Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 23, pp 4583–4587 | Cite as

Response to “Concerns regarding Baksa et al., Cell Molec. Life Sci., 2019.” by Edgar Garcia-Rill and Francisco J. Urbano (CMLS-D-18-0156R1)

  • Balazs PalEmail author
Letters and Comments
  • 36 Downloads

Dear Sirs,

“The legacy we leave in science needs to be beyond questions.” Agreeing with this sentence of Dr. Garcia-Rill and Dr. Urbano, I would like to address the points they raised in their comments based on their own papers and personal opinions. In my response I would like to demonstrate that an independent research group has the right to adapt methods to their research questions if it is well underlined with scientific arguments and serves the goal of the project.

The laboratory of Dr. Garcia-Rill published numerous papers on the gamma-band activity of pedunculopontine neurons. They perform research on “…the most important discovery in the reticular activating system in the last 10 years, the manifestation of gamma-band activity in cells of the reticular activating system (RAS), especially in the pedunculopontine nucleus…” [1]. However, based on several local field potential (LFP) studies from humans and in vivo recordings on rodents, other frequencies were also identified....

Notes

References

  1. 1.
    Garcia-Rill E, Luster B, Mahaffey S, MacNicol M, Hyde JR, D’Onofrio SM, Phillips C (2015) Pedunculopontine gamma band activity and development. Brain Sci. 5(4):546–567.  https://doi.org/10.3390/brainsci5040546 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tsang EW, Hamani C, Moro E, Mazzella F, Poon YY, Lozano AM, Chen R (2010) Involvement of the human pedunculopontine nucleus region in voluntary movements. Neurology. 75(11):950–959.  https://doi.org/10.1212/WNL.0b013e3181f25b35 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Androulidakis AG, Khan S, Litvak V, Pleydell-Pearce CW, Brown P, Gill SS (2008) Local field potential recordings from the pedunculopontine nucleus in a Parkinsonian patient. NeuroReport 19(1):59–62.  https://doi.org/10.1097/WNR.0b013e3282f2e2d1 CrossRefPubMedGoogle Scholar
  4. 4.
    Androulidakis AG, Mazzone P, Litvak V, Penny W, Dileone M, Gaynor LM, Tisch S, Di Lazzaro V, Brown P (2008) Oscillatory activity in the pedunculopontine area of patients with Parkinson’s disease. Exp Neurol 211(1):59–66.  https://doi.org/10.1016/j.expneurol.2008.01.002 CrossRefPubMedGoogle Scholar
  5. 5.
    Fraix V, Bastin J, David O, Goetz L, Ferraye M, Benabid AL, Chabardes S, Pollak P, Debû B (2013) Pedunculopontine nucleus area oscillations during stance, stepping and freezing in Parkinson’s disease. PLoS One 8(12):e83919.  https://doi.org/10.1371/journal.pone.0083919 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tattersall TL, Stratton PG, Coyne TJ, Cook R, Silberstein P, Silburn PA, Windels F, Sah P (2014) Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus. Nat Neurosci 17(3):449–454.  https://doi.org/10.1038/nn.3642 CrossRefPubMedGoogle Scholar
  7. 7.
    Lau B, Welter ML, Belaid H, Fernandez Vidal S, Bardinet E, Grabli D, Karachi C (2015) The integrative role of the pedunculopontine nucleus in human gait. Brain 138(Pt 5):1284–1296.  https://doi.org/10.1093/brain/awv047 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, Lang AE, Dostrovsky JO (2006) Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol 96(6):3248–3256 (Epub 2006 Sep 27) CrossRefGoogle Scholar
  9. 9.
    Li M, Zhang W (2015) Oscillations in pedunculopontine nucleus in Parkinson’s disease and its relationship with deep brain stimulation. Front Neural Circ. 2(9):47.  https://doi.org/10.3389/fncir.2015.00047 CrossRefGoogle Scholar
  10. 10.
    Valencia M, Chavez M, Artieda J, Bolam JP, Mena-Segovia J (2014) Abnormal functional connectivity between motor cortex and pedunculopontine nucleus following chronic dopamine depletion. J Neurophysiol 111(2):434–440.  https://doi.org/10.1152/jn.00555.2013 CrossRefPubMedGoogle Scholar
  11. 11.
    Mena-Segovia J, Sims HM, Magill PJ, Bolam JP (2008) Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations. J Physiol 586(12):2947–2960.  https://doi.org/10.1113/jphysiol.2008.153874 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE (2014) Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 34(13):4708–4727.  https://doi.org/10.1523/JNEUROSCI.2617-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mena-Segovia J, Bolam JP (2017) Rethinking the pedunculopontine nucleus: from cellular organization to function. Neuron 94(1):7–18.  https://doi.org/10.1016/j.neuron.2017.02.027 CrossRefPubMedGoogle Scholar
  14. 14.
    Baksa B, Kovács A, Bayasgalan T, Szentesi P, Kőszeghy Á, Szücs P, Pál B (2019) Characterization of functional subgroups among genetically identified cholinergic neurons in the pedunculopontine nucleus. Cell Mol Life Sci 76(14):2799–2815.  https://doi.org/10.1007/s00018-019-03025-4 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kovács A, Pál B (2017) Astrocyte-dependent slow inward currents (SICs) participate in neuromodulatory mechanisms in the pedunculopontine nucleus (PPN). Front Cell Neurosci. 1(11):16.  https://doi.org/10.3389/fncel.2017.00016 CrossRefGoogle Scholar
  16. 16.
    Bordas C, Kovacs A, Pal B (2015) The M-current contributes to high threshold membrane potential oscillations in a cell type-specific way in the pedunculopontine nucleus of mice. Front Cell Neurosci. 7(9):121.  https://doi.org/10.3389/fncel.2015.00121 CrossRefGoogle Scholar
  17. 17.
    Kezunovic N, Urbano FJ, Simon C, Hyde J, Smith K, Garcia-Rill E (2011) Mechanism behind gamma band activity in the pedunculopontine nucleus. Eur J Neurosci 34(3):404–415.  https://doi.org/10.1111/j.1460-9568.2011.07766.x CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Takakusaki K, Shiroyama T, Kitai ST (1997) Two types of cholinergic neurons in the rat tegmental pedunculopontine nucleus: electrophysiological and morphological characterization. Neuroscience 79(4):1089–1109CrossRefGoogle Scholar
  19. 19.
    Llinás RR, Grace AA, Yarom Y (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc Natl Acad Sci USA. 88(3):897–901CrossRefGoogle Scholar
  20. 20.
    Pape HC, Driesang RB (1998) Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. J Neurophysiol 79(1):217–226CrossRefGoogle Scholar
  21. 21.
    Kobayashi T, Homma Y, Good C, Skinner RD, Garcia-Rill E (2003) Developmental changes in the effects of serotonin on neurons in the region of the pedunculopontine nucleus. Brain Res Dev Brain Res 140(1):57–66CrossRefGoogle Scholar
  22. 22.
    Murillo-Rodríguez E, Millán-Aldaco D, Di Marzo V, Drucker-Colín R (2008) The anandamide membrane transporter inhibitor, VDM-11, modulates sleep and c-Fos expression in the rat brain. Neuroscience 157(1):1–11.  https://doi.org/10.1016/j.neuroscience.2008.08.056 CrossRefPubMedGoogle Scholar
  23. 23.
    Ishibashi M, Gumenchuk I, Kang B, Steger C, Lynn E, Molina NE, Eisenberg LM, Leonard CS (2015) Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca(2+)-dependent resonance in LDT and PPT cholinergic neurons. Front Neurol. 2(6):120.  https://doi.org/10.3389/fneur.2015.00120 CrossRefGoogle Scholar
  24. 24.
    Kőszeghy Á, Kovács A, Bíró T, Szücs P, Vincze J, Hegyi Z, Antal M, Pál B (2015) Endocannabinoid signaling modulates neurons of the pedunculopontine nucleus (PPN) via astrocytes. Brain Struct Funct. 220(5):3023–3041.  https://doi.org/10.1007/s00429-014-0842-5 CrossRefPubMedGoogle Scholar
  25. 25.
    Shafer TJ (1998) Effects of Cd2+, Pb2+ and CH3Hg+ on high voltage-activated calcium currents in pheochromocytoma (PC12) cells: potency, reversibility, interactions with extracellular Ca2+ and mechanisms of block. Toxicol Lett 99(3):207–221CrossRefGoogle Scholar
  26. 26.
    Hobai IA, Bates JA, Howarth FC, Levi AJ (1997) Inhibition by external Cd2+ of Na/Ca exchange and L-type Ca channel in rabbit ventricular myocytes. Am J Physiol 272(5 Pt 2):H2164–H2172PubMedGoogle Scholar
  27. 27.
    Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71(15):2787–2814.  https://doi.org/10.1007/s00018-013-1550-7(Epub 2014 Jan 19) CrossRefPubMedGoogle Scholar
  28. 28.
    Parpura V, Sekler I, Fern R (2016) Plasmalemmal and mitochondrial Na(+) -Ca(2+) exchange in neuroglia. Glia. 64(10):1646–1654.  https://doi.org/10.1002/glia.22975 CrossRefPubMedGoogle Scholar
  29. 29.
    Parpura V, Grubišić V, Verkhratsky A (2011) Ca(2+) sources for the exocytotic release of glutamate from astrocytes. Biochim Biophys Acta 1813(5):984–991.  https://doi.org/10.1016/j.bbamcr.2010.11.006 CrossRefPubMedGoogle Scholar
  30. 30.
    Kovács A, Bordás C, Bíró T, Hegyi Z, Antal M, Szücs P, Pál B (2017) Direct presynaptic and indirect astrocyte-mediated mechanisms both contribute to endocannabinoid signaling in the pedunculopontine nucleus of mice. Brain Struct Funct. 222(1):247–266.  https://doi.org/10.1007/s00429-016-1214-0 CrossRefPubMedGoogle Scholar
  31. 31.
    Wang S, Xing TR, Tang ML, Yong W, Li CC, Chen L, Wang HL, Tang JL, Ruan DY (2008) Effects of Cd2+ on transient outward and delayed rectifier potassium currents in acutely isolated rat hippocampal CA1 neurons. Naunyn Schmiedebergs Arch Pharmacol. 377(3):245–253.  https://doi.org/10.1007/s00210-008-0278-7(Epub 2008 Apr 2) CrossRefPubMedGoogle Scholar
  32. 32.
    Simon C, Kezunovic N, Ye M, Hyde J, Hayar A, Williams DK, Garcia-Rill E (2010) Gamma band unit activity and population responses in the pedunculopontine nucleus. J Neurophysiol 104(1):463–474.  https://doi.org/10.1152/jn.00242.2010 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of Debrecen, Faculty of MedicineDebrecenHungary

Personalised recommendations