Advertisement

Multi-tissue to whole plant metabolic modelling

  • Rahul Shaw
  • C. Y. Maurice CheungEmail author
Review
  • 64 Downloads

Abstract

Genome-scale metabolic models have been successfully applied to study the metabolism of multiple plant species in the past decade. While most existing genome-scale modelling studies have focussed on studying the metabolic behaviour of individual plant metabolic systems, there is an increasing focus on combining models of multiple tissues or organs to produce multi-tissue models that allow the investigation of metabolic interactions between tissues and organs. Multi-tissue metabolic models were constructed for multiple plants including Arabidopsis, barley, soybean and Setaria. These models were applied to study various aspects of plant physiology including the division of labour between organs, source and sink tissue relationship, growth of different tissues and organs and charge and proton balancing. In this review, we outline the process of constructing multi-tissue genome-scale metabolic models, discuss the strengths and challenges in using multi-tissue models, review the current status of plant multi-tissue and whole plant metabolic models and explore the approaches for integrating genome-scale metabolic models into multi-scale plant models.

Keywords

Multi-tissue model Whole plant model Constraint-based model Genome-scale metabolic model Model integration Plant metabolic modelling 

Notes

References

  1. 1.
    Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson BO (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184(16):4582–4593PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (i JR904 GSM/GPR). Genome Biol 4(9):R54PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Poolman MG, Kundu S, Shaw R, Fell D (2013) Responses to light intensity in a genome-scale model of rice metabolism. Plant Physiol 162(2):1060–1072PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151(3):1570–1581PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Shaw R, Kundu S (2015) Metabolic plasticity and inter-compartmental interactions in rice metabolism: an analysis from reaction deletion study. PLoS One 10(7):e0133899PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Thiele I, Vo TD, Price ND, Palsson BØ (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single-and double-deletion mutants. J Bacteriol 187(16):5818–5830PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Barve A, Rodrigues JFM, Wagner A (2012) Superessential reactions in metabolic networks. Proc Natl Acad Sci 109(18):E1121–E1130PubMedCrossRefGoogle Scholar
  8. 8.
    Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5(1):320PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzaeRd metabolic genotype. J Biol Chem 274(25):17410–17416PubMedCrossRefGoogle Scholar
  10. 10.
    Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 8(1):122–131PubMedCrossRefGoogle Scholar
  11. 11.
    Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664PubMedCrossRefGoogle Scholar
  12. 12.
    Chatterjee A, Huma B, Shaw R, Kundu S (2017) Reconstruction of Oryza sativa indica genome scale metabolic model and its responses to varying rubisco activity, light intensity, and enzymatic cost conditions. Front Plant Sci 8:2060PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    de Oliveira DalMolin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152(2):579–589CrossRefGoogle Scholar
  14. 14.
    Cheung CYM, Williams TC, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ (2013) A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. Plant J 75(6):1050–1061PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Shaw R, Cheung CM (2019) A mass and charge balanced metabolic model of Setaria viridis revealed mechanisms of proton balancing in C4 plants. BMC Bioinform 20(1):357CrossRefGoogle Scholar
  16. 16.
    Cheung CYM, Ratcliffe RG, Sweetlove LJ (2015) A method of accounting for enzyme costs in flux balance analysis reveals alternative pathways and metabolite stores in an illuminated Arabidopsis leaf. Plant Physiol 169(3):1671–1682PubMedPubMedCentralGoogle Scholar
  17. 17.
    Sweetlove LJ, Ratcliffe RG (2011) Flux-balance modeling of plant metabolism. Front Plant Sci 2:38PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hong JH, Savina M, Du J, Devendran A, Ramakanth KK, Tian X, Sim WS, Mironova VV, Xu J (2017) A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. Cell 170(1):102–113PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lup SD, Tian X, Xu J, Perez-Perez JM (2016) Wound signaling of regenerative cell reprogramming. Plant Sci 250:178–187PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Shaw R, Cheung CYM (2018) A dynamic multi-tissue flux balance model captures carbon and nitrogen metabolism and optimal resource partitioning during Arabidopsis growth. Front Plant Sci 9:884PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Batista Moreira T, Shaw R, Luo X, Ganguly O, Kim HS, Ferreira Coelho LG, Cheung CYM, Williams TC (2019) A genome-scale metabolic model of soybean (Glycine max) highlights metabolic fluxes in seedlings. Plant Physiol 180(4):1912–1929CrossRefGoogle Scholar
  22. 22.
    Grafahrend-Belau E, Junker A, Eschenroder A, Muller J, Schreiber F, Junker BH (2013) Multiscale metabolic modeling: dynamic flux balance analysis on a whole-plant scale. Plant Physiol 163(2):637–647PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yang X, Hwa C (2008) Genetic modification of plant architecture and variety improvement in rice. Heredity 101(5):396PubMedCrossRefGoogle Scholar
  24. 24.
    Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I (2002) Golden rice: introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132(3):506S–510SPubMedCrossRefGoogle Scholar
  25. 25.
    Schlapfer P, Zhang P, Wang C, Kim T, Banf M, Chae L, Dreher K, Chavali AK, Nilo-Poyanco R, Bernard T et al (2017) Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol 173(4):2041–2059PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Gevorgyan A, Poolman MG, Fell DA (2008) Detection of stoichiometric inconsistencies in biomolecular models. Bioinformatics 24(19):2245–2251PubMedCrossRefGoogle Scholar
  27. 27.
    Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    de Oliveira DalMolin CG, Quek LE, Saa PA, Nielsen LK (2015) A multi-tissue genome-scale metabolic modeling framework for the analysis of whole plant systems. Front Plant Sci 6:4Google Scholar
  29. 29.
    Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A, Shlomi T (2012) Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci 109(1):339–344PubMedCrossRefGoogle Scholar
  30. 30.
    Robaina Estévez S, Nikoloski Z (2014) Generalized framework for context-specific metabolic model extraction methods. Front Plant Sci 19(5):491Google Scholar
  31. 31.
    Scheunemann M, Brady SM, Nikoloski Z (2018) Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models. Sci Rep 8(1):7919PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132(2):453–460PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Estevez SR, Nikoloski Z (2015) Context-specific metabolic model extraction based on regularized least squares optimization. PLoS One 10(7):e0131875CrossRefGoogle Scholar
  35. 35.
    Li S, Yamada M, Han X, Ohler U, Benfey PN (2016) High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev Cell 39(4):508–522PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Saha R, Suthers PF, Maranas CD (2011) Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PLoS One 6(7):e21784PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154(4):1871–1885PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, De Visser PH (2009) Functional–structural plant modelling: a new versatile tool in crop science. J Exp Bot 61(8):2101–2115PubMedCrossRefGoogle Scholar
  39. 39.
    Chew YH, Wenden B, Flis A, Mengin V, Taylor J, Davey CL, Tindal C, Thomas H, Ougham HJ, De Reffye P et al (2014) Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc Natl Acad Sci 111(39):E4127–E4136PubMedCrossRefGoogle Scholar
  40. 40.
    Rasse DP, Tocquin P (2006) Leaf carbohydrate controls over Arabidopsis growth and response to elevated CO2: an experimentally based model. New Phytol 172(3):500–513PubMedCrossRefGoogle Scholar
  41. 41.
    Chew YH, Wilczek AM, Williams M, Welch SM, Schmitt J, Halliday KJ (2012) An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time. New Phytol 194(3):654–665PubMedCrossRefGoogle Scholar
  42. 42.
    Locke JC, Southern MM, Kozma-Bognár L, Hibberd V, Brown PE, Turner MS, Millar AJ (2005) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 1(1):0013PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  2. 2.Yale-NUS CollegeSingaporeSingapore

Personalised recommendations