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  152. Teo AK, Tsuneyoshi N, Hoon S, Tan EK, Stanton LW, Wright CV, Dunn NR (2015) PDX1 binds and represses hepatic genes to ensure robust pancreatic commitment in differentiating human embryonic stem cells. Stem Cell Rep 4(4):578–590. https://doi.org/10.1016/j.stemcr.2015.02.015

    Article  CAS  Google Scholar 

  153. Tanihara F, Hirata M, Thi Nguyen N, Le Anh Q, Hirano T, Otoi T (2020) Generation of viable PDX1 gene-edited founder pigs as providers of nonmosaics. Mol Reprod Dev 87(4):471–481. https://doi.org/10.1002/mrd.23335

    Article  CAS  PubMed  Google Scholar 

  154. Brissova M, Blaha M, Spear C, Nicholson W, Radhika A, Shiota M, Charron MJ, Wright CV, Powers AC (2005) Reduced PDX-1 expression impairs islet response to insulin resistance and worsens glucose homeostasis. Am J Physiol Endocrinol Metab 288(4):E707-714. https://doi.org/10.1152/ajpendo.00252.2004

    Article  CAS  PubMed  Google Scholar 

  155. Brissova M, Shiota M, Nicholson WE, Gannon M, Knobel SM, Piston DW, Wright CV, Powers AC (2002) Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J Biol Chem 277(13):11225–11232. https://doi.org/10.1074/jbc.M111272200

    Article  CAS  PubMed  Google Scholar 

  156. Johnson JD, Ahmed NT, Luciani DS, Han Z, Tran H, Fujita J, Misler S, Edlund H, Polonsky KS (2003) Increased islet apoptosis in Pdx1+/- mice. J Clin Investig 111(8):1147–1160. https://doi.org/10.1172/JCI16537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Teo AK, Windmueller R, Johansson BB, Dirice E, Njolstad PR, Tjora E, Raeder H, Kulkarni RN (2013) Derivation of human induced pluripotent stem cells from patients with maturity onset diabetes of the young. J Biol Chem 288(8):5353–5356. https://doi.org/10.1074/jbc.C112.428979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Aqel YWA, Ali G, Elsayed AK, Al-Khawaga S, Hussain K, Abdelalim EM (2020) Generation of two human iPSC lines from patients with maturity-onset diabetes of the young type 2 (MODY2) and permanent neonatal diabetes due to mutations in the GCK gene. Stem Cell Res 48:101991. https://doi.org/10.1016/j.scr.2020.101991

    Article  CAS  PubMed  Google Scholar 

  159. Yabe SG, Nishida J, Fukuda S, Takeda F, Nasiro K, Yasuda K, Iwasaki N, Okochi H (2019) Expression of mutant mRNA and protein in pancreatic cells derived from MODY3- iPS cells. PLoS ONE 14(5):e0217110. https://doi.org/10.1371/journal.pone.0217110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Griscelli F, Ezanno H, Soubeyrand M, Feraud O, Oudrhiri N, Bonnefond A, Turhan AG, Froguel P, Bennaceur-Griscelli A (2018) Generation of an induced pluripotent stem cell (iPSC) line from a patient with maturity-onset diabetes of the young type 3 (MODY3) carrying a hepatocyte nuclear factor 1-alpha (HNF1A) mutation. Stem Cell Res 29:56–59. https://doi.org/10.1016/j.scr.2018.02.017

    Article  CAS  PubMed  Google Scholar 

  161. Yabe SG, Iwasaki N, Yasuda K, Hamazaki TS, Konno M, Fukuda S, Takeda F, Kasuga M, Okochi H (2015) Establishment of maturity-onset diabetes of the young-induced pluripotent stem cells from a Japanese patient. J Diabetes Investig 6(5):543–547. https://doi.org/10.1111/jdi.12334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Griscelli F, Feraud O, Ernault T, Oudrihri N, Turhan AG, Bonnefond A, Froguel P, Bennaceur-Griscelli A (2017) Generation of an induced pluripotent stem cell (iPSC) line from a patient with maturity-onset diabetes of the young type 13 (MODY13) with a the potassium inwardly-rectifying channel, subfamily J, member 11 (KCNJ11) mutation. Stem Cell Res 23:178–181. https://doi.org/10.1016/j.scr.2017.07.023

    Article  CAS  PubMed  Google Scholar 

  163. Bergholdt R, Brorsson C, Palleja A, Berchtold LA, Floyel T, Bang-Berthelsen CH, Frederiksen KS, Jensen LJ, Storling J, Pociot F (2012) Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression. Diabetes 61(4):954–962. https://doi.org/10.2337/db11-1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Santin I, Eizirik DL (2013) Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and beta-cell apoptosis. Diabetes Obes Metab 15(Suppl 3):71–81. https://doi.org/10.1111/dom.12162

    Article  CAS  PubMed  Google Scholar 

  165. Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, Colvin SC, Evans-Molina C, Rickus JL, Maier B, Mirmira RG (2012) Islet beta-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 61(4):818–827. https://doi.org/10.2337/db11-1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dunne JL, Overbergh L, Purcell AW, Mathieu C (2012) Posttranslational modifications of proteins in type 1 diabetes: the next step in finding the cure? Diabetes 61(8):1907–1914. https://doi.org/10.2337/db11-1675

    Article  PubMed  PubMed Central  Google Scholar 

  167. Polychronakos C, Li Q (2011) Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet 12(11):781–792. https://doi.org/10.1038/nrg3069

    Article  CAS  PubMed  Google Scholar 

  168. Millman JR, Xie C, Van Dervort A, Gurtler M, Pagliuca FW, Melton DA (2016) Generation of stem cell-derived beta-cells from patients with type 1 diabetes. Nat Commun 7:11463. https://doi.org/10.1038/ncomms11463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kudva YC, Ohmine S, Greder LV, Dutton JR, Armstrong A, De Lamo JG, Khan YK, Thatava T, Hasegawa M, Fusaki N, Slack JM, Ikeda Y (2012) Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 1(6):451–461. https://doi.org/10.5966/sctm.2011-0044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 106(37):15768–15773. https://doi.org/10.1073/pnas.0906894106

    Article  PubMed  PubMed Central  Google Scholar 

  171. Chetty S, Pagliuca FW, Honore C, Kweudjeu A, Rezania A, Melton DA (2013) A simple tool to improve pluripotent stem cell differentiation. Nat Methods 10(6):553–556. https://doi.org/10.1038/nmeth.2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Manzar GS, Kim EM, Zavazava N (2017) Demethylation of induced pluripotent stem cells from type 1 diabetic patients enhances differentiation into functional pancreatic beta cells. J Biol Chem 292(34):14066–14079. https://doi.org/10.1074/jbc.M117.784280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Leite NC, Sintov E, Meissner TB, Brehm MA, Greiner DL, Harlan DM, Melton DA (2020) Modeling type 1 diabetes in vitro using human pluripotent stem cells. Cell Rep 32(2):107894. https://doi.org/10.1016/j.celrep.2020.107894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sui L, Danzl N, Campbell SR, Viola R, Williams D, Xing Y, Wang Y, Phillips N, Poffenberger G, Johannesson B, Oberholzer J, Powers AC, Leibel RL, Chen X, Sykes M, Egli D (2018) β-Cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells. Diabetes 67(1):26–35. https://doi.org/10.2337/db17-0120

    Article  CAS  PubMed  Google Scholar 

  175. Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29(1):42–61. https://doi.org/10.1210/er.2007-0015

    Article  CAS  PubMed  Google Scholar 

  176. Hosokawa Y, Toyoda T, Fukui K, Baden MY, Funato M, Kondo Y, Sudo T, Iwahashi H, Kishida M, Okada C, Watanabe A, Asaka I, Osafune K, Imagawa A, Shimomura I (2017) Insulin-producing cells derived from “induced pluripotent stem cells” of patients with fulminant type 1 diabetes: Vulnerability to cytokine insults and increased expression of apoptosis-related genes. J Diabetes Investig. https://doi.org/10.1111/jdi.12727

    Article  PubMed  PubMed Central  Google Scholar 

  177. Ohmine S, Squillace KA, Hartjes KA, Deeds MC, Armstrong AS, Thatava T, Sakuma T, Terzic A, Kudva Y, Ikeda Y (2012) Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency. Aging 4(1):60–73. https://doi.org/10.18632/aging.100428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bernstein D, Golson ML, Kaestner KH (2017) Epigenetic control of beta-cell function and failure. Diabetes Res Clin Pract 123:24–36. https://doi.org/10.1016/j.diabres.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  179. Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Investig 116(7):1802–1812. https://doi.org/10.1172/JCI29103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, Kaul R, Stamatoyannopoulos JA (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337(6099):1190–1195. https://doi.org/10.1126/science.1222794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bansal V, Gassenhuber J, Phillips T, Oliveira G, Harbaugh R, Villarasa N, Topol EJ, Seufferlein T, Boehm BO (2017) Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals. BMC Med 15(1):213. https://doi.org/10.1186/s12916-017-0977-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, Ma C, Fontanillas P, Moutsianas L, McCarthy DJ, Rivas MA, Perry JRB, Sim X, Blackwell TW, Robertson NR, Rayner NW, Cingolani P, Locke AE, Tajes JF, Highland HM, Dupuis J, Chines PS, Lindgren CM, Hartl C, Jackson AU, Chen H, Huyghe JR, van de Bunt M, Pearson RD, Kumar A, Muller-Nurasyid M, Grarup N, Stringham HM, Gamazon ER, Lee J, Chen Y, Scott RA, Below JE, Chen P, Huang J, Go MJ, Stitzel ML, Pasko D, Parker SCJ, Varga TV, Green T, Beer NL, Day-Williams AG, Ferreira T, Fingerlin T, Horikoshi M, Hu C, Huh I, Ikram MK, Kim BJ, Kim Y, Kim YJ, Kwon MS, Lee J, Lee S, Lin KH, Maxwell TJ, Nagai Y, Wang X, Welch RP, Yoon J, Zhang W, Barzilai N, Voight BF, Han BG, Jenkinson CP, Kuulasmaa T, Kuusisto J, Manning A, Ng MCY, Palmer ND, Balkau B, Stancakova A, Abboud HE, Boeing H, Giedraitis V, Prabhakaran D, Gottesman O, Scott J, Carey J, Kwan P, Grant G, Smith JD, Neale BM, Purcell S, Butterworth AS, Howson JMM, Lee HM, Lu Y, Kwak SH, Zhao W, Danesh J, Lam VKL, Park KS, Saleheen D, So WY, Tam CHT, Afzal U, Aguilar D, Arya R, Aung T, Chan E, Navarro C, Cheng CY, Palli D, Correa A, Curran JE, Rybin D, Farook VS, Fowler SP, Freedman BI, Griswold M, Hale DE, Hicks PJ, Khor CC, Kumar S, Lehne B, Thuillier D, Lim WY, Liu J, van der Schouw YT, Loh M, Musani SK, Puppala S, Scott WR, Yengo L, Tan ST, Taylor HA Jr, Thameem F, Wilson G Sr, Wong TY, Njolstad PR, Levy JC, Mangino M, Bonnycastle LL, Schwarzmayr T, Fadista J, Surdulescu GL, Herder C, Groves CJ, Wieland T, Bork-Jensen J, Brandslund I, Christensen C, Koistinen HA, Doney ASF, Kinnunen L, Esko T, Farmer AJ, Hakaste L, Hodgkiss D, Kravic J, Lyssenko V, Hollensted M, Jorgensen ME, Jorgensen T, Ladenvall C, Justesen JM, Karajamaki A, Kriebel J, Rathmann W, Lannfelt L, Lauritzen T, Narisu N, Linneberg A, Melander O, Milani L, Neville M, Orho-Melander M, Qi L, Qi Q, Roden M, Rolandsson O, Swift A, Rosengren AH, Stirrups K, Wood AR, Mihailov E, Blancher C, Carneiro MO, Maguire J, Poplin R, Shakir K, Fennell T, DePristo M, de Angelis MH, Deloukas P, Gjesing AP, Jun G, Nilsson P, Murphy J, Onofrio R, Thorand B, Hansen T, Meisinger C, Hu FB, Isomaa B, Karpe F, Liang L, Peters A, Huth C, O’Rahilly SP, Palmer CNA, Pedersen O, Rauramaa R, Tuomilehto J, Salomaa V, Watanabe RM, Syvanen AC, Bergman RN, Bharadwaj D, Bottinger EP, Cho YS, Chandak GR, Chan JCN, Chia KS, Daly MJ, Ebrahim SB, Langenberg C, Elliott P, Jablonski KA, Lehman DM, Jia W, Ma RCW, Pollin TI, Sandhu M, Tandon N, Froguel P, Barroso I, Teo YY, Zeggini E, Loos RJF, Small KS, Ried JS, DeFronzo RA, Grallert H, Glaser B, Metspalu A, Wareham NJ, Walker M, Banks E, Gieger C, Ingelsson E, Im HK, Illig T, Franks PW, Buck G, Trakalo J, Buck D, Prokopenko I, Magi R, Lind L, Farjoun Y, Owen KR, Gloyn AL, Strauch K, Tuomi T, Kooner JS, Lee JY, Park T, Donnelly P, Morris AD, Hattersley AT, Bowden DW, Collins FS, Atzmon G, Chambers JC, Spector TD, Laakso M, Strom TM, Bell GI, Blangero J, Duggirala R, Tai ES, McVean G, Hanis CL, Wilson JG, Seielstad M, Frayling TM, Meigs JB, Cox NJ, Sladek R, Lander ES, Gabriel S, Burtt NP, Mohlke KL, Meitinger T, Groop L, Abecasis G, Florez JC, Scott LJ, Morris AP, Kang HM, Boehnke M, Altshuler D, McCarthy MI (2016) The genetic architecture of type 2 diabetes. Nature 536(7614):41–47. https://doi.org/10.1038/nature18642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hegele RA, Cao H, Harris SB, Hanley AJ, Zinman B (1999) The hepatic nuclear factor-1alpha G319S variant is associated with early-onset type 2 diabetes in Canadian Oji-Cree. J Clin Endocrinol Metab 84(3):1077–1082. https://doi.org/10.1210/jcem.84.3.5528

    Article  CAS  PubMed  Google Scholar 

  184. Sandhu MS, Weedon MN, Fawcett KA, Wasson J, Debenham SL, Daly A, Lango H, Frayling TM, Neumann RJ, Sherva R, Blech I, Pharoah PD, Palmer CN, Kimber C, Tavendale R, Morris AD, McCarthy MI, Walker M, Hitman G, Glaser B, Permutt MA, Hattersley AT, Wareham NJ, Barroso I (2007) Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 39(8):951–953. https://doi.org/10.1038/ng2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Consortium STD, Estrada K, Aukrust I, Bjorkhaug L, Burtt NP, Mercader JM, Garcia-Ortiz H, Huerta-Chagoya A, Moreno-Macias H, Walford G, Flannick J, Williams AL, Gomez-Vazquez MJ, Fernandez-Lopez JC, Martinez-Hernandez A, Jimenez-Morales S, Centeno-Cruz F, Mendoza-Caamal E, Revilla-Monsalve C, Islas-Andrade S, Cordova EJ, Soberon X, Gonzalez-Villalpando ME, Henderson E, Wilkens LR, Le Marchand L, Arellano-Campos O, Ordonez-Sanchez ML, Rodriguez-Torres M, Rodriguez-Guillen R, Riba L, Najmi LA, Jacobs SB, Fennell T, Gabriel S, Fontanillas P, Hanis CL, Lehman DM, Jenkinson CP, Abboud HE, Bell GI, Cortes ML, Boehnke M, Gonzalez-Villalpando C, Orozco L, Haiman CA, Tusie-Luna T, Aguilar-Salinas CA, Altshuler D, Njolstad PR, Florez JC, MacArthur DG (2014) Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA 311(22):2305–2314. https://doi.org/10.1001/jama.2014.6511

    Article  CAS  Google Scholar 

  186. Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53(9):2330–2337. https://doi.org/10.2337/diabetes.53.9.2330

    Article  CAS  PubMed  Google Scholar 

  187. Flannick J, Thorleifsson G, Beer NL, Jacobs SB, Grarup N, Burtt NP, Mahajan A, Fuchsberger C, Atzmon G, Benediktsson R, Blangero J, Bowden DW, Brandslund I, Brosnan J, Burslem F, Chambers J, Cho YS, Christensen C, Douglas DA, Duggirala R, Dymek Z, Farjoun Y, Fennell T, Fontanillas P, Forsen T, Gabriel S, Glaser B, Gudbjartsson DF, Hanis C, Hansen T, Hreidarsson AB, Hveem K, Ingelsson E, Isomaa B, Johansson S, Jorgensen T, Jorgensen ME, Kathiresan S, Kong A, Kooner J, Kravic J, Laakso M, Lee JY, Lind L, Lindgren CM, Linneberg A, Masson G, Meitinger T, Mohlke KL, Molven A, Morris AP, Potluri S, Rauramaa R, Ribel-Madsen R, Richard AM, Rolph T, Salomaa V, Segre AV, Skarstrand H, Steinthorsdottir V, Stringham HM, Sulem P, Tai ES, Teo YY, Teslovich T, Thorsteinsdottir U, Trimmer JK, Tuomi T, Tuomilehto J, Vaziri-Sani F, Voight BF, Wilson JG, Boehnke M, McCarthy MI, Njolstad PR, Pedersen O, Go TDC, Consortium TDG, Groop L, Cox DR, Stefansson K, Altshuler D (2014) Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 46(4):357–363. https://doi.org/10.1038/ng.2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Xin Y, Kim J, Okamoto H, Ni M, Wei Y, Adler C, Murphy AJ, Yancopoulos GD, Lin C, Gromada J (2016) RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab 24(4):608–615. https://doi.org/10.1016/j.cmet.2016.08.018

    Article  CAS  PubMed  Google Scholar 

  189. Hachiya T, Komaki S, Hasegawa Y, Ohmomo H, Tanno K, Hozawa A, Tamiya G, Yamamoto M, Ogasawara K, Nakamura M, Hitomi J, Ishigaki Y, Sasaki M, Shimizu A (2017) Genome-wide meta-analysis in Japanese populations identifies novel variants at the TMC6-TMC8 and SIX3-SIX2 loci associated with HbA1c. Sci Rep 7(1):16147. https://doi.org/10.1038/s41598-017-16493-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, Hwang JY, Oh JH, Kim DJ, Kim NH, Kim S, Hong EJ, Kim JH, Min H, Kim Y, Zhang R, Jia W, Okada Y, Takahashi A, Kubo M, Tanaka T, Kamatani N, Matsuda K, consortium M, Park T, Oh B, Kimm K, Kang D, Shin C, Cho NH, Kim HL, Han BG, Lee JY, Cho YS (2011) Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet 43(10):990–995. https://doi.org/10.1038/ng.939

    Article  CAS  PubMed  Google Scholar 

  191. Velazco-Cruz L, Goedegebuure MM, Maxwell KG, Augsornworawat P, Hogrebe NJ, Millman JR (2020) SIX2 regulates human beta cell differentiation from stem cells and functional maturation in vitro. Cell Rep 31(8):107687. https://doi.org/10.1016/j.celrep.2020.107687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR (1990) Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med 113(12):909–915

    Article  CAS  PubMed  Google Scholar 

  193. Lillioja S, Mott DM, Howard BV, Bennett PH, Yki-Jarvinen H, Freymond D, Nyomba BL, Zurlo F, Swinburn B, Bogardus C (1988) Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. N Engl J Med 318(19):1217–1225. https://doi.org/10.1056/NEJM198805123181901

    Article  CAS  PubMed  Google Scholar 

  194. Iovino S, Burkart AM, Kriauciunas K, Warren L, Hughes KJ, Molla M, Lee YK, Patti ME, Kahn CR (2014) Genetic insulin resistance is a potent regulator of gene expression and proliferation in human iPS cells. Diabetes 63(12):4130–4142. https://doi.org/10.2337/db14-0109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Burkart AM, Tan K, Warren L, Iovino S, Hughes KJ, Kahn CR, Patti ME (2016) Insulin resistance in human iPS cells reduces mitochondrial size and function. Sci Rep 6:22788. https://doi.org/10.1038/srep22788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Iovino S, Burkart AM, Warren L, Patti ME, Kahn CR (2016) Myotubes derived from human-induced pluripotent stem cells mirror in vivo insulin resistance. Proc Natl Acad Sci USA 113(7):1889–1894. https://doi.org/10.1073/pnas.1525665113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Balhara B, Burkart A, Topcu V, Lee YK, Cowan C, Kahn CR, Patti ME (2015) Severe insulin resistance alters metabolism in mesenchymal progenitor cells. Endocrinology 156(6):2039–2048. https://doi.org/10.1210/en.2014-1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, Maslen GL, Williams TD, Lewis H, Schafer AJ, Chatterjee VK, O’Rahilly S (1999) Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402(6764):880–883. https://doi.org/10.1038/47254

    Article  CAS  PubMed  Google Scholar 

  199. Taylor SI, Cama A, Accili D, Barbetti F, Quon MJ, de la Luz SM, Suzuki Y, Koller E, Levy-Toledano R, Wertheimer E et al (1992) Mutations in the insulin receptor gene. Endocr Rev 13(3):566–595. https://doi.org/10.1210/edrv-13-3-566

    Article  CAS  PubMed  Google Scholar 

  200. Xia J, Scherer SW, Cohen PT, Majer M, Xi T, Norman RA, Knowler WC, Bogardus C, Prochazka M (1998) A common variant in PPP1R3 associated with insulin resistance and type 2 diabetes. Diabetes 47(9):1519–1524

    Article  CAS  PubMed  Google Scholar 

  201. Hegele RA, Harris SB, Zinman B, Wang J, Cao H, Hanley AJ, Tsui LC, Scherer SW (1998) Variation in the AU(AT)-rich element within the 3’-untranslated region of PPP1R3 is associated with variation in plasma glucose in aboriginal Canadians. J Clin Endocrinol Metab 83(11):3980–3983. https://doi.org/10.1210/jcem.83.11.5219

    Article  CAS  PubMed  Google Scholar 

  202. Hansen L, Hansen T, Vestergaard H, Bjorbaek C, Echwald SM, Clausen JO, Chen YH, Chen MX, Cohen PT, Pedersen O (1995) A widespread amino acid polymorphism at codon 905 of the glycogen-associated regulatory subunit of protein phosphatase-1 is associated with insulin resistance and hypersecretion of insulin. Hum Mol Genet 4(8):1313–1320

    Article  CAS  PubMed  Google Scholar 

  203. Hansen L, Reneland R, Berglund L, Rasmussen SK, Hansen T, Lithell H, Pedersen O (2000) Polymorphism in the glycogen-associated regulatory subunit of type 1 protein phosphatase (PPP1R3) gene and insulin sensitivity. Diabetes 49(2):298–301

    Article  CAS  PubMed  Google Scholar 

  204. Stumvoll M, Tschritter O, Fritsche A, Staiger H, Renn W, Weisser M, Machicao F, Haring H (2002) Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes. Diabetes 51(1):37–41

    Article  CAS  PubMed  Google Scholar 

  205. Ali G, Elsayed A, Nandakumar M, Bashir M, Younis I, Abu Aqel Y, Memon B, Temanni R, Abubaker F, Taheri S, Abdelalim EM (2020) Keratinocytes derived from patient-specific induced pluripotent stem cells recapitulate the genetic signature of psoriasis disease. Stem Cells Dev. https://doi.org/10.1089/scd.2019.0150

    Article  PubMed  PubMed Central  Google Scholar 

  206. Mandavia CH, Aroor AR, Demarco VG, Sowers JR (2013) Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sci 92(11):601–608. https://doi.org/10.1016/j.lfs.2012.10.028

    Article  CAS  PubMed  Google Scholar 

  207. Drawnel FM, Boccardo S, Prummer M, Delobel F, Graff A, Weber M, Gerard R, Badi L, Kam-Thong T, Bu L, Jiang X, Hoflack JC, Kiialainen A, Jeworutzki E, Aoyama N, Carlson C, Burcin M, Gromo G, Boehringer M, Stahlberg H, Hall BJ, Magnone MC, Kolaja K, Chien KR, Bailly J, Iacone R (2014) Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells. Cell Rep 9(3):810–821. https://doi.org/10.1016/j.celrep.2014.09.055

    Article  CAS  PubMed  Google Scholar 

  208. Young MA, Larson DE, Sun CW, George DR, Ding L, Miller CA, Lin L, Pawlik KM, Chen K, Fan X, Schmidt H, Kalicki-Veizer J, Cook LL, Swift GW, Demeter RT, Wendl MC, Sands MS, Mardis ER, Wilson RK, Townes TM, Ley TJ (2012) Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 10(5):570–582. https://doi.org/10.1016/j.stem.2012.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Qatar National Research Fund (QNRF) (a member of Qatar Foundation) (Grant No. NPRP9-283-3-056; NPRP10-1221-160041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam M. Abdelalim.

Ethics declarations

Conflict of interest

The author declares that this article content has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelalim, E.M. Modeling different types of diabetes using human pluripotent stem cells. Cell. Mol. Life Sci. 78, 2459–2483 (2021). https://doi.org/10.1007/s00018-020-03710-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03710-9

Keywords

Navigation