The link between endometrial stromal cell senescence and decidualization in female fertility: the art of balance

  • Pavel Deryabin
  • Anastasiia Griukova
  • Nikolay Nikolsky
  • Aleksandra BorodkinaEmail author


Cell senescence seems to be an ambivalent biological phenomenon in many aspects. At the cellular level it is considered as an irreversible cell-cycle arrest commonly caused by the DNA damage. Senescent cells harbor a lot of impairments in various intracellular systems. Presence of senescent cells within tissues should ultimately lead to their malfunctioning. However, the interlink between cellular senescence and tissue/organismal functioning is far from always being unidirectional. The entangled and complex relationship between senescence and tissue-specific decidual differentiation of endometrial stromal cells (ESCs) is the excellent example reflecting dualism of cellular senescence. ESCs decidualization conditions endometrium responsiveness to embryonic signals and plays a critical role in embryo biosensoring, selection and implantation. Based on the analysis of the existing literary data, here we will try (1) to puzzle out how cellular senescence simultaneously may be an integral part of normal decidualization and may be involved in the progression of repeated implantation failures and recurrent pregnancy losses; (2) to suppose the sequence of cellular events reflecting the role of ESCs’ senescence during normal and impaired decidualization. Together, the deep scan of the interlink between ESCs’ senescence and decidualization will allow to suggest the preferable application scheme for senolytics targeting senescent cells as a possible approach to restore impaired endometrial receptivity and thus to increase the effectiveness of in vitro fertilization cycles.


Mesenchymal stromal cells Cell aging Tissue-specific differentiation Reproduction 



The authors are thankful to Maria Sirotkina for the assistance in the figures design.


This study was funded by the Russian Science Foundation (# 19-74-10038).

Compliance with ethical standards

Conflict of interest

None declared.


  1. 1.
    Hayflick L (1965) The limited in vitro lifespan of human diploid strains. Exp Cell Res 37:614–636. CrossRefPubMedGoogle Scholar
  2. 2.
    Borodkina AV, Deryabin PI, Giukova AA, Nikolsky NN (2018) “Social Life” of Senescent cells: what is SASP and why study it? Acta Naturae 10:4–14CrossRefGoogle Scholar
  3. 3.
    Ogrodnik M, Salmonowicz H, Gladyshev VN (2019) Integrating cellular senescence with the concept of damage accumulation in aging: relevance for clearance of senescent cells. Aging Cell 18:e12841. CrossRefPubMedGoogle Scholar
  4. 4.
    Burova E, Borodkina A, Shatrova A, Nikolsky N (2013) Sublethal oxidative stress induces the premature senescence of human mesenchymal stem cells derived from endometrium. Oxid Med Cell Longev 2013:474931. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fridlyanskaya I, Alekseenko L, Nikolsky N (2015) Senescence as a general cellular response to stress: a mini-review. Exp Gerontol 72:124–128. CrossRefPubMedGoogle Scholar
  6. 6.
    Toussaint O, Medrano EE, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945. CrossRefPubMedGoogle Scholar
  7. 7.
    Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496. CrossRefPubMedGoogle Scholar
  8. 8.
    Anderson R, Lagnado A, Maggiorani D et al (2019) Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ogrodnik M, Zhu Y, Langhi LGP et al (2019) Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab 29:1061.e8–1077.e8. CrossRefGoogle Scholar
  10. 10.
    Di D’Adda F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522. CrossRefGoogle Scholar
  11. 11.
    d’Adda di Fagagna F, Reaper PM, Clay-Farrace L et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198. CrossRefPubMedGoogle Scholar
  12. 12.
    Victorelli S, Passos JF (2017) Telomeres and cell senescence—size matters not. EBioMedicine 21:14–20. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Borodkina A, Shatrova A, Abushik P et al (2014) Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging (Albany NY) 6:481–495. CrossRefGoogle Scholar
  14. 14.
    Serrano M, Lin AW, McCurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a). Cell 88:593–602. CrossRefGoogle Scholar
  15. 15.
    Seluanov A, Mittelman D, Pereira-Smith OM et al (2004) DNA end joining be comes less efficient and more error-prone during cellular senescence. Proc Natl Acad Sci USA 101:7624–7629. CrossRefPubMedGoogle Scholar
  16. 16.
    Fumagalli M, Rossiello F, Mondello C, D’Adda Di Fagagna F (2014) Stable cellular senescence is associated with persistent DDR activation. PLoS One 9:e110969. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rodier F, Muñoz DP, Teachenor R et al (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124:68–81. CrossRefPubMedGoogle Scholar
  18. 18.
    Rossiello F, Herbig U, Longhese MP et al (2014) Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev 26:89–95. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Coppé JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868. CrossRefPubMedGoogle Scholar
  20. 20.
    Fumagalli M, d’Adda di Fagagna F (2009) SASPense and DDRama in cancer and ageing. Nat Cell Biol 11:921–923. CrossRefPubMedGoogle Scholar
  21. 21.
    Coppé J-P, Desprez P-Y, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol Mech Dis 5:99–118. CrossRefGoogle Scholar
  22. 22.
    Lujambio A (2016) To clear, or not to clear (senescent cells)? That is the question. Bioessays 38(Suppl 1):56–64. CrossRefGoogle Scholar
  23. 23.
    Malaquin N, Martinez A, Rodier F (2016) Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 82:39–49. CrossRefPubMedGoogle Scholar
  24. 24.
    Rao SG, Jackson JG (2016) SASP: tumor suppressor or promoter? Yes! Trends Cancer 2:676–687. CrossRefPubMedGoogle Scholar
  25. 25.
    Baar MP, Brandt RMC, Putavet DA et al (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132.e16–147.e16. CrossRefGoogle Scholar
  26. 26.
    Van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Acosta JC, Banito A, Wuestefeld T et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nelson G, Wordsworth J, Wang C et al (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11:345–349. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nelson SM, Lawlor DA (2011) Predicting live birth, preterm delivery, and low birth weight in infants born from in vitro fertilisation: a prospective study of 144,018 treatment cycles. PLoS Med 8:e1000386. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Acosta JC, O’Loghlen A, Banito A et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018. CrossRefPubMedGoogle Scholar
  31. 31.
    Hubackova S, Krejcikova K, Bartek J, Hodny Z (2012) IL1-and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine “Bystander senescence”. Aging (Albany NY) 4:932–951. CrossRefGoogle Scholar
  32. 32.
    Demaria M, O’Leary MN, Chang J et al (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov 7:165–176. CrossRefPubMedGoogle Scholar
  33. 33.
    Krtolica A, Parrinello S, Lockett S et al (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98:12072–12077. CrossRefPubMedGoogle Scholar
  34. 34.
    Malaquin N, Vercamer C, Bouali F et al (2013) Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS One 8:e63607. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    de Keizer PLJ (2017) The fountain of youth by targeting senescent cells? Trends Mol Med 23:6–17. CrossRefPubMedGoogle Scholar
  36. 36.
    Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16 Ink4a-positive cells shorten healthy lifespan. Nature 530:184–189. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhu Y, Tchkonia T, Pirtskhalava T et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23:1072–1079. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jeon OH, Kim C, Laberge RM et al (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23:775–781. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schafer MJ, White TA, Iijima K et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8:14532. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Justice JN, Nambiar AM, Tchkonia T et al (2019) Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40:554–563. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Strauss J, Barbieri R (2014) Yen and Jaffe’s reproductive endocrinology: physiology, pathophysiology, and clinical management. Saunders, PhiladelphiaGoogle Scholar
  44. 44.
    Gellersen B, Brosens JJ (2014) Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 35:851–905. CrossRefPubMedGoogle Scholar
  45. 45.
    Teklenburg G, Salker M, Molokhia M et al (2010) Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One 5:e10258. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Macklon NS, Brosens JJ (2014) The human endometrium as a sensor of embryo quality. Biol Reprod 98:1–8. CrossRefGoogle Scholar
  47. 47.
    Gossman W, Fagan SE, Sosa-Stanley JN, Peterson DC (2019) Anatomy, abdomen and pelvis, uterus. StatPearls Publishing LLC, St. PetersburgGoogle Scholar
  48. 48.
    Gargett CE (2007) Uterine stem cells: what is the evidence? Hum Reprod Update 13:87–101. CrossRefPubMedGoogle Scholar
  49. 49.
    Jabbour HN, Kelly RW, Fraser HM, Critchley HOD (2006) Endocrine regulation of menstruation. Endocr Rev 27:17–46. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Padykula HA (1991) Regeneration in the primate uterus: the role of stem cells. Ann N Y Acad Sci 622:47–56. CrossRefPubMedGoogle Scholar
  51. 51.
    Yoshie M, Kusama K, Tamura K (2015) Molecular mechanisms of human endometrial decidualization activated by cyclic adenosine monophosphate signaling pathways. J Mamm Ova Res 32:95–102. CrossRefGoogle Scholar
  52. 52.
    Park Y, Nnamani MC, Maziarz J, Wagner GP (2016) Cis-regulatory evolution of forkhead box O1 (FOXO1), a terminal selector gene for decidual stromal cell identity. Mol Biol Evol 33:3161–3169. CrossRefPubMedGoogle Scholar
  53. 53.
    Brosens JJ, Salker MS, Teklenburg G et al (2014) Uterine selection of human embryos at implantation. Sci Rep 4:3894. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Durairaj RRP, Aberkane A, Polanski L et al (2017) Deregulation of the endometrial stromal cell secretome precedes embryo implantation failure. Mol Hum Reprod 23:478–487. CrossRefGoogle Scholar
  55. 55.
    Erlebacher A (2013) Immunology of the maternal-fetal interface. Annu Rev Immunol 31:387–411. CrossRefPubMedGoogle Scholar
  56. 56.
    Kuroda K, Venkatakrishnan R, Salker MS et al (2013) Induction of 11β-HSD 1 and activation of distinct mineralocorticoid receptor- and glucocorticoid receptor-dependent gene networks in decidualizing human endometrial stromal cells. Mol Endocrinol 27:192–202. CrossRefPubMedGoogle Scholar
  57. 57.
    Kuroda K, Venkatakrishnan R, James S et al (2013) Elevated periimplantation uterine natural killer cell density in human endometrium is associated with impaired corticosteroid signaling in decidualizing stromal cells. J Clin Endocrinol Metab 98:4429–4437. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lucas ES, Dyer NP, Murakami K et al (2016) Loss of endometrial plasticity in recurrent pregnancy loss. Stem Cells 34:346–356. CrossRefPubMedGoogle Scholar
  59. 59.
    Salker MS, Nautiyal J, Steel JH et al (2012) Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. PLoS One 7:e52252. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Brighton PJ, Maruyama Y, Fishwick K et al (2017) Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. Elife 6:e31274. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lucas ES, Dyer NP, Fishwick K et al (2016) Success after failure: the role of endometrial stem cells in recurrent miscarriage. Reproduction 152:R159–R166. CrossRefPubMedGoogle Scholar
  62. 62.
    Marquez CMD, Ibana JA, Velarde MC (2017) The female reproduction and senescence nexus. Am J Reprod Immunol 77:e12646. CrossRefGoogle Scholar
  63. 63.
    Laws MJ, Taylor RN, Sidell N et al (2008) Gap junction communication between uterine stromal cells plays a critical role in pregnancy-associated neovascularization and embryo survival. Development 135:2659–2668. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cha JM, Aronoff DM (2017) A role for cellular senescence in birth timing. Cell Cycle 16:2023–2031. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lucas ES, Vrljicak P, Diniz-Da-Costa MM et al (2018) Reconstruction of the decidual pathways in human endometrial cells using single-cell RNA-Seq. bioRxiv. CrossRefGoogle Scholar
  66. 66.
    Hirota Y, Daikoku T, Tranguch S et al (2010) Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J Clin Invest 120:803–815. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hirota Y (2014) Endometrial cellular senescence contributes to preterm birth. Inflamm Regen 34:64–68CrossRefGoogle Scholar
  68. 68.
    Hirota Y, Cha J, Yoshie M et al (2011) Heightened uterine mammalian target of rapamycin complex 1 (mTORC1) signaling provokes preterm birth in mice. Proc Natl Acad Sci USA 108:18073–18078. CrossRefPubMedGoogle Scholar
  69. 69.
    Cha J, Bartos A, Egashira M et al (2013) Combinatory approaches prevent preterm birth profoundly exacerbated by gene-environment interactions. J Clin Invest 123:4063–4075. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Liao Y, Jiang Y, He H et al (2015) NEDD8-mediated neddylation is required for human endometrial stromal proliferation and decidualization. Hum Reprod 30:1665–1676. CrossRefPubMedGoogle Scholar
  71. 71.
    Kusama K, Yoshie M, Tamura K et al (2014) The role of exchange protein directly activated by cyclic AMP 2-mediated calreticulin expression in the decidualization of human endometrial stromal cells. Endocrinology 155:240–248. CrossRefPubMedGoogle Scholar
  72. 72.
    Huo Y, Iadevaia V, Yao Z et al (2012) Stable isotope-labelling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis. Biochem J 444:141–151. CrossRefPubMedGoogle Scholar
  73. 73.
    Ochiai A, Kuroda K, Ozaki R et al (2019) Resveratrol inhibits decidualization by accelerating downregulation of the CRABP2-RAR pathway in differentiating human endometrial stromal cells. Cell Death Dis 10:276. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ochiai A, Kuroda K, Ikemoto Y et al (2019) Influence of resveratrol supplementation on IVF-embryo transfer cycle outcomes. Reprod Biomed Online 39:205–210. CrossRefPubMedGoogle Scholar
  75. 75.
    Practice Committee of the American Society for Reproductive Medicine (2012) Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril 98:1103–1111. CrossRefGoogle Scholar
  76. 76.
    Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, Cutting R, Ong K, Sallam H, Li TC (2014) Recurrent implantation failure: definition and management. Reprod Biomed Online 28:14–38. CrossRefPubMedGoogle Scholar
  77. 77.
    Francis J, Rai R, Sebire NJ et al (2006) Impaired expression of endometrial differentiation markers and complement regulatory proteins in patients with recurrent pregnancy loss associated with antiphospholipid syndrome. Mol Hum Reprod 12:435–442. CrossRefPubMedGoogle Scholar
  78. 78.
    Huang C, Jiang Y, Zhou J et al (2017) Increased Krüppel-like factor 12 in recurrent implantation failure impairs endometrial decidualization by repressing Nur77 expression. Reprod Biol Endocrinol 15:25. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Salker M, Teklenburg G, Molokhia M et al (2010) Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS One 5:e10287. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wu D, Kimura F, Zheng L et al (2017) Chronic endometritis modifies decidualization in human endometrial stromal cells. Reprod Biol Endocrinol 15:16. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kuroda K (2019) Impaired endometrial function and unexplained recurrent pregnancy loss. Hypertens Res Pregnancy 7:16–21. CrossRefGoogle Scholar
  82. 82.
    Kitaya K (2011) Prevalence of chronic endometritis in recurrent miscarriages. Fertil Steril 95:1156–1158. CrossRefPubMedGoogle Scholar
  83. 83.
    Cicinelli E, Matteo M, Tinelli R et al (2015) Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy. Hum Reprod 30:323–330. CrossRefPubMedGoogle Scholar
  84. 84.
    Bouet PE, El Hachem H, Monceau E et al (2016) Chronic endometritis in women with recurrent pregnancy loss and recurrent implantation failure: prevalence and role of office hysteroscopy and immunohistochemistry in diagnosis. Fertil Steril 105:106–110. CrossRefPubMedGoogle Scholar
  85. 85.
    Kupka MS, Ferraretti AP, de Mouzon J et al (2014) Assisted reproductive technology in Europe, 2010: results generated from European registers by ESHRE†. Hum Reprod 29:2099–2113. CrossRefPubMedGoogle Scholar
  86. 86.
    Zarinara A, Zeraati H, Kamali K et al (2015) Models predicting success of infertility treatment: a systematic review. J Reprod Infertil 17:68–81Google Scholar
  87. 87.
    Kupka MS, D’Hooghe T, Ferraretti AP et al (2016) Assisted reproductive technology in Europe, 2011: results generated from European registers by ESHRE. Hum Reprod 31:233–248. CrossRefPubMedGoogle Scholar
  88. 88.
    Revel A (2012) Defective endometrial receptivity. Fertil Steril 97:1028–1032. CrossRefPubMedGoogle Scholar
  89. 89.
    Bourgeois B, Madl T (2018) Regulation of cellular senescence via the FOXO4-p53 axis. FEBS Lett 592:2083–2097. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Chang J, Wang Y, Shao L et al (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78–83. CrossRefPubMedGoogle Scholar
  91. 91.
    Fuhrmann-Stroissnigg H, Ling YY, Zhao J et al (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8:422. CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Myrianthopoulos V (2018) The emerging field of senotherapeutic drugs. Future Med Chem 10:2369–2372. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Intracellular Signaling and TransportInstitute of Cytology of the Russian Academy of SciencesSt-PetersburgRussia

Personalised recommendations