miR-378a: a new emerging microRNA in metabolism

  • Ivo F. Machado
  • João S. Teodoro
  • Carlos M. Palmeira
  • Anabela P. RoloEmail author


Metabolic diseases, such as type 2 diabetes or obesity, are the consequence of the disruption of the organism’s metabolic pathways. The discovery of small non-coding RNAs—microRNAs (miRNAs)—as post-transcriptional gene regulators opened new doors for the development of novel strategies to combat said diseases. The two strands of miR-378a, miR-378a-3p, and miR-378a-5p are encoded in the Ppargc1b gene and have an active role in the regulation of several metabolic pathways such as mitochondrial metabolism and autophagy. Recent studies recognized miR-378a as an important regulator of energy and glucose homeostasis, highlighting it as a potential target for the improvement of metabolic dysregulation. In the present review, the current knowledge on miR-378a will be discussed with a particular emphasis on its biological functions and mechanisms of action in metabolism, mitochondria, and autophagy.


miR-378a Metabolic diseases Mitochondria Metabolism Autophagy 


Author contributions

IFM wrote the manuscript; JST, CMP, and APR supervised and revised the work. All authors have read and approved the final version of this review.


This work was financed by the European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme: project CENTRO-01-0145-FEDER-000012-HealthyAging2020, the Portugal 2020-Operational Programme for Competitiveness and Internationalisation, and the Portuguese national funds via FCT–Fundação para a Ciência e a Tecnologia, I.P.: project POCI-01-0145-FEDER-016770, as well as by UID/NEU/04539/2013 (CNC.IBILI Consortium strategic project). JST is a research fellow under the CEEC2017 programme (CEECIND/04400/2017).

Compliance with ethical standards

Conflict of interest

The authors declare that this review has no conflict of interest.


  1. 1.
    Rottiers V, Näär AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–251. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Peng Y, Croce CM (2016) The role of microRNAs in human cancer. Signal Transduct Target Ther 1:15004. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Su Z, Yang Z, Xu Y et al (2015) MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6:8474–8490. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7:36–41. CrossRefPubMedGoogle Scholar
  5. 5.
    Kren BT, Wong PY-P, Sarver A et al (2009) MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol 6:65–72. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sripada L, Tomar D, Prajapati P et al (2012) Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One 7:e44873. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barrey E, Saint-Auret G, Bonnamy B et al (2011) Pre-microRNA and mature microRNA in human mitochondria. PLoS One 6:e20220. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shepherd DL, Hathaway QA, Pinti MV et al (2017) Exploring the mitochondrial microRNA import pathway through polynucleotide phosphorylase (PNPase). J Mol Cell Cardiol 110:15–25. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jagannathan R, Thapa D, Nichols CE et al (2015) Translational regulation of the mitochondrial genome following redistribution of mitochondrial microRNA in the diabetic heart. Circ Cardiovasc Genet 8:785–802. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Eichner LJ, Perry M-C, Dufour CR et al (2010) miR-378* mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway. Cell Metab 12:352–361. CrossRefPubMedGoogle Scholar
  11. 11.
    Lee DY, Deng Z, Wang C, Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 104:20350–20355. CrossRefPubMedGoogle Scholar
  12. 12.
    Liu W, Cao H, Ye C et al (2014) Hepatic miR-378 targets p110α and controls glucose and lipid homeostasis by modulating hepatic insulin signalling. Nat Commun 5:5684. CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Y, Li C, Li H et al (2016) MiR-378 activates the pyruvate-PEP futile cycle and enhances lipolysis to ameliorate obesity in mice. EBioMedicine 5:93–104. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li Y, Jiang J, Liu W et al (2018) microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proc Natl Acad Sci USA 115:E10849–E10858. CrossRefPubMedGoogle Scholar
  15. 15.
    Kasashima K, Nakamura Y, Kozu T (2004) Altered expression profiles of microRNAs during TPA-induced differentiation of HL-60 cells. Biochem Biophys Res Commun 322:403–410. CrossRefPubMedGoogle Scholar
  16. 16.
    Krist B, Florczyk U, Pietraszek-Gremplewicz K et al (2015) The role of miR-378a in metabolism, angiogenesis, and muscle biology. Int J Endocrinol 2015:281756. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Carrer M, Liu N, Grueter CE et al (2012) Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc Natl Acad Sci USA 109:15330–15335. CrossRefPubMedGoogle Scholar
  18. 18.
    Yu J, Kong X, Liu J et al (2014) Expression profiling of PPARγ-regulated microRNAs in human subcutaneous and visceral adipogenesis in both genders. Endocrinology 155:2155–2165. CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang T, Duan J, Zhang L et al (2019) LXRα promotes hepatosteatosis in part through activation of microRNA-378 transcription and inhibition of Ppargc1β expression. Hepatology. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gagan J, Dey BK, Layer R et al (2011) MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation. J Biol Chem 286:19431–19438. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu S-Y, Zhang Y-Y, Gao Y et al (2015) MiR-378 plays an important role in the differentiation of bovine preadipocytes. Cell Physiol Biochem 36:1552–1562. CrossRefPubMedGoogle Scholar
  22. 22.
    Huang N, Wang J, Xie W et al (2015) MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1. Biochem Biophys Res Commun 457:37–42. CrossRefPubMedGoogle Scholar
  23. 23.
    Pan D, Mao C, Quattrochi B et al (2014) MicroRNA-378 controls classical brown fat expansion to counteract obesity. Nat Commun 5:4725. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lin J, Puigserver P, Donovan J et al (2002) Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277:1645–1648. CrossRefPubMedGoogle Scholar
  25. 25.
    Shao D, Liu Y, Liu X et al (2010) PGC-1β-regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERRα. Mitochondrion 10:516–527. CrossRefPubMedGoogle Scholar
  26. 26.
    Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66:789–800. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ward PS, Thompson CB (2012) Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol 4:a006783. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem 77:289–312. CrossRefPubMedGoogle Scholar
  30. 30.
    Wei W, Wang X, Yang M et al (2010) PGC1β mediates PPARγ activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 11:503–516. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    John E, Wienecke-Baldacchino A, Liivrand M et al (2012) Dataset integration identifies transcriptional regulation of microRNA genes by PPARc in differentiating mouse 3T3-L1 adipocytes. Nucleic Acids Res 40:4446–4460. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang P, Zhou Z, Hu A et al (2014) Both decreased and increased SRPK1 levels promote cancer by interfering with PHLPP-mediated dephosphorylation of Akt. Mol Cell 54:378–391. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hemmrich K, Gummersbach C, Paul NE et al (2010) Nitric oxide and downstream second messenger cGMP and cAMP enhance adipogenesis in primary human preadipocytes. Cytotherapy 12:547–553. CrossRefPubMedGoogle Scholar
  34. 34.
    DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pendergrass M, Bertoldo A, Bonadonna R et al (2007) Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals. Am J Physiol Endocrinol Metab 292:E92–E100. CrossRefPubMedGoogle Scholar
  36. 36.
    Mallat Y, Tritsch E, Ladouce R et al (2014) Proteome Modulation in H9c2 Cardiac Cells by microRNAs miR-378 and miR-378*. Mol Cell Proteom 13:18–29. CrossRefGoogle Scholar
  37. 37.
    Puigserver P, Rhee J, Donovan J et al (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature 423:550–555. CrossRefPubMedGoogle Scholar
  38. 38.
    You L, Gu W, Chen L et al (2014) MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway. Int J Clin Exp Pathol 7:7249–7261PubMedPubMedCentralGoogle Scholar
  39. 39.
    Rückerl D, Jenkins SJ, Laqtom NN et al (2012) Induction of IL-4Rα-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo. Blood 120:2307–2316. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kulyté A, Lorente-Cebrián S, Gao H et al (2014) MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia. Am J Physiol Endocrinol Metab 306:E267–E274. CrossRefPubMedGoogle Scholar
  41. 41.
    Gerin I, Bommer GT, McCoin CS et al (2010) Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am J Physiol Endocrinol Metab 299:E198–E206. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jiang X, Xue M, Fu Z et al (2014) Insight into the effects of adipose tissue inflammation factors on miR-378 expression and the underlying mechanism. Cell Physiol Biochem 33:1778–1788. CrossRefPubMedGoogle Scholar
  43. 43.
    Schatz G (1995) Mitochondria: beyond oxidative phosphorylation. Biochim Biophys Acta Mol Basis Dis 1271:123–126. CrossRefGoogle Scholar
  44. 44.
    Il Jeon T, Park JW, Ahn J et al (2013) Fisetin protects against hepatosteatosis in mice by inhibiting miR-378. Mol Nutr Food Res 57:1931–1937. CrossRefGoogle Scholar
  45. 45.
    Zhang T, Zhao X, Steer CJ et al (2018) A negative feedback loop between microRNA-378 and Nrf1 promotes the development of hepatosteatosis in mice treated with a high fat diet. Metab Clin Exp 85:183–191. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhang T, Hu J, Wang X et al (2019) MicroRNA-378 promotes hepatic inflammation and fibrosis via modulation of the NF-kB-TNFα pathway. J Hepatol 70:87–96. CrossRefPubMedGoogle Scholar
  47. 47.
    Hyun J, Wang S, Kim J et al (2016) MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun 7:10993. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bian Z, Li L-M, Tang R et al (2010) Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res 20:1076–1078. CrossRefPubMedGoogle Scholar
  49. 49.
    Macgregor-Das AM, Das S (2018) A microRNA’s journey to the center of the mitochondria. Am J Physiol Hear Circ Physiol 315:H206–H215. CrossRefGoogle Scholar
  50. 50.
    Weber-Lotfi F, Dietrich A (2018) Intercompartment RNA trafficking in mitochondrial function and communication. In: Cruz-Reyes J, Gray M (eds) RNA metabolism in mitochondria. Nucleic acids and molecular biology, vol 34. Springer, ChamGoogle Scholar
  51. 51.
    Bandiera S, Matégot R, Girard M et al (2013) MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med 64:12–19. CrossRefPubMedGoogle Scholar
  52. 52.
    Srinivasan H, Das S (2015) Mitochondrial miRNA (MitomiR): a new player in cardiovascular health. Can J Physiol Pharmacol 93:855–861. CrossRefPubMedGoogle Scholar
  53. 53.
    Zhang X, Zuo X, Yang B et al (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158:607–619. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang G, Chen H-W, Oktay Y et al (2010) PNPASE regulates RNA import into mitochondria. Cell 142:456–467. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Makarova JA, Shkurnikov MU, Wicklein D et al (2016) Intracellular and extracellular microRNA: an update on localization and biological role. Prog Histochem Cytochem 51:33–49. CrossRefPubMedGoogle Scholar
  56. 56.
    Foretz M, Guigas B, Bertrand L et al (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20:953–966. CrossRefPubMedGoogle Scholar
  57. 57.
    Natali A, Ferrannini E (2006) Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 49:434–441. CrossRefPubMedGoogle Scholar
  58. 58.
    Lee YS, Kim WS, Kim KH et al (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55:2256–2264. CrossRefPubMedGoogle Scholar
  59. 59.
    Gomes AP, Duarte FV, Nunes P et al (2012) Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis. Biochim Biophys Acta Mol Basis Dis 1822:185–195. CrossRefGoogle Scholar
  60. 60.
    Teodoro JS, Duarte FV, Gomes AP et al (2013) Berberine reverts hepatic mitochondrial dysfunction in high-fat fed rats: a possible role for SirT3 activation. Mitochondrion 13:637–646. CrossRefPubMedGoogle Scholar
  61. 61.
    Li CH, Tang SC, Wong CH et al (2018) Berberine induces miR-373 expression in hepatocytes to inactivate hepatic steatosis associated AKT-S6 kinase pathway. Eur J Pharmacol 825:107–118. CrossRefPubMedGoogle Scholar
  62. 62.
    Zhou J, Han S, Qian W et al (2018) Metformin induces miR-378 to downregulate the CDK1, leading to suppression of cell proliferation in hepatocellular carcinoma. Onco Targets Ther 11:4451–4459. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gupta SK, Bang C, Thum T (2010) Circulating MicroRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ Cardiovasc Genet 3:484–488. CrossRefPubMedGoogle Scholar
  64. 64.
    Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008. CrossRefPubMedGoogle Scholar
  65. 65.
    Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006. CrossRefPubMedGoogle Scholar
  66. 66.
    Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. CrossRefPubMedGoogle Scholar
  67. 67.
    Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–435. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zhang Y, Liu D, Chen X et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144. CrossRefPubMedGoogle Scholar
  69. 69.
    Prud’homme GJ, Glinka Y, Lichner Z, Yousef GM (2016) Neuropilin-1 is a receptor for extracellular miRNA and AGO2/miRNA complexes and mediates the internalization of miRNAs that modulate cell function. Oncotarget 7:68057–68071. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Turchinovich A, Weiz L, Burwinkel B (2012) Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 37:460–465. CrossRefPubMedGoogle Scholar
  71. 71.
    Bayraktar R, Van Roosbroeck K, Calin GA (2017) Cell-to-cell communication: microRNAs as hormones. Mol Oncol 11:1673–1686. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Assmann TS, Recamonde-Mendoza M, Costa AR et al (2019) Circulating miRNAs in diabetic kidney disease: case–control study and in silico analyses. Acta Diabetol 56:55–65. CrossRefPubMedGoogle Scholar
  73. 73.
    Choi H, Koh HWL, Zhou L et al (2019) Plasma protein and microRNA biomarkers of insulin resistance: a network-based integrative -omics analysis. Front Physiol 10:379. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Jones A, Danielson KM, Benton MC et al (2017) miRNA signatures of insulin resistance in obesity. Obesity 25:1734–1744. CrossRefPubMedGoogle Scholar
  75. 75.
    Zhang J, Ma J, Long K et al (2017) Overexpression of exosomal cardioprotective miRNAs mitigates hypoxia-induced H9c2 cells apoptosis. Int J Mol Sci 18:711. CrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ryter SW, Koo JK, Choi AMK (2014) Molecular regulation of autophagy and its implications for metabolic diseases. Curr Opin Clin Nutr Metab Care 17:329–337. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Zhang Y, Sowers JR, Ren J (2018) Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol 14:356–376. CrossRefPubMedGoogle Scholar
  78. 78.
    Wu H, Wang F, Hu S et al (2012) MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cell Signal 24:2179–2186. CrossRefPubMedGoogle Scholar
  79. 79.
    John Clotaire DZ, Zhang B, Wei N et al (2016) MiR-26b inhibits autophagy by targeting ULK2 in prostate cancer cells. Biochem Biophys Res Commun 472:194–200. CrossRefPubMedGoogle Scholar
  80. 80.
    Zhu H, Wu H, Liu X et al (2009) Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5:816–823. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Korkmaz G, Ayse Tekirdag K, Gulfem Ozturk D et al (2013) MIR376A is a regulator of starvation-induced autophagy. PLoS One 8:e82556. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Korkmaz G, le Sage C, Tekirdag KA et al (2012) miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy 8:165–176. CrossRefPubMedGoogle Scholar
  83. 83.
    Chang Y, Yan W, He X et al (2012) miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology 143:177–187. CrossRefPubMedGoogle Scholar
  84. 84.
    Comincini S, Allavena G, Palumbo S et al (2013) microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther 14:574–586. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Xiao J, Zhu X, He B et al (2011) MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J Biomed Sci 18:35. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Wang R, Wang Z-X, Yang J-S et al (2011) MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene 30:2644–2658. CrossRefPubMedGoogle Scholar
  87. 87.
    Zhai H, Song B, Xu X et al (2013) Inhibition of autophagy and tumor growth in colon cancer by miR-502. Oncogene 32:1570–1579. CrossRefPubMedGoogle Scholar
  88. 88.
    Fang J, Song X-W, Tian J et al (2012) Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes. Apoptosis 17:410–423. CrossRefPubMedGoogle Scholar
  89. 89.
    Knezevic I, Patel A, Sundaresan NR et al (2012) A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival. J Biol Chem 287:12913–12926. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Deng Z, Yang X, Fang L et al (2013) Misprocessing and functional arrest of microRNAs by miR-Pirate: roles of miR-378 and miR-17. Biochem J 450:375–386. CrossRefPubMedGoogle Scholar
  91. 91.
    Wang S, Zhang J, Wang Y, Chen M (2016) Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine 12:411–420. CrossRefPubMedGoogle Scholar
  92. 92.
    Saraiva C, Talhada D, Rai A et al (2018) MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo. PLoS One 13:e0193609. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Life Sciences, Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal
  2. 2.CNC, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations