Protein kinases: master regulators of neuritogenesis and therapeutic targets for axon regeneration

  • Sarah A. Bennison
  • Sara M. Blazejewski
  • Trevor H. Smith
  • Kazuhito Toyo-okaEmail author


Proper neurite formation is essential for appropriate neuronal morphology to develop and defects at this early foundational stage have serious implications for overall neuronal function. Neuritogenesis is tightly regulated by various signaling mechanisms that control the timing and placement of neurite initiation, as well as the various processes necessary for neurite elongation to occur. Kinases are integral components of these regulatory pathways that control the activation and inactivation of their targets. This review provides a comprehensive summary of the kinases that are notably involved in regulating neurite formation, which is a complex process that involves cytoskeletal rearrangements, addition of plasma membrane to increase neuronal surface area, coupling of cytoskeleton/plasma membrane, metabolic regulation, and regulation of neuronal differentiation. Since kinases are key regulators of these functions during neuromorphogenesis, they have high potential for use as therapeutic targets for axon regeneration after injury or disease where neurite formation is disrupted.


Axonal outgrowth Neurodevelopmental disorder Protein modification Autism spectrum disorder Neurite outgrowth 



This review has been supported by a research grant from the NINDS (NS096098).

Author contributions

SAB, SMB and TS wrote the initial draft of the manuscript. SAB and SMB edited it and created the figures. KT edited and finalized it.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflicts of interest.


  1. 1.
    Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8(4):1454–1468PubMedCrossRefGoogle Scholar
  2. 2.
    Craig AM, Banker G (1994) Neuronal polarity. Annu Rev Neurosci 17:267–310PubMedCrossRefGoogle Scholar
  3. 3.
    Reese D, Drapeau P (1998) Neurite growth patterns leading to functional synapses in an identified embryonic neuron. J Neurosci 18(15):5652–5662PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Yi G, Wang J, Wei X, Deng B (2017) Dendritic properties control energy efficiency of action potentials in cortical pyramidal cells. Front Cell Neurosci 11:265PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Behrens A, Sibilia M, Wagner EF (1999) Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21(3):326–329PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Nimmo GA, Cohen P (1978) The regulation of glycogen metabolism Purification and characterisation of protein phosphatase inhibitor-1 from rabbit skeletal muscle. Eur J Biochem 87(2):341–351PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    van den Heuvel S, Harlow E (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262(5142):2050–2054PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K, Okawa M, Yamada N, Hatten ME, Snyder SH, Ross CA, Sawa A (2003) Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 100(1):289–294PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Murtomaki S, Risteli J, Risteli L, Koivisto UM, Johansson S, Liesi P (1992) Laminin and its neurite outgrowth-promoting domain in the brain in Alzheimer’s disease and Down’s syndrome patients. J Neurosci Res 32(2):261–273PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bakos J, Bacova Z, Grant SG, Castejon AM, Ostatnikova D (2015) Are molecules involved in neuritogenesis and axon guidance related to autism pathogenesis? Neuromolecular Med 17(3):297–304PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lepagnol-Bestel AM, Maussion G, Boda B, Cardona A, Iwayama Y, Delezoide AL, Moalic JM, Muller D, Dean B, Yoshikawa T, Gorwood P, Buxbaum JD, Ramoz N, Simonneau M (2008) SLC25A12 expression is associated with neurite outgrowth and is upregulated in the prefrontal cortex of autistic subjects. Mol Psychiatry 13(4):385–397PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Cornell B, Wachi T, Zhukarev V, Toyo-oka K (2016) Regulation of neuronal morphogenesis by 14-3-3epsilon (Ywhae) via the microtubule binding protein, doublecortin. Hum Mol Genet 25(20):4405–4418PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Van Maldergem L, Hou Q, Kalscheuer VM, Rio M, Doco-Fenzy M, Medeira A, de Brouwer APM, Cabrol C, Haas SA, Cacciagli P, Moutton S, Landais E, Motte J, Colleaux L, Bonnet C, Villard L, Dupont J, Man H-Y (2013) Loss of function of KIAA2022 causes mild to severe intellectual disability with an autism spectrum disorder and impairs neurite outgrowth. Hum Mol Genet 22(16):3306–3314PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lin Y-C, Frei JA, Kilander MBC, Shen W, Blatt GJ (2016) A subset of autism-associated genes regulate the structural stability of neurons. Front Cell Neurosci 10:263PubMedPubMedCentralGoogle Scholar
  16. 16.
    Fuchs C, Trazzi S, Torricella R, Viggiano R, De Franceschi M, Amendola E, Gross C, Calza L, Bartesaghi R, Ciani E (2014) Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3beta signaling. Neurobiol Dis 70:53–68PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Amendola E, Zhan Y, Mattucci C, Castroflorio E, Calcagno E, Fuchs C, Lonetti G, Silingardi D, Vyssotski AL, Farley D, Ciani E, Pizzorusso T, Giustetto M, Gross CT (2014) Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLoS One 9(5):e91613PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Roskoski R Jr (2019) Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res 144:19–50PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73(7):2424–2428PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Burstein DE, Blumberg PM, Greene LA (1982) Nerve growth factor-induced neuronal differentiation of PC12 pheochromocytoma cells: lack of inhibition by a tumor promoter. Brain Res 247(1):115–119PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Burstein DE, Greene LA (1978) Evidence for RNA synthesis-dependent and -independent pathways in stimulation of neurite outgrowth by nerve growth factor. Proc Natl Acad Sci USA 75(12):6059–6063PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Xiao J, Liu Y (2003) Differential roles of ERK and JNK in early and late stages of neuritogenesis: a study in a novel PC12 model system. J Neurochem 86(6):1516–1523PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Huang CM, Shui HA, Wu YT, Chu PW, Lin KG, Kao LS, Chen ST (2001) Proteomic analysis of proteins in PC12 cells before and after treatment with nerve growth factor: increased levels of a 43-kDa chromogranin B-derived fragment during neuronal differentiation. Brain Res Mol Brain Res 92(1–2):181–192PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Greene LA, Rein G (1977) Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheo-chromocytoma cells. Brain Res 129(2):247–263PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Xiao J, Zhou Q, Liu Y (2002) Variant PC12 cell line that spontaneously differentiates and extends neuritic processes. J Neurosci Res 69(1):104–109PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Westerink RHS, Ewing AG (2008) The PC12 cell as model for neurosecretion. Acta physiologica (Oxford, England) 192(2):273–285CrossRefGoogle Scholar
  27. 27.
    Wu PY, Lin YC, Chang CL, Lu HT, Chin CH, Hsu TT, Chu D, Sun SH (2009) Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cell Signal 21(6):881–891PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Mao AJ, Bechberger J, Lidington D, Galipeau J, Laird DW, Naus CC (2000) Neuronal differentiation and growth control of neuro-2a cells after retroviral gene delivery of connexin43. J Biol Chem 275(44):34407–34414PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Fan S, Ramirez SH, Garcia TM, Dewhurst S (2004) Dishevelled promotes neurite outgrowth in neuronal differentiating neuroblastoma 2A cells, via a DIX-domain dependent pathway. Mol Brain Res 132(1):38–50PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Cornell B, Wachi T, Zhukarev V, Toyo-Oka K (2016) Regulation of neuronal morphogenesis by 14-3-3 epsilon (Ywhae) via the microtubule binding protein, doublecortin. Hum Mol Genet 25(20):4405–4418PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Algarni AS, Hargreaves AJ, Dickenson JM (2017) Role of transglutaminase 2 in PAC1 receptor mediated protection against hypoxia-induced cell death and neurite outgrowth in differentiating N2a neuroblastoma cells. Biochem Pharmacol 128:55–73PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Tahirovic S, Bradke F (2009) Neuronal polarity. Cold Spring Harbor Perspect Biol 1(3):a001644CrossRefGoogle Scholar
  33. 33.
    Schaefer AW, Schoonderwoert VTG, Ji L, Mederios N, Danuser G, Forscher P (2008) Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev Cell 15(1):146–162PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sainath R, Gallo G (2015) Cytoskeletal and signaling mechanisms of neurite formation. Cell Tissue Res 359(1):267–278PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Schelski M, Bradke F (2017) Neuronal polarization: from spatiotemporal signaling to cytoskeletal dynamics. Mol Cell Neurosci 84:11–28PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    da Silva JS, Dotti CG (2002) Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3(9):694–704PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Feng Z-Q, Franz EW, Leach MK, Winterroth F, White CM, Rastogi A, Gu Z-Z, Corey JM (2015) Mechanical tension applied to substrate films specifies location of neuritogenesis and promotes major neurite growth at the expense of minor neurite development. J Biomed Mater Res Part A 104:966–974CrossRefGoogle Scholar
  38. 38.
    Gärtner A, Fornasiero EF, Munck S, Vennekens KL, Seuntjens E, Huttner WB, Valtorta F, Dotti CG (2012) N-cadherin specifies first asymmetry in developing neurons. EMBO J 31(8):1893–1903PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Zhang S-X, Duan L-H, Qian H, Yu X (2016) Actin aggregations mark the sites of neurite initiation. Neurosci Bull 32(1):1–15PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zhang S-X, Duan L-H, He S-J, Zhuang G-F, Yu X (2017) Phosphatidylinositol 3,4-bisphosphate regulates neurite initiation and dendrite morphogenesis via actin aggregation. Cell Res 27(2):253–273PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Vignjevic D, Peloquin J, Borisy GG (2006) In vitro assembly of filopodia-like bundles. Methods Enzymol 406:727–739PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160(3):409–421PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mueller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 22:351–388PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Dwane S, Durack E, O’Connor R, Kiely PA (2014) RACK1 promotes neurite outgrowth by scaffolding AGAP2 to FAK. Cell Signal 26(1):9–18PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Anglister L, Farber IC, Shahar A, Grinvald A (1982) Localization of voltage-sensitive calcium channels along developing neurites: their possible role in regulating neurite elongation. Dev Biol 94(2):351–365PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Sogawa Y, Yoshimura Y, Otaka A, Yamauchi T (2000) Ca(2+)-independent activity of Ca(2+)/calmodulin-dependent protein kinase II involved in stimulation of neurite outgrowth in neuroblastoma cells. Brain Res 881(2):165–175PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Braun AP, Schulman H (1995) The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol 57:417–445PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kleinschmidt EG, Schlaepfer DD (2017) Focal adhesion kinase signaling in unexpected places. Curr Opin Cell Biol 45:24–30PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Grant SG, Karl KA, Kiebler MA, Kandel ER (1995) Focal adhesion kinase in the brain: novel subcellular localization and specific regulation by Fyn tyrosine kinase in mutant mice. Genes Dev 9(15):1909–1921PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Burgaya F, Menegon A, Menegoz M, Valtorta F, Girault JA (1995) Focal adhesion kinase in rat central nervous system. Eur J Neurosci 7(8):1810–1821PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Lim ST (2013) Nuclear FAK: a new mode of gene regulation from cellular adhesions. Mol Cells 36(1):1–6PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Gupton SL, Gertler FB (2010) Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis. Dev Cell 18(5):725–736PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Monje FJ, Kim EJ, Pollak DD, Cabatic M, Li L, Baston A, Lubec G (2012) Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory. Neurosignals 20(1):1–14PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kim G, Choe Y, Park J, Cho S, Kim K (2002) Activation of protein kinase A induces neuronal differentiation of HiB5 hippocampal progenitor cells. Brain Res Mol Brain Res 109(1–2):134–145PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Shea TB, Beermann ML, Leli U, Nixon RA (1992) Opposing influences of protein kinase activities on neurite outgrowth in human neuroblastoma cells: initiation by kinase A and restriction by kinase C. J Neurosci Res 33(3):398–407PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Vogt Weisenhorn DM, Roback LJ, Kwon JH, Wainer BH (2001) Coupling of cAMP/PKA and MAPK signaling in neuronal cells is dependent on developmental stage. Exp Neurol 169(1):44–55PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Shea TB, Cressman CM, Spencer MJ, Beermann ML, Nixon RA (1995) Enhancement of neurite outgrowth following calpain inhibition is mediated by protein kinase C. J Neurochem 65(2):517–527PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lazarovici P, Jiang H, Fink D Jr (1998) The 38-amino-acid form of pituitary adenylate cyclase-activating polypeptide induces neurite outgrowth in PC12 cells that is dependent on protein kinase C and extracellular signal-regulated kinase but not on protein kinase A, nerve growth factor receptor tyrosine kinase, p21(ras) G protein, and pp60(c-src) cytoplasmic tyrosine kinase. Mol Pharmacol 54(3):547–558PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kawasaki H, Morooka T, Shimohama S, Kimura J, Hirano T, Gotoh Y, Nishida E (1997) Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J Biol Chem 272(30):18518–18521PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    York RD, Yao H, Dillon T, Ellig CL, Eckert SP, McCleskey EW, Stork PJ (1998) Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392(6676):622–626PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ryu H, Chung M, Dobrzyński M, Fey D, Blum Y, Lee SS, Peter M, Kholodenko BN, Jeon NL, Pertz O (2015) Frequency modulation of ERK activation dynamics rewires cell fate. Mol Syst Biol 11(11):838PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Liao KK, Wu MJ, Chen PY, Huang SW, Chiu SJ, Ho CT, Yen JH (2012) Curcuminoids promote neurite outgrowth in PC12 cells through MAPK/ERK- and PKC-dependent pathways. J Agric Food Chem 60(1):433–443PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Shinomiya M, Kawamura K, Tanida E, Nagoshi M, Motoda H, Kasanami Y, Hiragami F, Kano Y (2012) Neurite outgrowth of PC12 mutant cells induced by orange oil and d-limonene via the p38 MAPK pathway. Acta Med Okayama 66(2):111–118PubMedPubMedCentralGoogle Scholar
  65. 65.
    Wang X, Wang Z, Yao Y, Li J, Zhang X, Li C, Cheng Y, Ding G, Liu L, Ding Z (2011) Essential role of ERK activation in neurite outgrowth induced by alpha-lipoic acid. Biochim Biophys Acta 1813(5):827–838PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Martin JH, Mohit AA, Miller CA (1996) Developmental expression in the mouse nervous system of the p493F12 SAP kinase. Mol Brain Res 35(1):47–57PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Davies C, Tournier C (2012) Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem Soc Trans 40(1):85–89PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Mullen LM, Pak KK, Chavez E, Kondo K, Brand Y, Ryan AF (2012) Ras/p38 and PI3K/Akt but not Mek/Erk signaling mediate BDNF-induced neurite formation on neonatal cochlear spiral ganglion explants. Brain Res 1430:25–34PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Barnat M, Enslen H, Propst F, Davis RJ, Soares S, Nothias F (2010) Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration. J Neurosci 30(23):7804–7816PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Boyne LJ, Martin K, Hockfield S, Fischer I (1995) Expression and distribution of phosphorylated MAP1B in growing axons of cultured hippocampal neurons. J Neurosci Res 40(4):439–450PubMedCrossRefGoogle Scholar
  71. 71.
    Cabell L, Audesirk G (1993) Effects of selective inhibition of protein kinase C, cyclic AMP-dependent protein kinase, and Ca(2+)-calmodulin-dependent protein kinase on neurite development in cultured rat hippocampal neurons. Int J Dev Neurosci 11(3):357–368PubMedCrossRefGoogle Scholar
  72. 72.
    Goshima Y, Ohsako S, Yamauchi T (1993) Overexpression of Ca2+/calmodulin-dependent protein kinase II in Neuro2a and NG108-15 neuroblastoma cell lines promotes neurite outgrowth and growth cone motility. J Neurosci 13(2):559–567PubMedCrossRefGoogle Scholar
  73. 73.
    Hardie DG, Hawley SA, Scott JW (2006) AMP-activated protein kinase–development of the energy sensor concept. J Physiol 574(Pt 1):7–15PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Amato S, Man H-Y (2011) Bioenergy sensing in the brain. Cell Cycle 10(20):3452–3460PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Amato S, Liu X, Zheng B, Cantley L, Rakic P, Man H-Y (2011) AMP-activated protein kinase regulates neuronal polarization by interfering with PI 3-kinase localization. Science (New York, N.Y.) 332(6026):247–251CrossRefGoogle Scholar
  76. 76.
    Ramamurthy S, Chang E, Cao Y, Zhu J, Ronnett GV (2014) AMPK activation regulates neuronal structure in developing hippocampal neurons. Neuroscience 259:13–24PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wakita S, Izumi Y, Nakai T, Adachi K, Takada-Takatori Y, Kume T, Akaike A (2014) Staurosporine induces dopaminergic neurite outgrowth through AMP-activated protein kinase/mammalian target of rapamycin signaling pathway. Neuropharmacology 77:39–48PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15(8):702–713PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Lu J, Cao Y, Cheng K, Xu B, Wang T, Yang Q, Yang Q, Feng X, Xia Q (2015) Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status. Exp Cell Res 334(2):194–206PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Zhu K, Chen X, Liu J, Ye H, Zhu L, Wu JY (2013) AMPK interacts with DSCAM and plays an important role in netrin-1 induced neurite outgrowth. Protein Cell 4(2):155–161PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kotani K, Yonezawa K, Hara K, Ueda H, Kitamura Y, Sakaue H, Ando A, Chavanieu A, Calas B, Grigorescu F et al (1994) Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling. EMBO J 13(10):2313–2321PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wennstrom S, Hawkins P, Cooke F, Hara K, Yonezawa K, Kasuga M, Jackson T, Claesson-Welsh L, Stephens L (1994) Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr Biol 4(5):385–393PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Wymann M, Arcaro A (1994) Platelet-derived growth factor-induced phosphatidylinositol 3-kinase activation mediates actin rearrangements in fibroblasts. Biochem J 298(Pt 3):517–520PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Jackson TR, Blader IJ, Hammonds-Odie LP, Burga CR, Cooke F, Hawkins PT, Wolf AG, Heldman KA, Theibert AB (1996) Initiation and maintenance of NGF-stimulated neurite outgrowth requires activation of a phosphoinositide 3-kinase. J Cell Sci 109(Pt 2):289–300PubMedPubMedCentralGoogle Scholar
  86. 86.
    Hartnick CJ, Staecker H, Malgrange B, Lefebvre PP, Liu W, Moonen G, Van De Water TR (1996) Neurotrophic effects of BDNF and CNTF, alone and in combination, on postnatal day 5 rat acoustic ganglion neurons. J Neurobiol 30(2):246–254PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Hegarty JL, Kay AR, Green SH (1997) Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of [Ca2+]i within a set range. J Neurosci 17(6):1959–1970PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Aoki K, Nakamura T, Matsuda M (2004) Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells. J Biol Chem 279(1):713–719PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Nusser N, Gosmanova E, Zheng Y, Tigyi G (2002) Nerve growth factor signals through TrkA, phosphatidylinositol 3-kinase, and Rac1 to inactivate RhoA during the initiation of neuronal differentiation of PC12 cells. J Biol Chem 277(39):35840–35846PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Derivery E, Gautreau A (2010) Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines. BioEssays 32(2):119–131PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Gallo G (2011) The cytoskeletal and signaling mechanisms of axon collateral branching. Dev Neurobiol 71(3):201–220PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ketschek A, Gallo G (2010) Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. J Neurosci 30(36):12185–12197PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sebok A, Nusser N, Debreceni B, Guo Z, Santos MF, Szeberenyi J, Tigyi G (1999) Different roles for RhoA during neurite initiation, elongation, and regeneration in PC12 cells. J Neurochem 73(3):949–960PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Read DE, Gorman AM (2009) Involvement of Akt in neurite outgrowth. Cell Mol Life Sci 66(18):2975–2984PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Lee SR, Park JH, Park EK, Chung CH, Kang SS, Bang OS (2005) Akt-induced promotion of cell-cycle progression at G2/M phase involves upregulation of NF-Y binding activity in PC12 cells. J Cell Physiol 205(2):270–277PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Wang L, Zhou K, Fu Z, Yu D, Huang H, Zang X, Mo X (2017) Brain development and Akt signaling: the crossroads of signaling pathway and neurodevelopmental diseases. J Mol Neurosci 61(3):379–384PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Takitoh T, Kumamoto K, Wang CC, Sato M, Toba S, Wynshaw-Boris A, Hirotsune S (2012) Activation of Aurora-A is essential for neuronal migration via modulation of microtubule organization. J Neurosci 32(32):11050–11066PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Mori D, Yamada M, Mimori-Kiyosue Y, Shirai Y, Suzuki A, Ohno S, Saya H, Wynshaw-Boris A, Hirotsune S (2009) An essential role of the aPKC-Aurora A-NDEL1 pathway in neurite elongation by modulation of microtubule dynamics. Nat Cell Biol 11(9):1057–1068PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Zhu J, Li W, Mao Z (2011) Cdk5: mediator of neuronal development, death and the response to DNA damage. Mech Ageing Dev 132(8–9):389–394PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Duhr F, Deleris P, Raynaud F, Seveno M, Morisset-Lopez S, Mannoury la Cour C, Millan MJ, Bockaert J, Marin P, Chaumont-Dubel S (2014) Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth. Nat Chem Biol 10(7):590–597PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Speranza L, Chambery A, Di Domenico M, Crispino M, Severino V, Volpicelli F, Leopoldo M, Bellenchi GC, di Porzio U, Perrone-Capano C (2013) The serotonin receptor 7 promotes neurite outgrowth via ERK and Cdk5 signaling pathways. Neuropharmacology 67:155–167PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Lu XC, Zheng JY, Tang LJ, Huang BS, Li K, Tao Y, Yu W, Zhu RL, Li S, Li LX (2015) MiR-133b Promotes neurite outgrowth by targeting RhoA expression. Cell Physiol Biochem 35(1):246–258PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Haas MA, Vickers JC, Dickson TC (2007) Rho kinase activates ezrin-radixin-moesin (ERM) proteins and mediates their function in cortical neuron growth, morphology and motility in vitro. J Neurosci Res 85(1):34–46PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Roloff F, Scheiblich H, Dewitz C, Dempewolf S, Stern M, Bicker G (2015) Enhanced neurite outgrowth of human model (NT2) neurons by small-molecule inhibitors of Rho/ROCK signaling. PLoS One 10(2):e0118536PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lavalley NJ, Slone SR, Ding H, West AB, Yacoubian TA (2016) 14-3-3 Proteins regulate mutant LRRK2 kinase activity and neurite shortening. Hum Mol Genet 25(1):109–122PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Yamaguchi Y, Ayaki T, Li F, Tsujimura A, Kamada M, Ito H, Maki T, Sawamoto N, Urushitani M, Takahashi R (2019) Phosphorylated NF-kappaB subunit p65 aggregates in granulovacuolar degeneration and neurites in neurodegenerative diseases with tauopathy. Neurosci Lett 704:229–235PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Cuberos H, Vallee B, Vourc’h P, Tastet J, Andres CR, Benedetti H (2015) Roles of LIM kinases in central nervous system function and dysfunction. FEBS Lett 589(24 Pt B):3795–3806PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Tastet J, Cuberos H, Vallee B, Toutain A, Raynaud M, Marouillat S, Thepault RA, Laumonnier F, Bonnet-Brilhault F, Vourc’h P, Andres CR, Benedetti H (2019) LIMK2-1 is a Hominidae-Specific Isoform of LIMK2 Expressed in Central Nervous System and Associated with Intellectual Disability. Neuroscience 399:199–210PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Kim W, Won SY, Yoon BJ (2019) CRMP2 mediates GSK3beta actions in the striatum on regulating neuronal structure and mania-like behavior. J Affect Disord 245:1079–1088PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Pandey GN, Rizavi HS, Tripathi M, Ren X (2015) Region-specific dysregulation of glycogen synthase kinase-3beta and beta-catenin in the postmortem brains of subjects with bipolar disorder and schizophrenia. Bipolar Disord 17(2):160–171PubMedCrossRefGoogle Scholar
  111. 111.
    Wan G, Zhou L, Lim Q, Wong YH, Too HP (2011) Cyclic AMP signalling through PKA but not Epac is essential for neurturin-induced biphasic ERK1/2 activation and neurite outgrowths through GFRalpha2 isoforms. Cell Signal 23(11):1727–1737PubMedCrossRefGoogle Scholar
  112. 112.
    Xu N, Engbers J, Khaja S, Xu L, Clark JJ, Hansen MR (2012) Influence of cAMP and protein kinase A on neurite length from spiral ganglion neurons. Hear Res 283(1–2):33–44PubMedCrossRefGoogle Scholar
  113. 113.
    Cheng C, Webber CA, Wang J, Xu Y, Martinez JA, Liu WQ, McDonald D, Guo GF, Nguyen MD, Zochodne DW (2008) Activated RHOA and peripheral axon regeneration. Exp Neurol 212(2):358–369PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Okada K, Tanaka H, Temporin K, Okamoto M, Kuroda Y, Moritomo H, Murase T, Yoshikawa H (2010) Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol 222(2):191–203PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Jia L, Ji S, Maillet JC, Zhang X (2010) PTEN suppression promotes neurite development exclusively in differentiating PC12 cells via PI3-kinase and MAP kinase signaling. J Cell Biochem 111(6):1390–1400PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Fink CC, Bayer KU, Myers JW, Ferrell JE Jr, Schulman H, Meyer T (2003) Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron 39(2):283–297PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Tashima K, Yamamoto H, Setoyama C, Ono T, Miyamoto E (1996) Overexpression of Ca2+/calmodulin-dependent protein kinase II inhibits neurite outgrowth of PC12 cells. J Neurochem 66(1):57–64PubMedCrossRefGoogle Scholar
  118. 118.
    Massé T, Kelly PT (1997) Overexpression of Ca2+/calmodulin-dependent protein kinase II in pc12 cells alters cell growth, morphology, and nerve growth factor-induced differentiation. J Neurosci 17(3):924PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Kater SB, Mills LR (1991) Regulation of growth cone behavior by calcium. J Neurosci 11(4):891–899PubMedCrossRefGoogle Scholar
  120. 120.
    Liu C, Zhang CW, Zhou Y, Wong WQ, Lee LC, Ong WY, Yoon SO, Hong W, Fu XY, Soong TW, Koo EH, Stanton LW, Lim KL, Xiao ZC, Dawe GS (2018) APP upregulation contributes to retinal ganglion cell degeneration via JNK3. Cell Death Differ 25(4):661–676CrossRefGoogle Scholar
  121. 121.
    Chen W-H, Cheng S-J, Tzen JTC, Cheng C-M, Lin Y-W (2014) Probing relevant molecules in modulating the neurite outgrowth of hippocampal neurons on substrates of different stiffness. PLoS One 8(12):e83394CrossRefGoogle Scholar
  122. 122.
    Schmid RS, Pruitt WM, Maness PF (2000) A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J Neurosci 20(11):4177–4188PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279(5350):509–514PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Kaibuchi K, Kuroda S, Amano M (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68:459–486PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Namekata K, Watanabe H, Guo X, Kittaka D, Kawamura K, Kimura A, Harada C, Harada T (2012) Dock3 regulates BDNF-TrkB signaling for neurite outgrowth by forming a ternary complex with Elmo and RhoG. Genes Cells 17(8):688–697PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations