Vertebrate cranial mesoderm: developmental trajectory and evolutionary origin

  • Bhakti Vyas
  • Nitya Nandkishore
  • Ramkumar SambasivanEmail author


Vertebrate cranial mesoderm is a discrete developmental unit compared to the mesoderm below the developing neck. An extraordinary feature of the cranial mesoderm is that it includes a common progenitor pool contributing to the chambered heart and the craniofacial skeletal muscles. This striking developmental potential and the excitement it generated led to advances in our understanding of cranial mesoderm developmental mechanism. Remarkably, recent findings have begun to unravel the origin of its distinct developmental characteristics. Here, we take a detailed view of the ontogenetic trajectory of cranial mesoderm and its regulatory network. Based on the emerging evidence, we propose that cranial and posterior mesoderm diverge at the earliest step of the process that patterns the mesoderm germ layer along the anterior–posterior body axis. Further, we discuss the latest evidence and their impact on our current understanding of the evolutionary origin of cranial mesoderm. Overall, the review highlights the findings from contemporary research, which lays the foundation to probe the molecular basis of unique developmental potential and evolutionary origin of cranial mesoderm.


Head mesoderm Cardiopharyngeal field Head muscles Vertebrate head evolution Mesoderm development 



  1. 1.
    Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science (80-) 220:268–273. CrossRefGoogle Scholar
  2. 2.
    Stolfi A et al (2010) Early chordate origins of the vertebrate second heart field. Science (80-). CrossRefGoogle Scholar
  3. 3.
    Kaplan N, Razy-Krajka F, Christiaen L (2015) Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates. Curr Opin Genet Dev 32:119–128. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Delsuc F et al (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968. CrossRefPubMedGoogle Scholar
  5. 5.
    Sambasivan R, Kuratani S, Tajbakhsh S (2011) An eye on the head: the development and evolution of craniofacial muscles. Development 138:2401–2415. CrossRefPubMedGoogle Scholar
  6. 6.
    Gopalakrishnan S, Comai G, Sambasivan R et al (2015) A cranial mesoderm origin for esophagus striated muscles. Dev Cell 34:694–704. CrossRefPubMedGoogle Scholar
  7. 7.
    Heude E, Tesarova M, Sefton EM et al (2018) Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. Elife 7:1–26. CrossRefGoogle Scholar
  8. 8.
    Lescroart F, Hamou W, Francou A et al (2015) Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium. Proc Natl Acad Sci 112:1446–1451. CrossRefPubMedGoogle Scholar
  9. 9.
    Noden DM (1983) The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 168:257–276. CrossRefPubMedGoogle Scholar
  10. 10.
    Evans DJR, Noden DM (2006) Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells. Dev Dyn 235:1310–1325. CrossRefPubMedGoogle Scholar
  11. 11.
    Jacob M et al (1984) Ontogeny of avian extrinsic muscles. Cell Tissue Res. CrossRefPubMedGoogle Scholar
  12. 12.
    Couly GF, Coltey PM, Le Douarin NM (1992) The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114:1–15PubMedGoogle Scholar
  13. 13.
    Kuratani S (2005) Craniofacial development and the evolution of the vertebrates: the old problems on a new background. Zoolog Sci 19:19. CrossRefGoogle Scholar
  14. 14.
    Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235:1194–1218. CrossRefPubMedGoogle Scholar
  15. 15.
    Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429PubMedGoogle Scholar
  16. 16.
    Bothe I, Ahmed MU, Winterbottom FL et al (2007) Extrinsic versus intrinsic cues in avian paraxial mesoderm patterning and differentiation. Dev Dyn 236:2397–2409. CrossRefPubMedGoogle Scholar
  17. 17.
    Noden DM, Trainor PA (2005) Relations and interactions between cranial mesoderm and neural crest populations. J Anat 207:575–601. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mootoosamy RC, Dietrich S (2002) Distinct regulatory cascades for head and trunk myogenesis. Development 129:573–583PubMedGoogle Scholar
  19. 19.
    Tzahor E, Kempf H, Mootoosamy RC et al (2003) Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle. Genes Dev 17:3087–3099. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bothe I, Dietrich S (2006) The molecular setup of the avian head mesoderm and its implication for craniofacial myogenesis. Dev Dyn 235:2845–2860. CrossRefPubMedGoogle Scholar
  21. 21.
    Harel I, Maezawa Y, Avraham R et al (2012) Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis. Proc Natl Acad Sci 109:18839–18844. CrossRefPubMedGoogle Scholar
  22. 22.
    Lu J, Chang P, Valdez R et al (2001) Control of facial muscle development by MyoR and capsulin. Science 298:2378–2381. CrossRefGoogle Scholar
  23. 23.
    Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138. CrossRefPubMedGoogle Scholar
  24. 24.
    Kelly RG, Jerome-Majewska LA, Papaioannou VE (2004) The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Hum Mol Genet 13:2829–2840. CrossRefPubMedGoogle Scholar
  25. 25.
    Shih HP, Gross MK, Kioussi C (2007) Cranial muscle defects of Pitx2 mutants result from specification defects in the first branchial arch. Proc Natl Acad Sci 104:5907–5912. CrossRefPubMedGoogle Scholar
  26. 26.
    Dong F, Sun X, Liu W et al (2006) Pitx2 promotes development of splanchnic mesoderm-derived branchiomeric muscle. Development 133:4891–4899. CrossRefPubMedGoogle Scholar
  27. 27.
    Sambasivan R et al (2009) Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 16:810–821. CrossRefPubMedGoogle Scholar
  28. 28.
    Cao J, Spielmann M, Qiu X et al (2019) The single-cell transcriptional landscape of mammalian organogenesis. Nature 566:496–502. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kelly RG, Brown NA, Buckingham ME, Kingdom U (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1:435–440CrossRefGoogle Scholar
  30. 30.
    Lescroart F, Kelly RG, Le Garrec J-F et al (2010) Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 137:3269–3279. CrossRefPubMedGoogle Scholar
  31. 31.
    Lescroart F, Chabab S, Lin X et al (2014) Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol 16:829–840. CrossRefPubMedGoogle Scholar
  32. 32.
    Zaffran S, Odelin G, Stefanovic S et al (2018) Ectopic expression of Hoxb1 induces cardiac and craniofacial malformations. Genesis 56:1–13. CrossRefGoogle Scholar
  33. 33.
    Kelly RG, Buckingham ME (2002) The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet 18:210–216. CrossRefPubMedGoogle Scholar
  34. 34.
    Tirosh-Finkel L (2006) Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract. Development 133:1943–1953. CrossRefPubMedGoogle Scholar
  35. 35.
    Nathan E, Monovich A, Tirosh-Finkel L et al (2008) The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development 135:647–657. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Grifone R, Kelly RG (2007) Heartening news for head muscle development. Trends Genet 23:365–369. CrossRefPubMedGoogle Scholar
  37. 37.
    Diogo R, Kelly RG, Christiaen L et al (2015) A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 520:466–473. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10:91–103. CrossRefPubMedGoogle Scholar
  39. 39.
    Ramkumar and Anderson (2011) SnapShot: mouse primitive streak. Cell 146:488. CrossRefPubMedGoogle Scholar
  40. 40.
    Kinder SJ, Tsang TE, Quinlan GA et al (1999) The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126:4691–4701PubMedGoogle Scholar
  41. 41.
    Tam PP, Beddington RS (1987) The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis. Development 99:109–126PubMedGoogle Scholar
  42. 42.
    Lawson KA, Pedersen RA (1992) Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. In: Ciba foundation symposium, pp 3–26CrossRefGoogle Scholar
  43. 43.
    Tam PP, Parameswaran M, Kinder SJ, Weinberger RP (1997) The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 124:1631–1642PubMedGoogle Scholar
  44. 44.
    Yang L, Soonpaa MH, Adler ED et al (2008) Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature 453:524–528. CrossRefPubMedGoogle Scholar
  45. 45.
    Rao J, Pfeiffer MJ, Frank S et al (2016) Stepwise clearance of repressive roadblocks drives cardiac induction in human ESCs. Cell Stem Cell 18:341–353. CrossRefPubMedGoogle Scholar
  46. 46.
    Mendjan S, Mascetti VL, Ortmann D et al (2014) NANOG and CDX2 pattern distinct subtypes of human mesoderm during exit from pluripotency. Cell Stem Cell 15:310–325. CrossRefPubMedGoogle Scholar
  47. 47.
    Peng G, Suo S, Chen J et al (2016) Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev Cell 36:681–697. CrossRefPubMedGoogle Scholar
  48. 48.
    Vermillion KL, Bacher R, Tannenbaum AP et al (2018) Spatial patterns of gene expression are unveiled in the chick primitive streak by ordering single-cell transcriptomes. Dev Biol 439:30–41. CrossRefPubMedGoogle Scholar
  49. 49.
    Pijuan-Sala B, Griffiths JA, Guibentif C et al (2019) A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566:490–495. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Saykali B, Mathiah N, Nahaboo W et al (2019) Distinct mesoderm migration phenotypes in extra-embryonic and embryonic regions of the early mouse embryo. Elife 8:1–27. CrossRefGoogle Scholar
  51. 51.
    Trainor PA, Tan SS, Tam PP (1994) Cranial paraxial mesoderm: regionalisation of cell fate and impact on craniofacial development in mouse embryos. Development 120:2397–2408PubMedGoogle Scholar
  52. 52.
    Parameswaran M, Tam PPL (1995) Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet 17:16–28. CrossRefPubMedGoogle Scholar
  53. 53.
    Nandkishore N, Vyas B, Javali A et al (2018) Divergent early mesoderm specification underlies distinct head and trunk muscle programmes in vertebrates. Development 4529:4522–4529. CrossRefGoogle Scholar
  54. 54.
    Takaoka K, Yamamoto M, Hamada H (2011) Origin and role of distal visceral endoderm, a group of cells that determines anterior-posterior polarity of the mouse embryo. Nat Cell Biol 13:743–752. CrossRefPubMedGoogle Scholar
  55. 55.
    Meno C, Gritsman K, Ohishi S et al (1999) Mouse lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell 4:287–298. CrossRefPubMedGoogle Scholar
  56. 56.
    Yamamoto M, Saijoh Y, Perea-Gomez A et al (2004) Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428:387–392. CrossRefPubMedGoogle Scholar
  57. 57.
    Finley KR, Tennessen J, Shawlot W (2003) The mouse Secreted frizzled-related protein 5 gene is expressed in the anterior visceral endoderm and foregut endoderm during early post-implantation development. Gene Expr Patterns 3:681–684. CrossRefPubMedGoogle Scholar
  58. 58.
    Kemp C, Willems E, Abdo S et al (2005) Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation development. Dev Dyn 233:1064–1075. CrossRefPubMedGoogle Scholar
  59. 59.
    Perea-Gomez A, Camus A, Moreau A et al (2004) Initiation of gastrulation in the mouse embryo is preceded by an apparent shift in the orientation of the anterior-posterior axis. Curr Biol 14:197–207. CrossRefPubMedGoogle Scholar
  60. 60.
    Kimura C, Yoshinaga K, Tian E et al (2000) Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev Biol 225:304–321. CrossRefPubMedGoogle Scholar
  61. 61.
    Perea-Gomez A, Vella FDJ, Shawlot W et al (2002) Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell 3:745–756. CrossRefPubMedGoogle Scholar
  62. 62.
    Thomas P, Beddington R (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6:1487–1496. CrossRefPubMedGoogle Scholar
  63. 63.
    Perea-Gomez Rhinn M, Ang SL (2001) Role of the anterior visceral endoderm in restricting posterior signals in the mouse embryo. Int J Dev Biol 45:311–320PubMedGoogle Scholar
  64. 64.
    Perea-Gomez Lawson KA, Rhinn M et al (2001) Otx2 is required for visceral endoderm movement and for the restriction of posterior signals in the epiblast of the mouse embryo. Development 128:753–765PubMedGoogle Scholar
  65. 65.
    Brennan J, Lu CC, Norris DP et al (2001) Nodal signalling in the epiblast patterns the early mouse embryo Nature. 8716:965–969Google Scholar
  66. 66.
    Tortelote GG, Hernández-Hernández JM, Quaresma AJC et al (2013) Wnt3 function in the epiblast is required for the maintenance but not the initiation of gastrulation in mice. Dev Biol 374:164–173. CrossRefPubMedGoogle Scholar
  67. 67.
    Barrow JR, Howell WD, Rule M et al (2007) Wnt3 signaling in the epiblast is required for proper orientation of the anteroposterior axis. Dev Biol 312:312–320. CrossRefPubMedGoogle Scholar
  68. 68.
    Tam PP, Loebel DA, Tanaka SS (2006) Building the mouse gastrula: signals, asymmetry and lineages. Curr Opin Genet Dev 16:419–425. CrossRefPubMedGoogle Scholar
  69. 69.
    Rivera-Pérez JA, Magnuson T (2005) Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev Biol 288:363–371. CrossRefPubMedGoogle Scholar
  70. 70.
    Mohamed OA, Clarke HJ, Dufort D (2004) β-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Dev Dyn 231:416–424. CrossRefPubMedGoogle Scholar
  71. 71.
    Kelly OG (2004) The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 131:2803–2815. CrossRefPubMedGoogle Scholar
  72. 72.
    Andre P, Song H, Kim W et al (2015) Wnt5a and Wnt11 regulate mammalian anterior-posterior axis elongation. Development 142:1516–1527. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hoshino H, Shioi G, Aizawa S (2015) AVE protein expression and visceral endoderm cell behavior during anterior-posterior axis formation in mouse embryos: asymmetry in OTX2 and DKK1 expression. Dev Biol 402:175–191. CrossRefPubMedGoogle Scholar
  74. 74.
    Schneider VA, Mercola M (1999) Spatially distinct head and heart inducers within the Xenopus organizer region. Curr Biol 9:800–809. CrossRefPubMedGoogle Scholar
  75. 75.
    Schneider and Mercola (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15:304–315. CrossRefPubMedGoogle Scholar
  76. 76.
    Mazzotta S, Neves C, Bonner RJ et al (2016) Distinctive roles of canonical and noncanonical Wnt signaling in human embryonic cardiomyocyte development. Stem Cell Rep 7:764–776. CrossRefGoogle Scholar
  77. 77.
    Marvin MJ, Di Rocco G, Gardiner A et al (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15:316–327. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Palpant NJ, Pabon L, Roberts M et al (2015) Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. Development 128:e1.2. CrossRefGoogle Scholar
  79. 79.
    Minami I, Yamada K, Otsuji TG et al (2012) A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep 2:1448–1460. CrossRefPubMedGoogle Scholar
  80. 80.
    Münsterberg AE, Kitajewski J, Bumcrot DA et al (1995) Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev 9:2911–2922. CrossRefPubMedGoogle Scholar
  81. 81.
    Capdevila J, Tabin C, Johnson RL (1998) Control of dorsoventral somite patterning by Wnt-1 and β-catenin. Dev Biol 193:182–194. CrossRefPubMedGoogle Scholar
  82. 82.
    Ikeya M, Takada S (1998) Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 125:4969–4976PubMedGoogle Scholar
  83. 83.
    Tajbakhsh S, Borello U, Vivarelli E et al (1998) Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125:4155–4162PubMedGoogle Scholar
  84. 84.
    Cossu G, Borello U (1999) Wnt signaling and the activation of myogenesis in mammals. EMBO J 18:6867–6872CrossRefGoogle Scholar
  85. 85.
    Takada S, Stark KL, Shea MJ et al (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8:174–189CrossRefGoogle Scholar
  86. 86.
    Dunty WC, Biris KK, Chalamalasetty RB et al (2007) Wnt3a/β-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 135:85–94. CrossRefPubMedGoogle Scholar
  87. 87.
    Yamaguchi TP, Takada S, Yoshikawa Y et al (1999) T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 13:3185–3190. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Herrmann BG (1991) Expression pattern of the Brachyury gene in whole-mount TWis/TWis mutant embryos. Development 113:913–917PubMedGoogle Scholar
  89. 89.
    Chapman DL, Agulnik I, Hancock S et al (1996) Tbx6, a mouse T-box gene implicated in paraxial mesoderm formation at gastrulation. Dev Biol 180:534–542. CrossRefPubMedGoogle Scholar
  90. 90.
    Javali A, Misra A, Leonavicius K et al (2017) Co-expression of Tbx6 and Sox2 identifies a novel transient neuromesoderm progenitor cell state. Development 144:4522–4529. CrossRefPubMedGoogle Scholar
  91. 91.
    Boulet AM, Capecchi MR (2012) Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo. Dev Biol 371:235–245. CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Ciruna B, Rossant J (2001) FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1:37–49. CrossRefPubMedGoogle Scholar
  93. 93.
    Martin BL, Kimelman D (2012) Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation. Dev Cell 22:223–232. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Turner DA, Hayward PC, Baillie-Johnson P et al (2014) Wnt/β-catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells. Development 141:4243–4253. CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Garriock RJ, Chalamalasetty RB, Kennedy MW et al (2015) Lineage tracing of neuromesodermal progenitors reveals novel Wnt-dependent roles in trunk progenitor cell maintenance and differentiation. Development 142:1628–1638. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Gouti M, Tsakiridis A, Wymeersch FJ et al (2014) In vitro generation of neuromesodermal progenitors reveals distinct roles for Wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Cambray N, Wilson V (2007) Two distinct sources for a population of maturing axial progenitors. Development 134:2829–2840. CrossRefPubMedGoogle Scholar
  98. 98.
    Tzouanacou E, Wegener A, Wymeersch FJ et al (2009) Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell 17:365–376. CrossRefPubMedGoogle Scholar
  99. 99.
    McGrew MJ, Sherman A, Lillico SG et al (2008) Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development 135:2289–2299. CrossRefPubMedGoogle Scholar
  100. 100.
    Henrique D, Abranches E, Verrier L, Storey KG (2015) Neuromesodermal progenitors and the making of the spinal cord. Development 142:2864–2875. CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Steventon B, Martinez Arias A (2017) Evo-engineering and the cellular and molecular origins of the vertebrate spinal cord. Dev Biol 432:3–13. CrossRefPubMedGoogle Scholar
  102. 102.
    Chapman DL et al (1998) Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature 391:695–697. CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    King T, Beddington RSP, Brown NA (1998) The role of the brachyury gene in heart development and left-right specification in the mouse. Mech Dev 79:29–37. CrossRefPubMedGoogle Scholar
  104. 104.
    Kitaguchi T, Mizugishi K, Hatayama M et al (2002) Xenopus Brachyury regulates mesodermal expression of Zic3, a gene controlling left-right asymmetry. Dev Growth Differ 44:55–61. CrossRefPubMedGoogle Scholar
  105. 105.
    Hadjantonakis AK, Pisano E, Papaioannou VE (2008) Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS One. CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Liu P, Wakamiya M, Shea MJ et al (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22:361–365. CrossRefPubMedGoogle Scholar
  107. 107.
    Galceran J, Fariñas I, Depew MJ et al (1999) Wnt3a−/−-like phenotype and limb deficiency in Lef−/−Tcf1−/− mice. Genes Dev 13:709–717CrossRefGoogle Scholar
  108. 108.
    De Robertis EM (2008) Evo-Devo: variations on ancestral themes. Cell 132:185–195. CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Niehrs C (2010) On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137:845–857. CrossRefPubMedGoogle Scholar
  110. 110.
    Petersen CP, Reddien PW (2009) wnt signaling and the polarity of the primary body axis. Cell 139:1056–1068. CrossRefPubMedGoogle Scholar
  111. 111.
    Ikeya M, Takada S (2001) Wnt-3a is required for somite specification along the anteroposterior axis of mouse embryo and for regulation of Cdx-1 expression. Mech Dev 103:27–33CrossRefGoogle Scholar
  112. 112.
    Nordström U, Maier E, Jessell TM, Edlund T (2006) An early role for Wnt signaling in specifying neural patterns of Cdx and Hox gene expression and motor neuron subtype identity. PLoS Biol 4:1438–1452. CrossRefGoogle Scholar
  113. 113.
    Pilon N, Oh K, Sylvestre JR et al (2006) Cdx4 is a direct target of the canonical Wnt pathway. Dev Biol 289:55–63. CrossRefPubMedGoogle Scholar
  114. 114.
    Shimizu T, Bae YK, Muraoka O, Hibi M (2005) Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev Biol 279:125–141. CrossRefPubMedGoogle Scholar
  115. 115.
    van de Ven C, Bialecka M, Neijts R et al (2011) Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development 138:3859. CrossRefGoogle Scholar
  116. 116.
    van den Akker E, Forlani S, Chawengsaksophak K et al (2002) Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development 129:2181–2193PubMedGoogle Scholar
  117. 117.
    Neijts R, Amin S, van Rooijen C, Deschamps J (2017) Cdx is crucial for the timing mechanism driving colinear Hox activation and defines a trunk segment in the Hox cluster topology. Dev Biol 422:146–154. CrossRefPubMedGoogle Scholar
  118. 118.
    Young T, Rowland JE, van de Ven C et al (2009) Cdx and hox genes differentially regulate posterior axial growth in mammalian embryos. Dev Cell 17:516–526. CrossRefPubMedGoogle Scholar
  119. 119.
    van Rooijen C, Simmini S, Bialecka M et al (2012) Evolutionarily conserved requirement of Cdx for post-occipital tissue emergence. Development 139:2576–2583. CrossRefPubMedGoogle Scholar
  120. 120.
    Ciruna BG, Rossant J (1999) Expression of the T-box gene eomesodermin during early mouse development. Mech Dev 81:199–203. CrossRefPubMedGoogle Scholar
  121. 121.
    Saga Y, Hata N, Taketo MM et al (1996) MesP1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development 122:2769–2778PubMedGoogle Scholar
  122. 122.
    Saga Y, Miyagawa-Tomita S, Takagi A et al (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126:3437–3447PubMedGoogle Scholar
  123. 123.
    Harel I, Nathan E, Tirosh-Finkel L et al (2009) Distinct origins and genetic programs of head muscle satellite cells. Dev Cell 16:822–832. CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Kitajima S, Takagi A, Inoue T, Saga Y (2000) MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127:3215–3226PubMedGoogle Scholar
  125. 125.
    Chan SSK, Shi X, Toyama A et al (2013) Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 12:587–601. CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Satou Y et al (2004) The ascidian Mesp gene specifies heart precursor cells. Development 131:2533–2541. CrossRefPubMedGoogle Scholar
  127. 127.
    Costello I, Pimeisl IM, Dräger S et al (2011) The T-box transcription factor eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat Cell Biol 13:1084–1092. CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Arnold SJ, Hofmann UK, Bikoff EK, Robertson EJ (2008) Pivotal roles for eomesodermin during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse. Development 135:501–511. CrossRefPubMedGoogle Scholar
  129. 129.
    Bondue A, Blanpain C (2010) Mesp1: a key regulator of cardiovascular lineage commitment. Circ Res 107:1414–1427. CrossRefPubMedGoogle Scholar
  130. 130.
    Hacker A, Guthrie S (1998) A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125:3461–3472PubMedGoogle Scholar
  131. 131.
    Rios AC, Serralbo O, Salgado D, Marcelle C (2011) Neural crest regulates myogenesis through the transient activation of NOTCH. Nature 473:532–535. CrossRefPubMedGoogle Scholar
  132. 132.
    Köntges G, Lumsden A (1996) Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122:3229–3242PubMedGoogle Scholar
  133. 133.
    Grenier J, Teillet MA, Grifone R et al (2009) Relationship between neural crest cells and cranial mesoderm during head muscle development. PLoS One. CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Rinon A, Lazar S, Marshall H et al (2007) Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development 134:3065–3075. CrossRefPubMedGoogle Scholar
  135. 135.
    Rios AC, Marcelle C (2009) Head muscles: aliens who came in from the cold? Dev Cell 16:779–780. CrossRefPubMedGoogle Scholar
  136. 136.
    Kuratani S, Schilling T (2008) Head segmentation in vertebrates. Integr Comp Biol 48:604–610. CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Onai T, Adachi N, Kuratani S (2017) Metamerism in cephalochordates and the problem of the vertebrate head. Int J Dev Biol 61:621–632. CrossRefPubMedGoogle Scholar
  138. 138.
    Holland LZ, Holland ND, Gilland E (2008) Amphioxus and the evolution of head segmentation. Integr Comp Biol 48:630–646. CrossRefPubMedGoogle Scholar
  139. 139.
    Aldea D, Subirana L, Keime C et al (2019) Genetic regulation of amphioxus somitogenesis informs the evolution of the vertebrate head mesoderm. Nat Ecol Evol. CrossRefPubMedGoogle Scholar
  140. 140.
    Bertrand S, Camasses A, Somorjai I et al (2011) Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc Natl Acad Sci 108:9160–9165. CrossRefPubMedGoogle Scholar
  141. 141.
    Holland ND, Venkatesh TV, Holland LZ et al (2003) AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev Biol 255:128–137. CrossRefPubMedGoogle Scholar
  142. 142.
    Pascual-Anaya J, Albuixech-Crespo B, Somorjai IML et al (2013) The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Dev Biol 375:182–192. CrossRefPubMedGoogle Scholar
  143. 143.
    Achim K, Arendt D (2014) Structural evolution of cell types by step-wise assembly of cellular modules. Curr Opin Genet Dev 27:102–108. CrossRefPubMedGoogle Scholar
  144. 144.
    Brunet T, Fischer AHL, Steinmetz PRH et al (2016) The evolutionary origin of bilaterian smooth and striated myocytes. Elife 5:1–24. CrossRefGoogle Scholar
  145. 145.
    Amacher SL, Draper BW, Summers BR, Kimmel CB (2002) The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate. Development 3323:3311–3323Google Scholar
  146. 146.
    Baillie-johnson P, Hayward P (2018) The chick caudolateral epiblast acts as a permissive niche for generating neuromesodermal progenitor behaviours. Cell Tissue Organs. CrossRefGoogle Scholar
  147. 147.
    Attardi A, Fulton T, Florescu M et al (2019) Correction: neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development 146:dev175620. CrossRefPubMedGoogle Scholar
  148. 148.
    Ansari S, Troelenberg N, Dao VA et al (2018) Double abdomen in a short-germ insect: zygotic control of axis formation revealed in the beetle Tribolium castaneum. Proc Natl Acad Sci. CrossRefPubMedGoogle Scholar
  149. 149.
    Fritzenwanker JH, Uhlinger KR, Gerhart J et al (2019) Untangling posterior growth and segmentation by analyzing mechanisms of axis elongation in hemichordates. Proc Natl Acad Sci. CrossRefPubMedGoogle Scholar
  150. 150.
    Niehrs C (2004) Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 5:425–434. CrossRefPubMedGoogle Scholar
  151. 151.
    De Robertis E (2010) Wnt signaling in axial patterning and regeneration: lessons from planaria. Sci Signal 3:2008–2011. CrossRefGoogle Scholar
  152. 152.
    Loh KM, van Amerongen R, Nusse R (2016) Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev Cell 38:643–655. CrossRefPubMedGoogle Scholar
  153. 153.
    Yoshida T, Vivatbutsiri P, Morriss-Kay G et al (2008) Cell lineage in mammalian craniofacial mesenchyme. Mech Dev 125:797–808. CrossRefPubMedGoogle Scholar
  154. 154.
    Graham A, Shimeld SM (2013) The origin and evolution of the ectodermal placodes. J Anat 222:32–40. CrossRefPubMedGoogle Scholar
  155. 155.
    Abitua PB, Wagner E, Navarrete IA, Levine M (2012) Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492:104–107. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Stem Cell Biology and Regenerative MedicineBengaluruIndia
  2. 2.Manipal Academy of Higher EducationManipalIndia
  3. 3.SASTRA UniversityThanjavurIndia
  4. 4.Indian Institute of Science Education and Research (IISER) TirupatiTirupatiIndia

Personalised recommendations