Biased agonists at the human Y1 receptor lead to prolonged membrane residency and extended receptor G protein interaction


Functionally selective ligands to address specific cellular responses downstream of G protein-coupled receptors (GPCR) open up new possibilities for therapeutics. We designed and characterized novel subtype- and pathway-selective ligands. Substitution of position Q34 of neuropeptide Y to glycine (G34-NPY) results in unprecedented selectivity over all other YR subtypes. Moreover, this ligand displays a significant bias towards activation of the Gi/o pathway over recruitment of arrestin-3. Notably, no bias is observed for an established Y1R versus Y2R selective ligand carrying a proline at position 34 (F7,P34-NPY). Next, we investigated the spatio-temporal signaling at the Y1R and demonstrated that G protein-biased ligands promote a prolonged localization at the cell membrane, which leads to enhanced G protein signaling, while endosomal receptors do not contribute to cAMP signaling. Thus, spatial components are critical for the signaling of the Y1R that can be modulated by tailored ligands and represent a novel mode for biased pathways.

Graphic abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1

modified from Yang et al. [21]. Positions 7, 18 and 34 used for modification are highlighted in circles. c Binding of peptides to the Y1R was measured by competition binding experiments with 125I-PYY (75 pM) of membrane preparations of stably transfected HEK293-Y1R cells and is displayed as mean ± SEM of three independent experiments performed in technical triplicate

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Leff P (1995) The two-state model of receptor activation. Trends Pharmacol Sci 16:89–97

  2. 2.

    Smith JS, Lefkowitz RJ, Rajagopal S (2018) Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 17:243–260

  3. 3.

    Vaidehi N, Kenakin T (2010) The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr Opin Pharmacol 10:775–781

  4. 4.

    Violin JD, DeWire SM, Yamashita D, Rominger DH, Nguyen L, Schiller K, Whalen EJ, Gowen M, Lark MW (2010) Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 335:572–579

  5. 5.

    Cotter G, Davison BA, Butler J, Collins SP, Ezekowitz JA, Felker GM, Filippatos G, Levy PD, Metra M, Ponikowski P, Teerlink JR, Voors AA, Senger S, Bharucha D, Goin K, Soergel DG, Pang PS (2018) Relationship between baseline systolic blood pressure and long-term outcomes in acute heart failure patients treated with TRV027: an exploratory subgroup analysis of BLAST-AHF. Clin Res Cardiol Off J Ger Card Soc 107:170–181

  6. 6.

    Pang PS, Butler J, Collins SP, Cotter G, Davison BA, Ezekowitz JA, Filippatos G, Levy PD, Metra M, Ponikowski P, Teerlink JR, Voors AA, Bharucha D, Goin K, Soergel DG, Felker GM (2017) Biased ligand of the angiotensin II type 1 receptor in patients with acute heart failure: a randomized, double-blind, placebo-controlled, phase IIB, dose ranging trial (BLAST-AHF). Eur Heart J 38:2364–2373

  7. 7.

    Li T, Jiang S, Ni B, Cui Q, Liu Q, Zhao H (2019) Discontinued drugs for the treatment of cardiovascular disease from 2016 to 2018. Int J Mol Sci 20:4513

  8. 8.

    Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, Quirion R, Schwartz T, Westfall T (1998) XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 50:143–150

  9. 9.

    Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659–660

  10. 10.

    Murphy KG, Bloom SR (2006) Gut hormones and the regulation of energy homeostasis. Nature 444:854–859

  11. 11.

    Yulyaningsih E, Zhang L, Herzog H, Sainsbury A (2011) NPY receptors as potential targets for anti-obesity drug development: anti-obesity drug development. Br J Pharmacol 163:1170–1202

  12. 12.

    Bard JA, Walker MW, Branchek TA, Weinshank RL (1995) Cloning and functional expression of a human Y4 subtype receptor for pancreatic polypeptide, neuropeptide Y, and peptide YY. J Biol Chem 270:26762–26765

  13. 13.

    Reubi JC, Gugger M, Waser B, Schaer JC (2001) Y(1)-mediated effect of neuropeptide Y in cancer: breast carcinomas as targets. Cancer Res 61:4636–4641

  14. 14.

    Ruscica M, Dozio E, Boghossian S, Bovo G, Martos Riaño V, Motta M, Magni P (2006) Activation of the Y1 receptor by neuropeptide Y regulates the growth of prostate cancer cells. Endocrinology 147:1466–1473

  15. 15.

    Korner M (2004) High expression of neuropeptide Y receptors in tumors of the human adrenal gland and extra-adrenal paraganglia. Clin Cancer Res 10:8426–8433

  16. 16.

    Antal-Zimanyi I, Bruce MA, LeBoulluec KL, Iben LG, Mattson GK, McGovern RT, Hogan JB, Leahy CL, Flowers SC, Stanley JA, Ortiz AA, Poindexter GS (2008) Pharmacological characterization and appetite suppressive properties of BMS-193885, a novel and selective neuropeptide Y1 receptor antagonist. Eur J Pharmacol 590:224–232

  17. 17.

    Keller M, Pop N, Hutzler C, Beck-Sickinger AG, Bernhardt G, Buschauer A (2008) Guanidine−acylguanidine bioisosteric approach in the design of radioligands: synthesis of a tritium-labeled N G-propionylargininamide ([3 H]-UR-MK114) as a highly potent and selective neuropeptide Y Y1 receptor antagonist. J Med Chem 51:8168–8172

  18. 18.

    Keller M, Weiss S, Hutzler C, Kuhn KK, Mollereau C, Dukorn S, Schindler L, Bernhardt G, König B, Buschauer A (2015) N ω -carbamoylation of the argininamide moiety: an avenue to insurmountable NPY Y1 receptor antagonists and a radiolabeled selective high-affinity molecular tool ([3 H]UR-MK299) with extended residence time. J Med Chem 58:8834–8849

  19. 19.

    Rudolf K, Eberlein W, Engel W, Wieland HA, Willim KD, Entzeroth M, Wienen W, Beck-Sickinger AG, Doods HN (1994) The first highly potent and selective non-peptide neuropeptide Y Y1 receptor antagonist: BIBP3226. Eur J Pharmacol 271:R11–R13

  20. 20.

    Wieland HA, Engel W, Eberlein W, Rudolf K, Doods HN (1998) Subtype selectivity of the novel nonpeptide neuropeptide Y Y1 receptor antagonist BIBO 3304 and its effect on feeding in rodents. Br J Pharmacol 125:549–555

  21. 21.

    Yang Z, Han S, Keller M, Kaiser A, Bender BJ, Bosse M, Burkert K, Kögler LM, Wifling D, Bernhardt G, Plank N, Littmann T, Schmidt P, Yi C, Li B, Ye S, Zhang R, Xu B, Larhammar D, Stevens RC, Huster D, Meiler J, Zhao Q, Beck-Sickinger AG, Buschauer A, Wu B (2018) Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor. Nature 556:520–524

  22. 22.

    Babilon S, Mörl K, Beck-Sickinger AG (2013) Towards improved receptor targeting: anterograde transport, internalization and postendocytic trafficking of neuropeptide Y receptors. Biol Chem 394:921–936

  23. 23.

    Luttrell LM, Ferguson SSG, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F-T, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) β-arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283:655–661

  24. 24.

    Kaiser A, Müller P, Zellmann T, Scheidt HA, Thomas L, Bosse M, Meier R, Meiler J, Huster D, Beck-Sickinger AG, Schmidt P (2015) Unwinding of the C-terminal residues of neuropeptide Y is critical for Y2 receptor binding and activation. Angew Chem Int Ed 54:7446–7449

  25. 25.

    Kaiser A, Hempel C, Wanka L, Schubert M, Hamm HE, Beck-Sickinger AG (2018) G protein preassembly rescues efficacy of W6.48 toggle mutations in neuropeptide Y2 receptor. Mol Pharmacol 93:387–401

  26. 26.

    Mäde V, Babilon S, Jolly N, Wanka L, Bellmann-Sickert K, Diaz Gimenez LE, Mörl K, Cox HM, Gurevich VV, Beck-Sickinger AG (2014) Peptide modifications differentially alter G protein-coupled receptor internalization and signaling bias. Angew Chem Int Ed 53:10067–10071

  27. 27.

    Dinger MC, Bader JE, Kobor AD, Kretzschmar AK, Beck-Sickinger AG (2003) Homodimerization of neuropeptide Y receptors investigated by fluorescence resonance energy transfer in living cells. J Biol Chem 278:10562–10571

  28. 28.

    Gimenez LE, Babilon S, Wanka L, Beck-Sickinger AG, Gurevich VV (2014) Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes. Cell Signal 26:1523–1531

  29. 29.

    Wanka L, Babilon S, Kaiser A, Mörl K, Beck-Sickinger AG (2018) Different mode of arrestin-3 binding at the human Y1 and Y2 receptor. Cell Signal 50:58–71

  30. 30.

    Kilpatrick L, Briddon S, Hill S, Holliday N (2010) Quantitative analysis of neuropeptide Y receptor association with β-arrestin2 measured by bimolecular fluorescence complementation: BiFC measures NPY receptor-β-arrestin interaction. Br J Pharmacol 160:892–906

  31. 31.

    Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV (2011) Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 286:24288–24299

  32. 32.

    Kostenis E (2002) Potentiation of GPCR-signaling via membrane targeting of G protein alpha subunits. J Recept Signal Transduct 22:267–281

  33. 33.

    Wahlestedt C, Grundemar L, Håkanson R, Heilig M, Shen GH, Zukowska-Grojec Z, Reis DJ (1990) Neuropeptide Y receptor subtypes, Y1 and Y2. Ann N Y Acad Sci 611:7–26

  34. 34.

    Gordon EA, Kohout TA, Fishman PH (1990) Characterization of functional neuropeptide Y receptors in a human neuroblastoma cell line. J Neurochem 55:506–513

  35. 35.

    Gregory KJ, Sexton PM, Tobin AB, Christopoulos A (2012) Stimulus bias provides evidence for conformational constraints in the structure of a G protein-coupled receptor. J Biol Chem 287:37066–37077

  36. 36.

    Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S (2012) A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 3:193–203

  37. 37.

    Söll RM, Dinger MC, Lundell I, Larhammer D, Beck-Sickinger AG (2001) Novel analogues of neuropeptide Y with a preference for the Y1 -receptor: Novel NPY analogues with Y1 -receptor preference. Eur J Biochem 268:2828–2837

  38. 38.

    Ahrens VM, Frank R, Boehnke S, Schütz CL, Hampel G, Iffland DS, Bings NH, Hey-Hawkins E, Beck-Sickinger AG (2015) Receptor-mediated uptake of boron-rich neuropeptide Y analogues for boron neutron capture therapy. ChemMedChem 10:164–172

  39. 39.

    Ahrens VM, Frank R, Stadlbauer S, Beck-Sickinger AG, Hey-Hawkins E (2011) Incorporation of ortho-carbaboranyl-Nε-modified l-lysine into neuropeptide Y receptor Y1- and Y2-selective analogues. J Med Chem 54:2368–2377

  40. 40.

    Schubert M, Stichel J, Du Y, Tough IR, Sliwoski G, Meiler J, Cox HM, Weaver CD, Beck-Sickinger AG (2017) Identification and characterization of the first selective Y4 receptor positive allosteric modulator. J Med Chem 60:7605–7612

  41. 41.

    Shebanits K, Vasile S, Xu B, Gutiérrez-de-Terán H, Larhammar D (2019) Functional characterization in vitro of twelve naturally occurring variants of the human pancreatic polypeptide receptor NPY4R. Neuropeptides 76:101933

  42. 42.

    Kahsai AW, Xiao K, Rajagopal S, Ahn S, Shukla AK, Sun J, Oas TG, Lefkowitz RJ (2011) Multiple ligand-specific conformations of the β2-adrenergic receptor. Nat Chem Biol 7:692–700

  43. 43.

    Liu JJ, Horst R, Katritch V, Stevens RC, Wuthrich K (2012) Biased signaling pathways in 2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110

  44. 44.

    Rahmeh R, Damian M, Cottet M, Orcel H, Mendre C, Durroux T, Sharma KS, Durand G, Pucci B, Trinquet E, Zwier JM, Deupi X, Bron P, Baneres J-L, Mouillac B, Granier S (2012) Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc Natl Acad Sci 109:6733–6738

  45. 45.

    Wingler LM, Elgeti M, Hilger D, Latorraca NR, Lerch MT, Staus DP, Dror RO, Kobilka BK, Hubbell WL, Lefkowitz RJ (2019) Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell 176:468–478.e11

  46. 46.

    Eichel K, von Zastrow M (2018) Subcellular organization of GPCR signaling. Trends Pharmacol Sci 39:200–208

  47. 47.

    Grundmann M, Kostenis E (2017) Temporal bias: time-encoded dynamic GPCR signaling. Trends Pharmacol Sci 38:1110–1124

  48. 48.

    Thomsen ARB, Jensen DD, Hicks GA, Bunnett NW (2018) Therapeutic targeting of endosomal G-protein-coupled receptors. Trends Pharmacol Sci 39:879–891

  49. 49.

    Thomsen ARB, Plouffe B, Cahill TJ, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B, Mahoney JP, Huang L, Breton B, Heydenreich FM, Sunahara RK, Skiniotis G, Bouvier M, Lefkowitz RJ (2016) GPCR-G protein-β-Arrestin super-complex mediates sustained G protein signaling. Cell 166:907–919

  50. 50.

    Böhme I, Stichel J, Walther C, Mörl K, Beck-Sickinger AG (2008) Agonist induced receptor internalization of neuropeptide Y receptor subtypes depends on third intracellular loop and C-terminus. Cell Signal 20:1740–1749

  51. 51.

    Zwanziger D, Böhme I, Lindner D, Beck-Sickinger AG (2009) First selective agonist of the neuropeptide Y1 -receptor with reduced size. J Pept Sci 15:856–866

  52. 52.

    Hofmann S, Frank R, Hey-Hawkins E, Beck-Sickinger AG, Schmidt P (2013) Manipulating Y receptor subtype activation of short neuropeptide Y analogs by introducing carbaboranes. Neuropeptides 47:59–66

  53. 53.

    Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

  54. 54.

    Jiang M, Bajpayee NS (2009) Molecular mechanisms of Go signaling. Neurosignals 17:23–41

  55. 55.

    Gurevich EV, Gurevich VV (2006) Arrestins: ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236

Download references


The authors thank Prof. Dr. D. Huster for fruitful discussions on the binding mode and conformational freedom of NPY when bound to its receptors, which further motivated exploration of ligand position 34. Moreover, they would like to thank Dr. K. Bellmann-Sickert for help with synthesis of the PEGylated peptide. The authors gratefully acknowledge the expert technical assistance of C. Dammann, K. Löbner, R. Müller, R. Reppich-Sacher and J. Schwesinger.


This work was supported by the German Science Foundation project number 209933838, SFB1052 TP A3 to A. G. B.-S., project number 421152132, SFB 1423 TP B1 to A. G. B.-S. and B3 to A. K., the European Union, the Federal State of Saxony (SMWK, grant 100316655 to A.K.) and the “European Regional Development Fund”.

Author information

Correspondence to Annette G. Beck-Sickinger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaiser, A., Wanka, L., Ziffert, I. et al. Biased agonists at the human Y1 receptor lead to prolonged membrane residency and extended receptor G protein interaction. Cell. Mol. Life Sci. (2020) doi:10.1007/s00018-019-03432-7

Download citation


  • GPCR
  • NPY
  • Signaling bias
  • Arrestin
  • G Protein