Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity

  • Sangwoo Kwon
  • Kyung Sook KimEmail author


Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.


Cellular elasticity Stiffness Actin Stress fiber Intermediate filament Microtubule 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (Grant No. NRF-2017R1A2B2010145).

Author contributions

Sangwoo Kwon and Kyung Sook Kim conceived this article and wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gurkan UA, Akkus O (2008) The mechanical environment of bone marrow: a review. Ann Biomed Eng 36:1978–1991PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ofek G, Willard VP, Koay EJ, Hu JC, Lin P, Athanasiou KA (2009) Mechanical characterization of differentiated human embryonic stem cells. J Biomech Eng 131(6):061011PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sens P, Plastino J (2015) Membrane tension and cytoskeleton organization in cell motility. J Phys Condens Matter 27(27):273103PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  5. 5.
    Morrison B 3rd, Saatman KE, Meaney DF, McIntosh TK (1998) In vitro central nervous system models of mechanically induced trauma: a review. J Neurotrauma 15(11):911–928PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 7(10):e46609PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ramos JR, Pabijan J, Garcia R, Lekka M (2014) The softening of human bladder cancer cells happens at an early stage of the malignancy process. Beilstein J Nanotechnol 10(5):447–457CrossRefGoogle Scholar
  9. 9.
    Mierke CT, Frey B, Fellner M, Herrmann M, Fabry B (2011) Integrin α 5 β 1 facilitates cancer cell invasion through enhanced contractile forces. J Cell Sci 124(Pt 3):369–383PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Buxboim A, Ivanovska IL, Discher DE (2010) Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in? J Cell Sci 123:297–308PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Samani A, Plewes D (2004) A method to measure the hyperelastic parameters of ex vivo breast tissue samples. Phys Med Biol 49:4395–4405PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Depalle B, Qin Z, Shefelbine SJ, Buehler MJ (2015) Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J Mech Behav Biomed Mater 52:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Canetta Elisabetta, Duperray Alain, Leyrat Anne, Verdier Claude (2005) Measuring cell viscoelastic properties using a force-spectrometer: influence of protein-cytoplasm interactions. Biorheology 42(5):321–333PubMedPubMedCentralGoogle Scholar
  14. 14.
    García AJ, Reyes CD (2005) Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 84(5):407–413PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687CrossRefGoogle Scholar
  16. 16.
    Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Bernstein LR, Liotta LA (1994) Molecular mediators of interactions with extracellular matrix components in metastasis and angiogenesis. Curr Opin Oncol 6(1):106–113PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Stamenović D, Ingber DE (2009) Tensegrity-guided self-assembly: from molecules to living cells. Soft Matter 5(6):1137–1145CrossRefGoogle Scholar
  19. 19.
    Alonso JL, Goldmann WH (2016) Cellular mechanotransduction. AIMS. Biophysics 3(1):50–62CrossRefGoogle Scholar
  20. 20.
    Jay DH, Eric RD, Martin AS (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802–812Google Scholar
  21. 21.
    Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G (2018) Cellular mechanotransduction: from tension to function. Front Physiol 9:824PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dunn GA, Brown AF (1986) Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J Cell Sci 83:313–340PubMedGoogle Scholar
  23. 23.
    Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34CrossRefGoogle Scholar
  24. 24.
    Trepat X, Lenormand G, Fredberg JJ (2008) Universality in cell mechanics. Soft Matter 4(9):1750–1759CrossRefGoogle Scholar
  25. 25.
    Rodriguez ML, McGarry PJ, Sniadecki NJ (2013) Review on cell mechanics: experimental and modeling approaches. Appl Mech Rev 65(6):060801CrossRefGoogle Scholar
  26. 26.
    Moeendarbary E, Harris AR (2014) Cell mechanics: principles, practices, and prospects. Wiley Interdiscip Rev Syst Biol Med 6(5):371–388PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EHJ, Koenderink GH (2015) A guide to mechanobiology: where biology and physics meet. Biochim Biophys Acta 1853(11 Pt B):3043–3052PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Nestor-Bergmann A, Johns E, Sarah Woolner, Jensen OE (2018) Mechanical characterization of disordered and anisotropic cellular monolayers. Phys Rev E 97(5):052409PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Pritchard RH, Huang YYS, Terentjev EM (2014) Mechanics of biological networks: from the cell cytoskeleton to connective tissue. Soft Matter 10(12):1864–1884PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Gardel ML, Kasza KE, Brangwynne CP, Liu J, Weitz DA (2015) Mechanical response of cytoskeletal networks. Methods Cell Biol 89:487–519CrossRefGoogle Scholar
  32. 32.
    Hohmann T, Dehghani F (2019) The cytoskeleton-A complex interacting meshwork. Cells 8(4):362PubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. Freeman, New YorkGoogle Scholar
  34. 34.
    Kreis T, Vale R (1999) Cytoskeletal and motor proteins. Oxford University Press, OxfordGoogle Scholar
  35. 35.
    Knowles GC, McCUUOCH CAG (1992) Simultaneous localization and quantification of relative G and F actin content: optimization of fluorescence labeling methods. J Histochem Cytochem 40(10):1605–1612PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Pollard TD (1986) Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol 103:2747–2754PubMedCrossRefGoogle Scholar
  37. 37.
    Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kubitschke H, Schnauss J, Nnetu KD, Warmt E, Stange R, Kaes J (2017) Actin and microtubule networks contribute differently to cell response for small and large strains. New J Phys 19:093003CrossRefGoogle Scholar
  39. 39.
    Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78(1):520–535PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    MacLean-Fletcher S, Pollard TD (1980) Mechanism of action of cytochalasin B on actin. Cell 20(2):329–341PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ping Ting-Beall H, Lee Anne S, Hochmuth Robert M (1995) Effect of cytochalasin D on the mechanical properties and morphology of passive human neutrophils. Ann Biomed Eng 23(5):666–671CrossRefGoogle Scholar
  42. 42.
    Goddette DW, Frieden C (1986) Actin polymerization. The mechanism of action of cytochalasin D. J Biol Chem 261(34):15974–15980PubMedPubMedCentralGoogle Scholar
  43. 43.
    Holzinger A (2009) Jasplakinolide: an actin-specific reagent that promotes actin polymerization. Methods Mol Biol 586:71–87PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kunschmann T, Puder S, Fischer T, Steffen A, Rottner K, Mierke CT (2019) The small GTPase Rac1 increases cell surface stiffness and enhances 3D migration into extracellular matrices. Sci Rep 9:7675PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cai X, Xing X, Cai J, Chen Q, Wu S, Huang F (2010) Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: an AFM study. Micron 41(3):257–262PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Grady ME, Composto RJ, Eckmann DM (2016) Cell elasticity with altered cytoskeletal architectures across multiple cell types. J Mech Behav Biomed Mater 61:197–207PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Saito H, Minamiya Y, Kalina U, Saito S, Ogawa J (2005) Effect of antithrombin III on neutrophil deformability. J Leukoc Biol 78(3):777–784PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Tavares S, Vieira AF, Taubenberger AV, Araújo M, Martins NP, Brás-Pereira C, Polónia A, Herbig M, Barreto C, Otto O, Cardoso J, Pereira-Leal JB, Guck J, Paredes J, Janody F (2017) Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat Commun 8:15237PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):1301–1305PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Schulze C, Wetzel F, Kueper T, Malsen A, Muhr G, Jaspers S, Blatt T, Wittern KP, Wenck H, Käs JA (2012) Stiffening of human skin fibroblasts with age. Clin Plast Surg 39(1):9–20PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kassianidou E, Kumar S (2015) A biomechanical perspective on stress fiber structure and function. Biochem Biophys Acta 1853(11):3065–3074PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Gardel ML et al (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):1301–1305PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Head DA, Levine AJ, MacKintosh FC (2003) Deformation of cross-linked semiflexible polymer networks. Phys Rev Lett 91(10):108102PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Head DA, Levine AJ, MacKintosh FC (2003) Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys Rev E Stat Nonlin Soft Matter Phys 68(6 Pt 1):061907PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Stricker J, Falzone T, Gardel M (2010) Mechanics of the F-actin cytoskeleton. J Biomech 43(1):9–14PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Peterson LJ, Rajfur Z, Maddox AS, Freel CD, Chen Y, Edlund M, Otey C, Burridge K (2004) Simultaneous stretching and contraction of stress fibers in vivo. Mol Biol Cell 15(7):3497–3508PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Weber K, Groeschel-Stewart U (1974) Antibody to myosin: the specific visualization of myosin-containing filaments in nonmuscle cells. Proc Natl Acad Sci USA 71(11):4561–4564PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Cramer LP, Siebert M, Mitchison TJ (1997) Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. J Cell Biol 136:1287–1305PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Adams JC (1995) Formation of stable microspikes containing actin and the 55 kDa actin bundling protein, fascin, is a consequence of cell adhesion to thrombospondin-1: implications for the anti-adhesive activities of thrombospondin-1. J Cell Sci 108:1977–1990PubMedPubMedCentralGoogle Scholar
  60. 60.
    Chen B, Li A, Wang D, Wang M, Zheng L, Bartles JR (1999) Espin contains an additional actin-binding site in its N terminus and is a major actin-bundling protein of the sertoli cell-spermatid ectoplasmic specialization junctional plaque. Mol Biol Cell 10:4327–4339PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Wang K, Ash JF, Singer SJ (1975) Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells. Proc Natl Acad Sci USA 72:4483–4486PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Lu L, Oswald SJ, Ngu H, Yin FC (2008) Mechanical properties of actin stress fibers in living cells. Biophys J 95(12):6060–6071PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 34(12):1545–1553PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Stricker J, Falzone T, Gardel ML (2010) Mechanics of the F-actin cytoskeleton. J Biomech 43(1):9–14PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83(2):433–473PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Van Troys M, Vandekerckhove J, Ampe C (1999) Structural modules in actin-binding proteins: towards a new classification. Biochim Biophys Acta 1448(3):323–348PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Blanchard A, Ohanian V, Critchley D (1989) The structure and function of alpha-actinin. J Muscle Res Cell Motil 10:280–289PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Masaki T, Endo M, Ebashi S (1967) Localization of 6S component of a alpha-actinin at Z-band. J Biochem 62:630–632PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Bond M, Somlyo AV (1982) Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol 95:403–413PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Lazarides E, Burridge K (1975) Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell 6:289–298PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Wachsstock D, Schwarz WH, Pollard TD (1993) Affinity of a-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys J 65:205–214PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Esue Osigwe, Tseng Yiider, Wirtz Denis (2009) α-Actinin and filamin cooperatively enhance the stiffness of actin filament networks. PLoS One 4(2):e4411PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Gardel ML, Nakamura F, Hartwig JH, Crocker JC, Stossel TP, Weitz DA (2006) Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc Natl Acad Sci USA 103(6):1762–1767PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Tseng Y, An KM, Esue O, Wirtz D (2004) The bimodal role of filamin in controlling the architecture and mechanics of F-actin networks. J Biol Chem 279:1819–1826PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Tseng Y, Wirtz D (2001) Mechanics and multiple-particle tracking microheterogeneity of alpha-actinin-cross-linked actin filament networks. Biophys J 81:1643–1656PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tseng Y, Fedorov E, McCaffery JM, Almo SC, Wirtz D (2001) Micromechanics and microstructure of actin filament networks in the presence of the actin-bundling protein human fascin: a comparison with a-actinin. J Mol Biol 310:351–366PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435(7039):191–194PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Pegoraro AF, Janmey P, Weitz DA (2017) Mechanical properties of the cytoskeleton and Cells. Cold Spring Harb Perspect Biol 9(11):a022038PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Jackson WM, Jaasma MJ, Baik AD, Keaveny TM (2008) Over-expression of alpha-actinin with a GFP fusion protein is sufficient to increase whole-cell stiffness in human osteoblasts. Ann Biomed Eng 36(10):1605–1614PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Tseng Y, Kole TP, Lee JS, Fedorov E, Almo SC, Schafer BW, Wirtz D (2005) How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochem Biophys Res Commun 334(1):183–192PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Uyeda TQ, Iwadate Y, Umeki N, Nagasaki A, Yumura S (2011) Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS One 6(10):e26200PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Westphal M, Jungbluth A, Heidecker M, Mühlbauer B, Heizer C, Schwartz JM, Marriott G, Gerisch G (1997) Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr Biol 7:176–183PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Asano Y, Mizuno T, Kon T, Nagasaki A, Sutoh K, Uyeda TQ (2004) Keratocyte-like locomotion in amiB-null Dictyostelium cells. Cell Motil Cytoskeleton 59:17–27PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC, Hartwig JH, Stossel TP, Weitz DA (2009) An active biopolymer network controlled by molecular motors. Proc Natl Acad Sci USA 106(36):15192–15197PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC, Hartwig JH, Stossel TP, Weitz DA (2009) An active biopolymer network controlled by molecular motors. Proc Natl Acad Sci USA 106(36):15192–15197PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Stewart M, Kensler R (1986) Arrangement of myosin heads in relaxed thick filaments from frog skeletal muscle. J Mol Biol 192:831–851PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Schäfer A, Radmacher M (2005) Influence of myosin II activity on stiffness of fibroblast cells. Acta Biomater 1(3):273–280PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Martens JC, Radmacher M (2008) Softening of the actin cytoskeleton by inhibition of myosin II. Pflugers Arch 456(1):95–100PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Langanger G, de Mey J, Moeremans M, Daneels G, de Brabander M, Small JV (1984) Ultrastructural localization of alpha-actinin and filamin in cultured cells with the immunogold staining (IGS) method. J Cell Biol 99(4 Pt 1):1324–1334PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Bloch RJ, Hall ZW (1983) Cytoskeletal components of the vertebrate neuromuscular junction: vinculin, alpha-actinin, and filamin. J Cell Biol 97:217–223PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Kasza KE, Nakamura F, Hu S, Kollmannsberger P, Bonakdar N, Fabry B, Stossel TP, Wang N, Weitz DA (2009) Filamin A is essential for active cell stiffening but not passive stiffening under external force. Biophys J 96(10):4326–4335PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kato K, Ohmori Y, Mizutani T, Haga H, Ohashi K, Ito T, Kawabata K (2006) The role of actin-binding protein filamin a in cellular stiffness and morphology studied by wide-range scanning probe microscopy. Jpn J Appl Phys 45(1):2328CrossRefGoogle Scholar
  93. 93.
    Bryce NS, Schevzov G, Ferguson V, Percival JM, Lin JJ, Matsumura F, Bamburg JR, Jeffrey PL, Hardeman EC, Gunning P, Weinberger RP (2003) Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol Biol Cell 14(3):1002–1016PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    McMichael BK, Kotadiya P, Singh T, Holliday LS, Lee BS (2006) Tropomyosin isoforms localize to distinct microfilament populations in osteoclasts. Bone 39:694–705PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Coulton AT, East DA, Galinska-Rakoczy A, Lehman W, Mulvihill DP (2010) The recruitment of acetylated and unacetylated tropomyosin to distinct actin polymers permits the discrete regulation of specific myosins in fission yeast. J Cell Sci 123:3235–3243PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Creed SJ, Desouza M, Bamburg JR, Gunning P, Stehn J (2011) Tropomyosin isoform 3 promotes the formation of filopodia by regulating the recruitment of actin-binding proteins to actin filaments. Exp Cell Res 317:249–261PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Gunning P, O’Neill G, Hardeman E (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88:1–35PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Sui Z, Gokhin DS, Nowak RB, Guo X, An X, Fowler VM (2017) Stabilization of F-actin by tropomyosin isoforms regulates the morphology and mechanical behavior of red blood cells. Mol Biol Cell 28(19):2531–2542PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Jalilian I, Heu C, Cheng H, Freittag H, Desouza M, Stehn JR, Bryce NS, Whan RM, Hardeman EC, Fath T, Schevzov G, Gunning PW (2015) Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton. PLoS One 10(5):e0126214PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Steinert Peter M, Jones Jonathan CR, Robert D (1984) Goldman, intermediate filaments. J Cell Biol 99(1):22s–27sPubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Stewart Murray (1993) Intermediate filament structure and assembly. Curr Opin Cell Biol 5(1):3–11PubMedCrossRefGoogle Scholar
  102. 102.
    Coulombe Pierre A, Ma Linglei, Yamada Soichiro, Wawersik Matthew (2001) Intermediate filaments at a glance. J Cell Sci 114(24):4345–4347PubMedGoogle Scholar
  103. 103.
    Omary MB, Coulombe PA, McLean WH (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351(20):2087–2100PubMedCrossRefGoogle Scholar
  104. 104.
    Guo M, Ehrlicher AJ, Mahammad S, Fabich H, Jensen MH, Moore JR, Fredberg JJ, Goldman RD, Weitz DA (2013) The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys J 105(7):1562–1568PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lowery Jason, Kuczmarski Edward R, Herrmann Harald, Goldma Robert D (2015) Intermediate filaments play a pivotal role in regulating cell architecture and function. Cell Mol Biol 290(28):17145–17153Google Scholar
  106. 106.
    Haudenschild DR, Chen J, Pang N, Steklov N, Grogan SP, Lotz MK, D’Lima DD (2011) Vimentin contributes to changes in chondrocyte stiffness in osteoarthritis. J Orthop Res 29(1):20–25PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Mendez MG, Restle D, Janmey PA (2014) Vimentin enhances cell elastic behavior and protects against compressive stress. Biophys J 107(2):314–323PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Eggli PS, Hunziker EB, Schenk RK (1988) Quantitation of structural features characterizing weight- and less-weight-bearing regions in articular cartilage: a stereological analysis of medial femoral condyles in young adult rabbits. Anat Rec 222(3):217–227PubMedCrossRefGoogle Scholar
  109. 109.
    Plodinec M, Loparic M, Suetterlin R, Herrmann H, Aebi U, Schoenenberger CA (2011) The nanomechanical properties of rat fibroblasts are modulated by interfering with the vimentin intermediate filament system. J Struct Biol 174(3):476–484PubMedCrossRefGoogle Scholar
  110. 110.
    Liu CY, Lin HH, Tang MJ, Wang YK (2015) Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget 6(18):15966–15983PubMedPubMedCentralGoogle Scholar
  111. 111.
    Guo M, Ehrlicher AJ, Mahammad S, Fabich H, Jensen MH, Moore JR, Fredberg JJ, Goldman RD, Weitz DA (2013) The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys J 105(7):1562–1568PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Magin TM, Vijayaraj P, Leube RE (2007) Structural and regulatory functions of keratins. Exp Cell Res 313(10):2021–2032PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Haines RL, Lane EB (2012) Keratins and disease at a glance. J Cell Sci 125(Pt 17):3923–3928PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Sivaramakrishnan S, DeGiulio JV, Lorand L, Goldman RD, Ridge KM (2008) Micromechanical properties of keratin intermediate filament networks. Proc Natl Acad Sci USA 105(3):889–894PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI (2007) Atomic force microscopy probing of cell elasticity. Micron 38(8):824–833PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Lulevich V, Yang HY, Isseroff RR, Liu GY (2010) Single cell mechanics of keratinocyte cells. Ultramicroscopy 110(12):1435–1442PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Fung CK, Xi N, Yang R, Seiffert-Sinha K, Lai KW, Sinha AA (2011) Quantitative analysis of human keratinocyte cell elasticity using atomic force microscopy. IEEE Trans Nanobiosci 10(1):9–15CrossRefGoogle Scholar
  118. 118.
    Ramms L, Fabris G, Windoffer R, Schwarz N, Springer R, Zhou C, Lazar J, Stiefel S, Hersch N, Schnakenberg U, Magin TM, Leube RE, Merkel R, Hoffmann B (2013) Keratins as the main component for the mechanical integrity of keratinocytes. Proc Natl Acad Sci USA 110(46):18513–18518PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Kristin S, Anatol WF, Josef AK, Thomas MM (2013) Keratins significantly contribute to cell stiffness and impact invasive behavior. PNAS 110(46):18507–18512CrossRefGoogle Scholar
  120. 120.
    Bernal A, Arranz L (2018) Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci 75(12):2177–2195PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Matsuda Y, Naito Z, Kawahara K, Nakazawa N, Korc M, Ishiwata T (2011) Nestin is a novel target for suppressing pancreatic cancer cell migration, invasion and metastasis. Cancer Biol Ther 11:512–523PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Kleeberger W, Bova GS, Nielsen ME, Herawi M, Chuang AY, Epstein JI, Berman DM (2007) Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis. Cancer Res 67:9199–9206PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Ayana Y, Moe S, Yuta T, Mei M, Mari M, Masumi I, Shun’ichi K, Tomoko O, Chikashi N (2019) The structural function of nestin in cell body softening is correlated with cancer cell metastasis. Int J Biol Sci 15(7):1546–1556CrossRefGoogle Scholar
  124. 124.
    Nogales E (2000) Structural insights into microtubule function. Annu Rev Biochem 69:277–302PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Avila J (1992) Microtubule functions. Life Sci 50(5):327–334PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9:1–34PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Trickey WR, Vail TP, Guilak F (2004) The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J Orthop Res 22(1):131–139PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    PyleK SJ, Reuhl R (2010) Cytoskeletal elements in neurotoxicity, 2nd edn. In: Comprehensive toxicology, vol 13, pp 71–87CrossRefGoogle Scholar
  129. 129.
    Brady S, Colman DR, Brophy P (2014) Subcellular organization of the nervous system: organelles and their functions, 3rd edn. In: From molecules to networks, pp 23–52Google Scholar
  130. 130.
    Shah JV, Wang LZ, Traub P, Janmey PA (1998) Interaction of vimentin with actin and phospholipids. Biol Bull 194(3):402–405PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Feher J (2017) Cell structure, 2nd edn. In: Quantitative human physiology, pp 101–119CrossRefGoogle Scholar
  132. 132.
    Nick P (2011) Mechanics of the cytoskeleton. In: Mechanical integration of plant cells and plants, pp 53–90CrossRefGoogle Scholar
  133. 133.
    Mücke N, Kreplak L, Kirmse R, Wedig T, Herrmann H, Aebi U, Langowski J (2004) Assessing the flexibility of intermediate filaments by atomic force microscopy. J Mol Biol 335(5):1241–1250PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Guzmán C, Jeney S, Kreplak L, Kasas S, Kulik AJ, Aebi U, Forró L (2006) Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. J Mol Biol 360(3):623–630PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113(1):155–160PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Gowing LR, Tellam RL, Banyard MR (1984) Microfilament organization and total actin content are decreased in hybrids derived from the fusion of HeLa cells with human fibroblasts. J Cell Sci 69:137–146PubMedPubMedCentralGoogle Scholar
  137. 137.
    Bray D, Thomas C (1975) The actin content of fibroblasts. Biochem J 147(2):221–228PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Inoue D, Obino D, Pineau J, Farina F, Gaillard J, Guerin C, Blanchoin L, Lennon-Duménil AM, Théry M (2019) Actin filaments regulate microtubule growth at the centrosome. EMBO J 38(11):e99630PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Wang N, Stamenovic D (2002) Mechanics of vimentin intermediate filaments. J Muscle Res Cell Motil 23(5–6):535–540PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Ackbarow Theodor, Buehler Markus J (2007) Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies. J Mater Sci 42(21):8771–8787CrossRefGoogle Scholar
  141. 141.
    Rao JY, Hurst RE, Bales WD, Jones PL, Bass RA, Archer LT, Bell PB, Hemstreet GP 3rd (1990) Cellular F-actin levels as a marker for cellular transformation: relationship to cell division and differentiation. Cancer Res 50(8):2215–2220PubMedPubMedCentralGoogle Scholar
  142. 142.
    Jensen MH, Morris EJ, Goldman RD, Weitz DA (2014) Emergent properties of composite semiflexible biopolymer networks. Bioarchitecture 4(4–5):138–143PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, College of MedicineKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations