Skip to main content

Advertisement

Log in

Amyotrophic lateral sclerosis-linked UBQLN2 mutants inhibit endoplasmic reticulum to Golgi transport, leading to Golgi fragmentation and ER stress

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative diseases that are related genetically and pathologically. Mutations in the UBQLN2 gene, encoding the ubiquitin-like protein ubiquilin2, are associated with familial ALS/FTD, but the pathophysiological mechanisms remain unclear. Here, we demonstrate that ALS/FTD UBQLN2 mutants P497H and P506T inhibit protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus in neuronal cells. In addition, we observed that Sec31-positive ER exit sites are clustered in UBQLN2T487I patient spinal cord tissues. Both the ER–Golgi intermediate (ERGIC) compartment and the Golgi become disorganised and fragmented. This activates ER stress and inhibits ER-associated degradation. Hence, this study highlights perturbations in secretory protein trafficking and ER homeostasis as pathogenic mechanisms associated with ALS/FTD-associated forms of UBQLN2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cleveland DW, Rothstein JD (2001) From charcot to lou gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2:806–819. https://doi.org/10.1038/35097565

    Article  CAS  PubMed  Google Scholar 

  2. Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65:S3–S9

    Article  CAS  Google Scholar 

  3. Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3

    Article  Google Scholar 

  4. Yamashita S, Ando Y (2015) Genotype-phenotype relationship in hereditary amyotrophic lateral sclerosis. Transl Neurodegener. https://doi.org/10.1186/s40035-015-0036-y

    Article  PubMed  PubMed Central  Google Scholar 

  5. Taylor JP, Brown RH, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206. https://doi.org/10.1038/nature20413

    Article  PubMed  PubMed Central  Google Scholar 

  6. Deng HX, Chen W, Hong ST et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215

    Article  CAS  Google Scholar 

  7. Fahed AC, McDonough B, Gouvion CM et al (2014) UBQLN2 mutation causing heterogeneous X-linked dominant neurodegeneration. Ann Neurol 75:793–798. https://doi.org/10.1002/ana.24164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gellera C, Tiloca C, Bo RD et al (2012) Ubiquilin 2 mutations in Italian patients with amyotrophic lateral sclerosis and frontotemporal dementia. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2012-303433

    Article  PubMed  Google Scholar 

  9. Synofzik M, Maetzler W, Grehl T et al (2012) Screening in ALS and FTD patients reveals 3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype. Neurobiol Aging 33:2949.e13–2949.e17. https://doi.org/10.1016/j.neurobiolaging.2012.07.002

    Article  CAS  Google Scholar 

  10. Williams KL, Warraich ST, Yang S et al (2012) UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis. Neurobiol Aging 33:2527.e3–2527.e10. https://doi.org/10.1016/j.neurobiolaging.2012.05.008

    Article  CAS  Google Scholar 

  11. Ling S-C, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438. https://doi.org/10.1016/j.neuron.2013.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin G, Mao D, Bellen HJ (2017) Amyotrophic lateral sclerosis pathogenesis converges on defects in protein homeostasis associated with TDP-43 mislocalization and proteasome-mediated degradation overload. Curr Top Dev Biol 121:111–171. https://doi.org/10.1016/bs.ctdb.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  13. Shahheydari H, Ragagnin A, Walker AK et al (2017) Protein quality control and the amyotrophic lateral sclerosis/frontotemporal dementia continuum. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2017.00119

    Article  PubMed  PubMed Central  Google Scholar 

  14. Parakh S, Perri ER, Jagaraj CJ et al (2018) Rab-dependent cellular trafficking and amyotrophic lateral sclerosis. Crit Rev Biochem Mol Biol 53:623–651. https://doi.org/10.1080/10409238.2018.1553926

    Article  CAS  PubMed  Google Scholar 

  15. Blokhuis AM, Groen EJN, Koppers M et al (2013) Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 125:777–794. https://doi.org/10.1007/s00401-013-1125-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17. https://doi.org/10.1038/nm1066

    Article  CAS  PubMed  Google Scholar 

  17. Picher-Martel V, Dutta K, Phaneuf D et al (2015) Ubiquilin-2 drives NF-κB activity and cytosolic TDP-43 aggregation in neuronal cells. Mol Brain 8:71. https://doi.org/10.1186/s13041-015-0162-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ceballos-Diaz C, Rosario AM, Park H-J et al (2015) Viral expression of ALS-linked ubiquilin-2 mutants causes inclusion pathology and behavioral deficits in mice. Mol Neurodegener 10:25. https://doi.org/10.1186/s13024-015-0026-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alexander EJ, Ghanbari Niaki A, Zhang T et al (2018) Ubiquilin 2 modulates ALS/FTD-linked FUS-RNA complex dynamics and stress granule formation. Proc Natl Acad Sci USA 115:E11485–E11494. https://doi.org/10.1073/pnas.1811997115

    Article  CAS  PubMed  Google Scholar 

  20. Ghaemmaghami S, Huh W-K, Bower K et al (2003) Global analysis of protein expression in yeast. Nature 425:737–741. https://doi.org/10.1038/nature02046

    Article  CAS  PubMed  Google Scholar 

  21. Hauri HP, Kappeler F, Andersson H, Appenzeller C (2000) ERGIC-53 and traffic in the secretory pathway. J Cell Sci 113(Pt 4):587–596

    CAS  PubMed  Google Scholar 

  22. Routledge KE, Gupta V, Balch WE (2010) Emergent properties of proteostasis-COPII coupled systems in human health and disease. Mol Membr Biol 27:385–397. https://doi.org/10.3109/09687688.2010.524894

    Article  CAS  PubMed  Google Scholar 

  23. Schröder M (2007) Endoplasmic reticulum stress responses. Cell Mol Life Sci 65:862–894. https://doi.org/10.1007/s00018-007-7383-5

    Article  CAS  Google Scholar 

  24. Stephens DJ, Lin-Marq N, Pagano A et al (2000) COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. J Cell Sci 113(Pt 12):2177–2185

    CAS  PubMed  Google Scholar 

  25. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  Google Scholar 

  26. McCaffrey K, Braakman I (2016) Protein quality control at the endoplasmic reticulum. Essays Biochem 60:227–235. https://doi.org/10.1042/EBC20160003

    Article  PubMed  Google Scholar 

  27. Hirsch C, Gauss R, Horn SC et al (2009) The ubiquitylation machinery of the endoplasmic reticulum. Nature 458:453–460. https://doi.org/10.1038/nature07962

    Article  CAS  PubMed  Google Scholar 

  28. Hitomi J, Katayama T, Eguchi Y et al (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J Cell Biol 165:347–356. https://doi.org/10.1083/jcb.200310015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shore GC, Papa FR, Oakes SA (2011) Signaling cell death from the endoplasmic reticulum stress response. Curr Opin Cell Biol 23:143–149. https://doi.org/10.1016/j.ceb.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  30. Urra H, Dufey E, Lisbona F et al (2013) When ER stress reaches a dead end. Biochimica et Biophysica Acta (BBA) Mol Cell Res 1833:3507–3517. https://doi.org/10.1016/j.bbamcr.2013.07.024

    Article  CAS  Google Scholar 

  31. Ilieva EV, Ayala V, Jové M et al (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–3123. https://doi.org/10.1093/brain/awm190

    Article  PubMed  Google Scholar 

  32. Atkin JD, Farg MA, Walker AK et al (2008) Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis 30:400–407

    Article  CAS  Google Scholar 

  33. Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype–selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12:627–636. https://doi.org/10.1038/nn.2297

    Article  CAS  PubMed  Google Scholar 

  34. Saxena S, Roselli F, Singh K et al (2013) Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival. Neuron 80:80–96. https://doi.org/10.1016/j.neuron.2013.07.027

    Article  CAS  PubMed  Google Scholar 

  35. Farg MA, Soo KY, Walker AK et al (2012) Mutant FUS induces endoplasmic reticulum stress in amyotrophic lateral sclerosis and interacts with protein disulfide-isomerase. Neurobiol Aging 33:2855–2868. https://doi.org/10.1016/j.neurobiolaging.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  36. Soo KY, Halloran M, Sundaramoorthy V et al (2015) Rab1-dependent ER-Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS. Acta Neuropathol. https://doi.org/10.1007/s00401-015-1468-2

    Article  PubMed  Google Scholar 

  37. Sundaramoorthy V, Walker AK, Yerbury J et al (2013) Extracellular wildtype and mutant SOD1 induces ER-Golgi pathology characteristic of amyotrophic lateral sclerosis in neuronal cells. Cell Mol Life Sci 70:4181–4195. https://doi.org/10.1007/s00018-013-1385-2

    Article  CAS  PubMed  Google Scholar 

  38. Sundaramoorthy V, Walker AK, Tan V et al (2015) Defects in optineurin and myosin VI mediated cellular trafficking in amyotrophic lateral sclerosis. Hum Mol Genet. https://doi.org/10.1093/hmg/ddv126

    Article  PubMed  Google Scholar 

  39. Walker AK, Soo KY, Sundaramoorthy V et al (2013) ALS-associated TDP-43 induces endoplasmic reticulum stress, which drives cytoplasmic TDP-43 accumulation and stress granule formation. PLoS One. https://doi.org/10.1371/journal.pone.0081170

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chang HJ, Jesch SA, Gaspar ML, Henry SA (2004) Role of the unfolded protein response pathway in secretory stress and regulation of INO1 expression in Saccharomyces cerevisiae. Genetics 168:1899–1913. https://doi.org/10.1534/genetics.104.032961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leber JH, Bernales S, Walter P (2004) IRE1-independent gain control of the unfolded protein response. PLoS Biol 2:e235. https://doi.org/10.1371/journal.pbio.0020235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Higashio H, Kohno K (2002) A genetic link between the unfolded protein response and vesicle formation from the endoplasmic reticulum. Biochem Biophys Res Commun 296:568–574

    Article  CAS  Google Scholar 

  43. Sato M, Sato K, Nakano A (2002) Evidence for the intimate relationship between vesicle budding from the ER and the unfolded protein response. Biochem Biophys Res Commun 296:560–567

    Article  CAS  Google Scholar 

  44. Preston AM, Gurisik E, Bartley C et al (2009) Reduced endoplasmic reticulum (ER)-to-Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload. Diabetologia 52:2369–2373. https://doi.org/10.1007/s00125-009-1506-5

    Article  CAS  PubMed  Google Scholar 

  45. Tsvetanova NG (2013) The secretory pathway in control of endoplasmic reticulum homeostasis. Small GTPases 4:28–33. https://doi.org/10.4161/sgtp.22599

    Article  PubMed  PubMed Central  Google Scholar 

  46. van Dis V, Kuijpers M, Haasdijk ED et al (2014) Golgi fragmentation precedes neuromuscular denervation and is associated with endosome abnormalities in SOD1-ALS mouse motor neurons. Acta Neuropathol Commun 2:38. https://doi.org/10.1186/2051-5960-2-38

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fujita Y, Okamoto K (2005) Golgi apparatus of the motor neurons in patients with amyotrophic lateral sclerosis and in mice models of amyotrophic lateral sclerosis. Neuropathology 25:388–394

    Article  Google Scholar 

  48. Gonatas NK, Stieber A, Gonatas JO (2006) Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J Neurol Sci 246:21–30. https://doi.org/10.1016/j.jns.2006.01.019

    Article  CAS  PubMed  Google Scholar 

  49. Ito H, Nakamura M, Komure O et al (2011) Clinicopathologic study on an ALS family with a heterozygous E478G optineurin mutation. Acta Neuropathol 122:223–229. https://doi.org/10.1007/s00401-011-0842-y

    Article  PubMed  Google Scholar 

  50. Wilson BS, Nuoffer C, Meinkoth JL et al (1994) A Rab1 mutant affecting guanine nucleotide exchange promotes disassembly of the Golgi apparatus. J Cell Biol 125:557–571

    Article  CAS  Google Scholar 

  51. Cole NB, Ellenberg J, Song J et al (1998) Retrograde transport of Golgi-localized proteins to the ER. J Cell Biol 140:1–15

    Article  CAS  Google Scholar 

  52. Kleijnen MF, Shih AH, Zhou P et al (2000) The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell 6:409–419

    Article  CAS  Google Scholar 

  53. Sifers RN, Brashears-Macatee S, Kidd VJ et al (1988) A frameshift mutation results in a truncated alpha 1-antitrypsin that is retained within the rough endoplasmic reticulum. J Biol Chem 263:7330–7335

    CAS  PubMed  Google Scholar 

  54. Grotzke JE, Lu Q, Cresswell P (2013) Deglycosylation-dependent fluorescent proteins provide unique tools for the study of ER-associated degradation. Proc Natl Acad Sci USA 110:3393–3398. https://doi.org/10.1073/pnas.1300328110

    Article  PubMed  Google Scholar 

  55. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

  56. Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169:375–382. https://doi.org/10.1111/j.1365-2818.1993.tb03313.x

    Article  Google Scholar 

  57. Farg MA, Soo KY, Warraich ST et al (2013) Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum Mol Genet 22:717–728. https://doi.org/10.1093/hmg/dds479

    Article  CAS  PubMed  Google Scholar 

  58. Muppirala M, Gupta V, Swarup G (2011) Syntaxin 17 cycles between the ER and ERGIC and is required to maintain the architecture of ERGIC and Golgi. Biol Cell 103:333–350. https://doi.org/10.1042/BC20110006

    Article  CAS  PubMed  Google Scholar 

  59. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676

    Article  CAS  Google Scholar 

  60. Presley JF, Cole NB, Schroer TA et al (1997) ER-to-Golgi transport visualized in living cells. Nature 389:81–85. https://doi.org/10.1038/38001

    Article  CAS  PubMed  Google Scholar 

  61. Nehls S, Snapp EL, Cole NB et al (2000) Dynamics and retention of misfolded proteins in native ER membranes. Nat Cell Biol 2:288–295. https://doi.org/10.1038/35010558

    Article  CAS  PubMed  Google Scholar 

  62. Nakagomi S, Barsoum MJ, Bossy-Wetzel E et al (2008) A Golgi fragmentation pathway in neurodegeneration. Neurobiol Dis 29:221–231. https://doi.org/10.1016/j.nbd.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  63. Sütterlin C, Hsu P, Mallabiabarrena A, Malhotra V (2002) Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 109:359–369

    Article  Google Scholar 

  64. Sugawara T, Nakatsu D, Kii H et al (2012) PKCδ and ε regulate the morphological integrity of the ER—Golgi intermediate compartment (ERGIC) but not the anterograde and retrograde transports via the Golgi apparatus. Biochimica et Biophysica Acta (BBA) Mol Cell Res 1823:861–875. https://doi.org/10.1016/j.bbamcr.2012.01.007

    Article  CAS  Google Scholar 

  65. Duellman T, Burnett J, Shin A, Yang J (2015) LMAN1 (ERGIC-53) is a potential carrier protein for matrix metalloproteinase-9 glycoprotein secretion. Biochem Biophys Res Commun 464:685–691. https://doi.org/10.1016/j.bbrc.2015.06.164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Spatuzza C, Renna M, Faraonio R et al (2004) heat shock induces preferential translation of ERGIC-53 and affects its recycling pathway. J Biol Chem 279:42535–42544. https://doi.org/10.1074/jbc.M401860200

    Article  CAS  PubMed  Google Scholar 

  67. Tomás M, Martínez-Alonso E, Ballesta J, Martínez-Menárguez JA (2010) Regulation of ER-Golgi intermediate compartment tubulation and mobility by COPI coats, motor proteins and microtubules. Traffic 11:616–625. https://doi.org/10.1111/j.1600-0854.2010.01047.x

    Article  CAS  PubMed  Google Scholar 

  68. Walker AK, Farg MA, Bye CR et al (2010) Protein disulphide isomerase protects against protein aggregation and is S-nitrosylated in amyotrophic lateral sclerosis. Brain 133:105–116. https://doi.org/10.1093/brain/awp267

    Article  PubMed  Google Scholar 

  69. Oslowski CM, Urano F (2011) Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol 490:71–92. https://doi.org/10.1016/B978-0-12-385114-7.00004-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hosokawa N, Tremblay LO, You Z et al (2003) Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I. J Biol Chem 278:26287–26294. https://doi.org/10.1074/jbc.M303395200

    Article  CAS  PubMed  Google Scholar 

  71. Martínez-Menárguez JÁ, Tomás M, Martínez-Martínez N, Martínez-Alonso E (2019) Golgi fragmentation in neurodegenerative diseases: is there a common cause? Cells 8:748

    Article  Google Scholar 

  72. Fan J, Hu Z, Zeng L et al (2008) Golgi apparatus and neurodegenerative diseases. Int J Dev Neurosci 26:523–534

    Article  CAS  Google Scholar 

  73. Budnik A, Stephens DJ (2009) ER exit sites—localization and control of COPII vesicle formation. FEBS Lett 583:3796–3803

    Article  CAS  Google Scholar 

  74. Yerbury JJ, Ooi L, Dillin A et al (2016) Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem. https://doi.org/10.1111/jnc.13575

    Article  PubMed  Google Scholar 

  75. Dinter A, Berger EG (1998) Golgi-disturbing agents. Histochem Cell Biol 109:571–590

    Article  CAS  Google Scholar 

  76. Lee TH, Linstedt AD (1999) Osmotically induced cell volume changes alter anterograde and retrograde transport, golgi structure, and COPI dissociation. Mol Biol Cell 10:1445–1462

    Article  CAS  Google Scholar 

  77. Hicks SW, Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta 1744:406–414. https://doi.org/10.1016/j.bbamcr.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  78. Sundaramoorthy V, Sultana JM, Atkin JD (2015) Golgi fragmentation in amyotrophic lateral sclerosis, an overview of possible triggers and consequences. Front Neurosci. https://doi.org/10.3389/fnins.2015.00400

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mourelatos Z, Gonatas NK, Stieber A et al (1996) The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu, Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease. Proc Natl Acad Sci USA 93:5472–5477

    Article  CAS  Google Scholar 

  80. Atkin JD, Farg MA, Soo KY et al (2014) Mutant SOD1 inhibits ER-Golgi transport in amyotrophic lateral sclerosis. J Neurochem 129:190–204. https://doi.org/10.1111/jnc.12493

    Article  CAS  PubMed  Google Scholar 

  81. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190. https://doi.org/10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hetz C, Thielen P, Matus S et al (2009) XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 23:2294–2306. https://doi.org/10.1101/gad.1830709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ito Y, Yamada M, Tanaka H et al (2009) Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice. Neurobiol Dis 36:470–476. https://doi.org/10.1016/j.nbd.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  84. Sasaki S (2010) Endoplasmic reticulum stress in motor neurons of the spinal cord in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 69:346–355. https://doi.org/10.1097/NEN.0b013e3181d44992

    Article  PubMed  Google Scholar 

  85. Matus S, Lopez E, Valenzuela V et al (2013) Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis. PLoS One 8:e66672. https://doi.org/10.1371/journal.pone.0066672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kiskinis E, Sandoe J, Williams LA et al (2014) Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14:781–795. https://doi.org/10.1016/j.stem.2014.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Appenzeller-Herzog C, Hauri H-P (2006) The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 119:2173–2183. https://doi.org/10.1242/jcs.03019

    Article  CAS  PubMed  Google Scholar 

  88. Fu Y-L, Zhang B, Mu T-W (2019) LMAN1 (ERGIC-53) promotes trafficking of neuroreceptors. Biochem Biophys Res Commun 511:356–362. https://doi.org/10.1016/j.bbrc.2019.02.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fu Y-L, Wang Y-J, Mu T-W (2016) Proteostasis maintenance of Cys-loop receptors. Adv Protein Chem Struct Biol 103:1–23. https://doi.org/10.1016/bs.apcsb.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  90. Kaplan A, Spiller KJ, Towne C et al (2014) Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 81:333–348. https://doi.org/10.1016/j.neuron.2013.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Spiller KJ, Khan T, Dominique MA et al (2019) Reduction of matrix metalloproteinase 9 (MMP-9) protects motor neurons from TDP-43-triggered death in rNLS8 mice. Neurobiol Dis 124:133–140. https://doi.org/10.1016/j.nbd.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  92. Huang B, Wu Q, Zhou H et al (2016) Increased Ubqln2 expression causes neuron death in transgenic rats. J Neurochem 139:285–293. https://doi.org/10.1111/jnc.13748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Suzuki H, Lee K, Matsuoka M (2011) TDP-43-induced death is associated with altered regulation of BIM and Bcl-xL and attenuated by caspase-mediated TDP-43 cleavage. J Biol Chem 286:13171–13183. https://doi.org/10.1074/jbc.M110.197483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jaarsma D, Haasdijk ED, Grashorn JA et al (2000) Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis 7:623–643. https://doi.org/10.1006/nbdi.2000.0299

    Article  CAS  PubMed  Google Scholar 

  95. Prudencio M, Durazo A, Whitelegge JP, Borchelt DR (2010) An examination of wild-type SOD1 in modulating the toxicity and aggregation of ALS-associated mutant SOD1. Hum Mol Genet 19:4774–4789. https://doi.org/10.1093/hmg/ddq408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cannon AD, Zhang Y, Knight J et al (2010) Inducible expression of wild-type TDP-43 is toxic to mouse hippocampal and cortical neurons. Alzheimer’s Dement 6:S225–S226. https://doi.org/10.1016/j.jalz.2010.05.729

    Article  Google Scholar 

  97. Xu Y-F, Gendron TF, Zhang Y-J et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30:10851–10859. https://doi.org/10.1523/JNEUROSCI.1630-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xia Y, Yan LH, Huang B et al (2014) Pathogenic mutation of UBQLN2 impairs its interaction with UBXD8 and disrupts endoplasmic reticulum-associated protein degradation. J Neurochem 129:99–106. https://doi.org/10.1111/jnc.12606

    Article  CAS  PubMed  Google Scholar 

  99. Kim T-Y, Kim E, Yoon SK, Yoon J-B (2008) Herp enhances ER-associated protein degradation by recruiting ubiquilins. Biochem Biophys Res Commun 369:741–746. https://doi.org/10.1016/j.bbrc.2008.02.086

    Article  CAS  PubMed  Google Scholar 

  100. Schulze A, Standera S, Buerger E et al (2005) The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J Mol Biol 354:1021–1027. https://doi.org/10.1016/j.jmb.2005.10.020

    Article  CAS  PubMed  Google Scholar 

  101. Lim PJ, Danner R, Liang J et al (2009) Ubiquilin and p97/VCP bind erasin, forming a complex involved in ERAD. J Cell Biol 187:201–217. https://doi.org/10.1083/jcb.200903024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nagai A, Kadowaki H, Maruyama T et al (2009) USP14 inhibits ER-associated degradation via interaction with IRE1alpha. Biochem Biophys Res Commun 379:995–1000. https://doi.org/10.1016/j.bbrc.2008.12.182

    Article  CAS  PubMed  Google Scholar 

  103. Chang L, Monteiro MJ (2015) Defective proteasome delivery of polyubiquitinated proteins by ubiquilin-2 proteins containing ALS mutations. PLoS One 10:e0130162. https://doi.org/10.1371/journal.pone.0130162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nishitoh H, Kadowaki H, Nagai A et al (2008) ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22:1451–1464. https://doi.org/10.1101/gad.1640108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Travers KJ, Patil CK, Wodicka L et al (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this article. JDA conceived and directed the project. JDA, MH, AMGR, K-YS, and VS designed the experiments. MH, AMGR designed and prepared the UBQLN2 constructs. HS helped to design the UBQLN2 constructs. MH performed and analysed experiments in Neuro2A cells (ER–Golgi transport, Golgi and ERGIC fragmentation, ER stress). AMGR performed and analysed the ERAD assay. MV, BH and SP performed and analysed experiments in human primary neurons. NG and SY performed and analysed experiments in human sections. MH, AMGR and JDA wrote, edited and revised the manuscript. All authors discussed results and commented on the manuscript.

Corresponding author

Correspondence to Julie D. Atkin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halloran, M., Ragagnin, A.M.G., Vidal, M. et al. Amyotrophic lateral sclerosis-linked UBQLN2 mutants inhibit endoplasmic reticulum to Golgi transport, leading to Golgi fragmentation and ER stress. Cell. Mol. Life Sci. 77, 3859–3873 (2020). https://doi.org/10.1007/s00018-019-03394-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03394-w

Keywords

Navigation