Skip to main content

Advertisement

Log in

Wip1 controls the translocation of the chromosomal passenger complex to the central spindle for faithful mitotic exit

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Dramatic cellular reorganization in mitosis critically depends on the timely and temporal phosphorylation of a broad range of proteins, which is mediated by the activation of the mitotic kinases and repression of counteracting phosphatases. The mitosis-to-interphase transition, which is termed mitotic exit, involves the removal of mitotic phosphorylation by protein phosphatases. Although protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) drive this reversal in animal cells, the phosphatase network associated with ordered bulk dephosphorylation in mitotic exit is not fully understood. Here, we describe a new mitotic phosphatase relay in which Wip1/PPM1D phosphatase activity is essential for chromosomal passenger complex (CPC) translocation to the anaphase central spindle after release from the chromosome via PP1-mediated dephosphorylation of histone H3T3. Depletion of endogenous Wip1 and overexpression of the phosphatase-dead mutant disturbed CPC translocation to the central spindle, leading to failure of cytokinesis. While Wip1 was degraded in early mitosis, its levels recovered in anaphase and the protein functioned as a Cdk1-counteracting phosphatase at the anaphase central spindle and midbody. Mechanistically, Wip1 dephosphorylated Thr-59 in inner centromere protein (INCENP), which, subsequently bound to MKLP2 and recruited other components to the central spindle. Furthermore, Wip1 overexpression is associated with the overall survival rate of patients with breast cancer, suggesting that Wip1 not only functions as a weak oncogene in the DNA damage network but also as a tumor suppressor in mitotic exit. Altogether, our findings reveal that sequential dephosphorylation of mitotic phosphatases provides spatiotemporal regulation of mitotic exit to prevent tumor initiation and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, Muller DJ, Hyman AA (2011) Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469:226–230

    Article  CAS  PubMed  Google Scholar 

  2. Chircop M (2014) Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells. Small GTPases 5:e29770

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Castro IJ, Gil RS, Ligammari L, Di Giacinto ML, Vagnarelli P (2018) CDK1 and PLK1 coordinate the disassembly and reassembly of the nuclear envelope in vertebrate mitosis. Oncotarget 9:7763–7773

    Article  PubMed  Google Scholar 

  4. Guttinger S, Laurell E, Kutay U (2009) Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 10:178–191

    Article  PubMed  CAS  Google Scholar 

  5. Belmont AS (2006) Mitotic chromosome structure and condensation. Curr Opin Cell Biol 18:632–638

    Article  CAS  PubMed  Google Scholar 

  6. Walczak CE, Cai S, Khodjakov A (2010) Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol 11:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bayliss R, Fry A, Haq T, Yeoh S (2012) On the molecular mechanisms of mitotic kinase activation. Open biology 2:120136

    Article  PubMed  PubMed Central  Google Scholar 

  8. Domingo-Sananes MR, Kapuy O, Hunt T, Novak B (2011) Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis. Philos T R Soc B 366:3584–3594

    Article  CAS  Google Scholar 

  9. Wu JQ, Guo JY, Tang W, Yang CS, Freel CD, Chen C, Nairn AC, Kornbluth S (2009) PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation. Nat Cell Biol 11:644-U451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wurzenberger C, Gerlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Bio 12:469–482

    Article  CAS  Google Scholar 

  11. Errico A, Deshmukh K, Tanaka Y, Pozniakovsky A, Hunt T (2010) Identification of substrates for cyclin dependent kinases. Adv Enzyme Regul 50:375–399

    Article  PubMed  Google Scholar 

  12. Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425:859–864

    Article  CAS  PubMed  Google Scholar 

  13. Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, Morgan DO (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325:1682–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bouchoux C, Uhlmann F (2011) A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit. Cell 147:803–814

    Article  CAS  PubMed  Google Scholar 

  15. Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A (1998) The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 2:709–718

    Article  CAS  PubMed  Google Scholar 

  16. Stegmeier F, Amon A (2004) Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 38:203–232

    Article  CAS  PubMed  Google Scholar 

  17. Queralt E, Uhlmann F (2008) Cdk-counteracting phosphatases unlock mitotic exit. Curr Opin Cell Biol 20:661–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vazquez-Novelle MD, Esteban VN, Bueno A, Sacristan MP (2005) Functional homology among human and fission yeast Cdc14 phosphatases. J Biol Chem 280:29144–29150

    Article  CAS  PubMed  Google Scholar 

  19. Berdougo E, Nachury MV, Jackson PK, Jallepalli PV (2008) The nucleolar phosphatase Cdc14B is dispensable for chromosome segregation and mitotic exit in human cells. Cell Cycle 7:1184–1190

    Article  CAS  PubMed  Google Scholar 

  20. Mailand N, Lukas C, Kaiser BK, Jackson PK, Bartek J, Lukas J (2002) Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation. Nat Cell Biol 4:317–322

    Article  CAS  PubMed  Google Scholar 

  21. Bollen M, Gerlich DW, Lesage B (2009) Mitotic phosphatases: from entry guards to exit guides. Trends Cell Biol 19:531–541

    Article  CAS  PubMed  Google Scholar 

  22. Adams RR, Wheatley SP, Gouldsworthy AM, Kandels-Lewis SE, Carmena M, Smythe C, Gerloff DL, Earnshaw WC (2000) INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr Biol CB 10:1075–1078

    Article  CAS  PubMed  Google Scholar 

  23. Kaitna S, Mendoza M, Jantsch-Plunger V, Glotzer M (2000) Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr Biol CB 10:1172–1181

    Article  CAS  PubMed  Google Scholar 

  24. Ruchaud S, Carmena M, Earnshaw WC (2007) Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8:798–812

    Article  CAS  PubMed  Google Scholar 

  25. Wilkins BJ, Rall NA, Ostwal Y, Kruitwagen T, Hiragami-Hamada K, Winkler M, Barral Y, Fischle W, Neumann H (2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80

    Article  CAS  PubMed  Google Scholar 

  26. Kim S, Kim NH, Park JE, Hwang JW, Myung N, Hwang KT, Kim YA, Jang CY, Kim YK (2020) PRMT6-mediated H3R2me2a guides Aurora B to chromosome arms for proper chromosome segregation. Nat Commun 11:612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, Funabiki H (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330:235–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu D, Vader G, Vromans MJ, Lampson MA, Lens SM (2009) Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323:1350–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13:789–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hummer S, Mayer TU (2009a) Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex. Curr Biol CB 19:607–612

    Article  PubMed  CAS  Google Scholar 

  31. Hein JB, Hertz EPT, Garvanska DH, Kruse T, Nilsson J (2017) Distinct kinetics of serine and threonine dephosphorylation are essential for mitosis. Nat Cell Biol 19:1433–1440

    Article  CAS  PubMed  Google Scholar 

  32. van der Horst A, Lens SM (2014) Cell division: control of the chromosomal passenger complex in time and space. Chromosoma 123:25–42

    Article  CAS  PubMed  Google Scholar 

  33. van der Waal MS, Hengeveld RC, van der Horst A, Lens SM (2012) Cell division control by the chromosomal passenger complex. Exp Cell Res 318:1407–1420

    Article  PubMed  CAS  Google Scholar 

  34. Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE, Vande Woude GF, O’Connor PM, Appella E (1997) Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 94:6048–6053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu X, Nannenga B, Donehower LA (2005) PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 19:1162–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA, Ambrosino C, Sauter G, Nebreda AR, Anderson CW et al (2002) Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31:210–215

    Article  CAS  PubMed  Google Scholar 

  37. Rauta J, Alarmo EL, Kauraniemi P, Karhu R, Kuukasjarvi T, Kallioniemi A (2006) The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours. Breast Cancer Res Tr 95:257–263

    Article  CAS  Google Scholar 

  38. Jeong HC, Gil NY, Lee HS, Cho SJ, Kim K, Chun KH, Cho H, Cha HJ (2015) Timely degradation of Wip1 phosphatase by APC/C activator protein Cdh1 is necessary for normal mitotic progression. J Cell Biochem 116:1602–1612

    Article  CAS  PubMed  Google Scholar 

  39. Macurek L, Benada J, Mullers E, Halim VA, Krejcikova K, Burdova K, Pechackova S, Hodny Z, Lindqvist A, Medema RH et al (2013) Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis. Cell Cycle 12:251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Horn V, Thelu J, Garcia A, Albiges-Rizo C, Block MR, Viallet J (2007) Functional interaction of Aurora-A and PP2A during mitosis. Mol Biol Cell 18:1233–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andreassen PR, Lacroix FB, Villa-Moruzzi E, Margolis RL (1998) Differential subcellular localization of protein phosphatase-1 alpha, gamma1, and delta isoforms during both interphase and mitosis in mammalian cells. J Cell Biol 141:1207–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW, Appella E, Fornace AJ (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet 36:343–350

    Article  CAS  PubMed  Google Scholar 

  43. Cha H, Lowe JM, Li H, Lee JS, Belova GI, Bulavin DV, Fornace AJ Jr (2010) Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res 70:4112–4122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H, Taya Y, Imai K (2000) p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 19:6517–6526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goto H, Kiyono T, Tomono Y, Kawajiri A, Urano T, Furukawa K, Nigg EA, Inagaki M (2006) Complex formation of Plk1 and INCENP required for metaphase-anaphase transition. Nat Cell Biol 8:180-U152

    Article  CAS  PubMed  Google Scholar 

  46. Hummer S, Mayer TU (2009b) Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex. Curr Biol 19:607–612

    Article  PubMed  CAS  Google Scholar 

  47. Qian JB, Lesage B, Beullens M, Van Eynde A, Bollen M (2011) PP1/repo-man dephosphorylates mitotic histone H3 at T3 and regulates chromosomal aurora B targeting. Curr Biol 21:766–773

    Article  CAS  PubMed  Google Scholar 

  48. Zhao M, Zhang HB, Zhu GY, Liang J, Chen N, Yang YH, Liang XC, Cai HM, Liu W (2016) Association between overexpression of Wip1 and prognosis of patients with non-small cell lung cancer. Oncol Lett 11:2365–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He XP, Hu ZY et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    Article  PubMed  PubMed Central  Google Scholar 

  50. Grallert A, Boke E, Hagting A, Hodgson B, Connolly Y, Griffiths JR, Smith DL, Pines J, Hagan IM (2015) A PP1-PP2A phosphatase relay controls mitotic progression. Nature 517:94–98

    Article  CAS  PubMed  Google Scholar 

  51. Mochida S, Hunt T (2012) Protein phosphatases and their regulation in the control of mitosis. Embo Rep 13:197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:3

    Article  CAS  Google Scholar 

  53. Qian JB, Winkler C, Bollen M (2013) 4D-networking by mitotic phosphatases. Curr Opin Cell Biol 25:697–703

    Article  CAS  PubMed  Google Scholar 

  54. Hara M, Abe Y, Tanaka T, Yamamoto T, Okumura E, Kishimoto T (2012) Greatwall kinase and cyclin B-Cdk1 are both critical constituents of M-phase-promoting factor. Nat Commun 3:1059

    Article  PubMed  CAS  Google Scholar 

  55. Rossio V, Yoshida S (2011) Spatial regulation of Cdc55-PP2A by Zds1/Zds2 controls mitotic entry and mitotic exit in budding yeast. J Cell Biol 193:445–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu E, Ahn YS, Jang SJ, Kim MJ, Yoon HS, Gong G, Choi J (2007) Overexpression of the wip1 gene abrogates the p38 MAPK/p53/Wip1 pathway and silences p16 expression in human breast cancers. Breast Cancer Res Treat 101:269–278

    Article  CAS  PubMed  Google Scholar 

  57. Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven G, Nguyen KCQ, Gabriele T, McCurrach ME, Marks JR, Hoey T et al (2002) Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 31:133–134

    Article  CAS  PubMed  Google Scholar 

  58. Demidov ON, Kek C, Shreeram S, Timofeev O, Fornace AJ, Appella E, Bulavin DV (2007) The role of the MKK6/p38 MAPK pathway in Wip1-dependent regulation of ErbB2-driven mammary gland tumorigenesis. Oncogene 26:2502–2506

    Article  CAS  PubMed  Google Scholar 

  59. Canevari RA, Marchi FA, Domingues MAC, de Andrade VP, Caldeira JRF, Verjovski-Almeida S, Rogatto SR, Reis EM (2016) Identification of novel biomarkers associated with poor patient outcomes in invasive breast carcinoma. Tumor Biol 37:13855–13870

    Article  CAS  Google Scholar 

  60. Sun GG, Zhang J, Ma XB, Wang YD, Cheng YJ, Hu WN (2015) Overexpression of wild-type p53-induced phosphatase 1 confers poor prognosis of patients with nasopharyngeal carcinoma. Pathol Oncol Res 21:283–291

    Article  CAS  PubMed  Google Scholar 

  61. Proia DA, Nannenga BW, Donehower LA, Weigel NL (2006) Dual roles for the phosphatase PPM1D in regulating progesterone receptor function. J Biol Chem 281:7089–7101

    Article  CAS  PubMed  Google Scholar 

  62. Han HS, Yu E, Song JY, Park JY, Jang SJ, Choi J (2009) The estrogen receptor alpha pathway induces oncogenic Wip1 phosphatase gene expression. Mol Cancer Res MCR 7:713–723

    Article  CAS  PubMed  Google Scholar 

  63. Lee HJ, Hwang HI, Jang YJ (2010) Mitotic DNA damage response: polo-like kinase-1 is dephosphorylated through ATM-Chk1 pathway. Cell Cycle 9:2389–2398

    Article  CAS  PubMed  Google Scholar 

  64. Mackay DR, Ullman KS (2015) ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Mol Biol Cell 26:2217–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kramer A, Mailand N, Lukas C, Syljuasen RG, Wilkinson CJ, Nigg EA, Bartek J, Lukas J (2004) Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 6:884–891

    Article  PubMed  CAS  Google Scholar 

  66. Kabeche L, Nguyen HD, Buisson R, Zou L (2018) A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation. Science 359:108–114

    Article  CAS  PubMed  Google Scholar 

  67. Huang XX, Tran T, Zhang LN, Hatcher R, Zhang PM (2005) DNA damage-induced mitotic catastrophe is mediated by the Chk1-dependent mitotic exit DNA damage checkpoint. Proc Natl Acad Sci USA 102:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jang CY, Wong J, Coppinger JA, Seki A, Yates JR, Fang GW (2008) DDA3 recruits microtubule depolymerase Kif2a to spindle poles and controls spindle dynamics and mitotic chromosome movement. J Cell Biol 181:255–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pereira B, Chin SF, Rueda OM, Vollan HKM, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ et al (2016) The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 7:11479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Cha for the Wip1 inducible cell lines. We acknowledge METABRIC for generating the data. This work is supported in part by grants from the National Research Foundation of Korea (NRF-2019R1F1A1062913 and NRF-2020R1A2C1013663) and a grant from the Korea Institute of Radiological and Medical Sciences (KIRAMS) from the Ministry of Science and ICT (MSIT) of Korea (50543-2019).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to project planning and data analysis of their respective experiments. CYJ and YAK coordinated the work. ZJ, JH, and JEP performed all of the biochemical experiments and imaging experiments, except analysis of the expression profile of Wip1 in the cell cycle, which was performed by EHK. KTH and YAK performed an analysis of the data obtained from the METABRIC database. All authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Young A. Kim or Chang-Young Jang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Park, J.E., Kim, E.H. et al. Wip1 controls the translocation of the chromosomal passenger complex to the central spindle for faithful mitotic exit. Cell. Mol. Life Sci. 78, 2821–2838 (2021). https://doi.org/10.1007/s00018-020-03665-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03665-x

Keywords

Navigation