Skip to main content

Advertisement

Log in

Sialic acid–binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The mammalian immune system evolved to tightly regulate the elimination of pathogenic microbes and neoplastic transformed cells while tolerating our own healthy cells. Here, we summarize experimental evidence for the role of Siglecs—in particular CD33-related Siglecs—as self-receptors and their sialoglycan ligands in regulating this balance between recognition of self and non-self. Sialoglycans are found in the glycocalyx and extracellular fluids and matrices of all mammalian cells and can be considered as self-associated molecular patterns (SAMPs). We also provide an overview of the known interactions of Siglec receptors and sialoglycan-SAMPs. Manipulation of the Siglec-SAMP axis offers new therapeutic opportunities for the treatment of inflammatory conditions, autoimmune diseases and also cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Varki A, Kornfeld S (2015) Historical background and overview. In: Varki A, Cummings RD et al (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–18. https://doi.org/10.1101/glycobiology.3e.001

    Chapter  Google Scholar 

  2. Varki A (2017) Biological roles of glycans. Glycobiology 27(1):3–49. https://doi.org/10.1093/glycob/cww086

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez E, Schetters STT, van Kooyk Y (2018) The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol 18(3):204–211. https://doi.org/10.1038/nri.2018.3

    Article  CAS  PubMed  Google Scholar 

  4. Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15(9):540–555. https://doi.org/10.1038/nrc3982

    Article  CAS  PubMed  Google Scholar 

  5. Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17(7–9):485–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Varki NM, Varki A (2007) Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 87(9):851–857. https://doi.org/10.1038/labinvest.3700656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng L, Chen X, Varki A (2013) Exploration of sialic acid diversity and biology using sialoglycan microarrays. Biopolymers 99(10):650–665. https://doi.org/10.1002/bip.22314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Varki A (2001) Loss of N-glycolylneuraminic acid in humans: mechanisms, consequences, and implications for hominid evolution. Am J Phys Anthropol Suppl 33:54–69

    Article  Google Scholar 

  9. Samraj AN, Pearce OM, Laubli H, Crittenden AN, Bergfeld AK, Banda K, Gregg CJ, Bingman AE, Secrest P, Diaz SL, Varki NM, Varki A (2015) A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci USA 112(2):542–547. https://doi.org/10.1073/pnas.1417508112

    Article  CAS  PubMed  Google Scholar 

  10. Varki A (2010) Colloquium paper: uniquely human evolution of sialic acid genetics and biology. Proc Natl Acad Sci USA 107(Suppl 2):8939–8946. https://doi.org/10.1073/pnas.0914634107

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kawanishi K, Dhar C, Do R, Varki N, Gordts P, Varki A (2019) Human species-specific loss of CMP-N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Proc Natl Acad Sci USA 116(32):16036–16045. https://doi.org/10.1073/pnas.1902902116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boligan KF, Mesa C, Fernandez LE, von Gunten S (2015) Cancer intelligence acquired (CIA): tumor glycosylation and sialylation codes dismantling antitumor defense. Cell Mol Life Sci 72(7):1231–1248. https://doi.org/10.1007/s00018-014-1799-5

    Article  CAS  PubMed  Google Scholar 

  13. Dall’Olio F, Malagolini N, Trinchera M (1840) Chiricolo M (2014) Sialosignaling: sialyltransferases as engines of self-fueling loops in cancer progression. Biochim Biophys Acta 9:2752–2764. https://doi.org/10.1016/j.bbagen.2014.06.006

    Article  CAS  Google Scholar 

  14. Laubli H, Borsig L (2010) Selectins as mediators of lung metastasis. Cancer Microenviron 3(1):97–105. https://doi.org/10.1007/s12307-010-0043-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ley K (2003) The role of selectins in inflammation and disease. Trends Mol Med 9(6):263–268

    Article  CAS  PubMed  Google Scholar 

  16. Macauley MS, Crocker PR, Paulson JC (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14(10):653–666. https://doi.org/10.1038/nri3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7(4):255–266. https://doi.org/10.1038/nri2056

    Article  CAS  PubMed  Google Scholar 

  18. Pillai S, Netravali IA, Cariappa A, Mattoo H (2012) Siglecs and immune regulation. Annu Rev Immunol 30:357–392. https://doi.org/10.1146/annurev-immunol-020711-075018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Angata T (2006) Molecular diversity and evolution of the Siglec family of cell-surface lectins. Mol Divers 10(4):555–566. https://doi.org/10.1007/s11030-006-9029-1

    Article  CAS  PubMed  Google Scholar 

  20. Angata T (2018) Possible influences of endogenous and exogenous ligands on the evolution of human siglecs. Front Immunol 9:2885. https://doi.org/10.3389/fimmu.2018.02885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schwarz F, Fong JJ, Varki A (2015) Human-specific evolutionary changes in the biology of siglecs. Adv Exp Med Biol 842:1–16. https://doi.org/10.1007/978-3-319-11280-0_1

    Article  CAS  PubMed  Google Scholar 

  22. Angata T, Margulies EH, Green ED, Varki A (2004) Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci USA 101(36):13251–13256. https://doi.org/10.1073/pnas.0404833101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Attrill H, Takazawa H, Witt S, Kelm S, Isecke R, Brossmer R, Ando T, Ishida H, Kiso M, Crocker PR, van Aalten DM (2006) The structure of siglec-7 in complex with sialosides: leads for rational structure-based inhibitor design. Biochem J 397(2):271–278. https://doi.org/10.1042/BJ20060103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Attrill H, Imamura A, Sharma RS, Kiso M, Crocker PR, van Aalten DM (2006) Siglec-7 undergoes a major conformational change when complexed with the alpha(2,8)-disialylganglioside GT1b. J Biol Chem 281(43):32774–32783. https://doi.org/10.1074/jbc.M601714200

    Article  CAS  PubMed  Google Scholar 

  25. Alphey MS, Attrill H, Crocker PR, van Aalten DM (2003) High resolution crystal structures of Siglec-7. Insights into ligand specificity in the Siglec family. J Biol Chem 278(5):3372–3377. https://doi.org/10.1074/jbc.m210602200

    Article  CAS  PubMed  Google Scholar 

  26. Ereno-Orbea J, Sicard T, Cui H, Mazhab-Jafari MT, Benlekbir S, Guarne A, Rubinstein JL, Julien JP (2017) Molecular basis of human CD22 function and therapeutic targeting. Nat Commun 8(1):764. https://doi.org/10.1038/s41467-017-00836-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Propster JM, Yang F, Rabbani S, Ernst B, Allain FH, Schubert M (2016) Structural basis for sulfation-dependent self-glycan recognition by the human immune-inhibitory receptor Siglec-8. Proc Natl Acad Sci USA 113(29):E4170–E4179. https://doi.org/10.1073/pnas.1602214113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Angata T, Varki NM, Varki A (2001) A second uniquely human mutation affecting sialic acid biology. J Biol Chem 276(43):40282–40287. https://doi.org/10.1074/jbc.M105926200

    Article  CAS  PubMed  Google Scholar 

  29. Mitra N, Banda K, Altheide TK, Schaffer L, Johnson-Pais TL, Beuten J, Leach RJ, Angata T, Varki N, Varki A (2011) SIGLEC12, a human-specific segregating (pseudo)gene, encodes a signaling molecule expressed in prostate carcinomas. J Biol Chem 286(26):23003–23011. https://doi.org/10.1074/jbc.M111.244152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Angata T, Varki A (2000) Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs. Evidence for co-evolution with sialic acid synthesis pathways. J Biol Chem 275(29):22127–22135. https://doi.org/10.1074/jbc.m002775200

    Article  CAS  PubMed  Google Scholar 

  31. Laubli H, Pearce OM, Schwarz F, Siddiqui SS, Deng L, Stanczak MA, Deng L, Verhagen A, Secrest P, Lusk C, Schwartz AG, Varki NM, Bui JD, Varki A (2014) Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc Natl Acad Sci USA 111(39):14211–14216. https://doi.org/10.1073/pnas.1409580111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheong KA, Chang YS, Roh JY, Kim BJ, Kim MN, Park YM, Park HJ, Kim ND, Lee CH, Lee AY (2011) A novel function of Siglec-9 A391C polymorphism on T cell receptor signaling. Int Arch Allergy Immunol 154(2):111–118. https://doi.org/10.1159/000320225

    Article  CAS  PubMed  Google Scholar 

  33. Padler-Karavani V, Hurtado-Ziola N, Chang YC, Sonnenburg JL, Ronaghy A, Yu H, Verhagen A, Nizet V, Chen X, Varki N, Varki A, Angata T (2014) Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. FASEB J 28(3):1280–1293. https://doi.org/10.1096/fj.13-241497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bochner BS, Alvarez RA, Mehta P, Bovin NV, Blixt O, White JR, Schnaar RL (2005) Glycan array screening reveals a candidate ligand for Siglec-8. J Biol Chem 280(6):4307–4312. https://doi.org/10.1074/jbc.M412378200

    Article  CAS  PubMed  Google Scholar 

  35. Schleimer RP, Schnaar RL, Bochner BS (2016) Regulation of airway inflammation by Siglec-8 and Siglec-9 sialoglycan ligand expression. Curr Opin Allergy Clin Immunol 16(1):24–30. https://doi.org/10.1097/ACI.0000000000000234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu H, Gonzalez-Gil A, Wei Y, Fernandes SM, Porell RN, Vajn K, Paulson JC, Nycholat CM, Schnaar RL (2017) Siglec-8 and Siglec-9 binding specificities and endogenous airway ligand distributions and properties. Glycobiology 27(7):657–668. https://doi.org/10.1093/glycob/cwx026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Secundino I, Lizcano A, Roupe KM, Wang X, Cole JN, Olson J, Ali SR, Dahesh S, Amayreh LK, Henningham A, Varki A, Nizet V (2016) Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation. J Mol Med (Berl) 94(2):219–233. https://doi.org/10.1007/s00109-015-1341-8

    Article  CAS  Google Scholar 

  38. Kawasaki Y, Ito A, Withers DA, Taima T, Kakoi N, Saito S, Arai Y (2010) Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology 20(11):1373–1379. https://doi.org/10.1093/glycob/cwq116

    Article  CAS  PubMed  Google Scholar 

  39. Avril T, North SJ, Haslam SM, Willison HJ, Crocker PR (2006) Probing the cis interactions of the inhibitory receptor Siglec-7 with alpha2,8-disialylated ligands on natural killer cells and other leukocytes using glycan-specific antibodies and by analysis of alpha2,8-sialyltransferase gene expression. J Leukoc Biol 80(4):787–796. https://doi.org/10.1189/jlb.1005559

    Article  CAS  PubMed  Google Scholar 

  40. Aalto K, Autio A, Kiss EA, Elima K, Nymalm Y, Veres TZ, Marttila-Ichihara F, Elovaara H, Saanijoki T, Crocker PR, Maksimow M, Bligt E, Salminen TA, Salmi M, Roivainen A, Jalkanen S (2011) Siglec-9 is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in PET imaging of inflammation and cancer. Blood 118(13):3725–3733. https://doi.org/10.1182/blood-2010-09-311076

    Article  CAS  PubMed  Google Scholar 

  41. Fong JJ, Sreedhara K, Deng L, Varki NM, Angata T, Liu Q, Nizet V, Varki A (2015) Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J 34(22):2775–2788. https://doi.org/10.15252/embj.201591407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stanczak MA, Siddiqui SS, Trefny MP, Thommen DS, Boligan KF, von Gunten S, Tzankov A, Tietze L, Lardinois D, Heinzelmann-Schwarz V, von Bergwelt-Baidon M, Zhang W, Lenz HJ, Han Y, Amos CI, Syedbasha M, Egli A, Stenner F, Speiser DE, Varki A, Zippelius A, Laubli H (2018) Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J Clin Invest. https://doi.org/10.1172/JCI120612

    Article  PubMed  PubMed Central  Google Scholar 

  43. Varki A (2011) Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 21(9):1121–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gonzalez-Gil A, Porell RN, Fernandes SM, Wei Y, Yu H, Carroll DJ, McBride R, Paulson JC, Tiemeyer M, Aoki K, Bochner BS, Schnaar RL (2018) Sialylated keratan sulfate proteoglycans are Siglec-8 ligands in human airways. Glycobiology 28(10):786–801. https://doi.org/10.1093/glycob/cwy057

    Article  CAS  PubMed  Google Scholar 

  45. Doody GM, Justement LB, Delibrias CC, Matthews RJ, Lin J, Thomas ML, Fearon DT (1995) A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269(5221):242–244

    Article  CAS  PubMed  Google Scholar 

  46. Taylor VC, Buckley CD, Douglas M, Cody AJ, Simmons DL, Freeman SD (1999) The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem 274(17):11505–11512

    Article  CAS  PubMed  Google Scholar 

  47. Angata T, Kerr SC, Greaves DR, Varki NM, Crocker PR, Varki A (2002) Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277(27):24466–24474. https://doi.org/10.1074/jbc.m202833200

    Article  CAS  PubMed  Google Scholar 

  48. Ikehara Y, Ikehara SK, Paulson JC (2004) Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J Biol Chem 279(41):43117–43125. https://doi.org/10.1074/jbc.M403538200

    Article  CAS  PubMed  Google Scholar 

  49. Cao H, Lakner U, de Bono B, Traherne JA, Trowsdale J, Barrow AD (2008) SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur J Immunol 38(8):2303–2315. https://doi.org/10.1002/eji.200738078

    Article  CAS  PubMed  Google Scholar 

  50. Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M (2006) Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 20(12):1964–1973. https://doi.org/10.1096/fj.06-5800com

    Article  CAS  PubMed  Google Scholar 

  51. Blasius AL, Cella M, Maldonado J, Takai T, Colonna M (2006) Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107(6):2474–2476. https://doi.org/10.1182/blood-2005-09-3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hayakawa T, Khedri Z, Schwarz F, Landig C, Liang SY, Yu H, Chen X, Fujito NT, Satta Y, Varki A, Angata T (2017) Coevolution of Siglec-11 and Siglec-16 via gene conversion in primates. BMC Evol Biol 17(1):228. https://doi.org/10.1186/s12862-017-1075-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schwarz F, Landig CS, Siddiqui S, Secundino I, Olson J, Varki N, Nizet V, Varki A (2017) Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J. https://doi.org/10.15252/embj.201695581

    Article  PubMed  PubMed Central  Google Scholar 

  54. Angata T, Nycholat CM, Macauley MS (2015) Therapeutic targeting of siglecs using antibody- and glycan-based approaches. Trends Pharmacol Sci 36(10):645–660. https://doi.org/10.1016/j.tips.2015.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haas Q, Frias Boligan K, Jandus C, Schneider C, Simillion C, Stanczak MA, Haubitz M, Seyed Jafari SM, Zippelius A, Baerlocher GM, Laubli H, Hunger RE, Romero P, Simon HU, von Gunten S (2019) Siglec-9 regulates an effector memory CD8 + T-cell subset that congregates in the melanoma tumor microenvironment. Cancer Immunol Res. https://doi.org/10.1158/2326-6066.CIR-18-0505

    Article  PubMed  Google Scholar 

  56. Varki A (2007) Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446(7139):1023–1029. https://doi.org/10.1038/nature05816

    Article  CAS  PubMed  Google Scholar 

  57. Schaefer L (2014) Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem 289(51):35237–35245. https://doi.org/10.1074/jbc.R114.619304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trinchieri G, Sher A (2007) Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7(3):179–190. https://doi.org/10.1038/nri2038

    Article  CAS  PubMed  Google Scholar 

  59. Liston A, Masters SL (2017) Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol 17(3):208–214. https://doi.org/10.1038/nri.2016.151

    Article  CAS  PubMed  Google Scholar 

  60. Lizcano A, Secundino I, Dohrmann S, Corriden R, Rohena C, Diaz S, Ghosh P, Deng L, Nizet V, Varki A (2017) Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood 129(23):3100–3110. https://doi.org/10.1182/blood-2016-11-751636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ali SR, Fong JJ, Carlin AF, Busch TD, Linden R, Angata T, Areschoug T, Parast M, Varki N, Murray J, Nizet V, Varki A (2014) Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J Exp Med 211(6):1231–1242. https://doi.org/10.1084/jem.20131853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Landig CS, Hazel A, Kellman BP, Fong JJ, Schwarz F, Agarwal S, Varki N, Massari P, Lewis NE, Ram S, Varki A (2019) Evolution of the exclusively human pathogen Neisseria gonorrhoeae: human-specific engagement of immunoregulatory Siglecs. Evol Appl 12(2):337–349. https://doi.org/10.1111/eva.12744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nguyen DH, Ball ED, Varki A (2006) Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp Hematol 34(6):728–735. https://doi.org/10.1016/j.exphem.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  64. von Gunten S, Yousefi S, Seitz M, Jakob SM, Schaffner T, Seger R, Takala J, Villiger PM, Simon HU (2005) Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment. Blood 106(4):1423–1431. https://doi.org/10.1182/blood-2004-10-4112

    Article  CAS  Google Scholar 

  65. Klaas M, Crocker PR (2012) Sialoadhesin in recognition of self and non-self. Semin Immunopathol 34(3):353–364. https://doi.org/10.1007/s00281-012-0310-3

    Article  CAS  PubMed  Google Scholar 

  66. Hartnell A, Steel J, Turley H, Jones M, Jackson DG, Crocker PR (2001) Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood 97(1):288–296

    Article  CAS  PubMed  Google Scholar 

  67. Angata T, Tabuchi Y, Nakamura K, Nakamura M (2007) Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 17(8):838–846. https://doi.org/10.1093/glycob/cwm049

    Article  CAS  PubMed  Google Scholar 

  68. Kameda Y, Takahata M, Komatsu M, Mikuni S, Hatakeyama S, Shimizu T, Angata T, Kinjo M, Minami A, Iwasaki N (2013) Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling Adaptor DAP12. J Bone Miner Res 28(12):2463–2475. https://doi.org/10.1002/jbmr.1989

    Article  CAS  PubMed  Google Scholar 

  69. Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, Zhang J, Song C, Zarr M, Zhou X, Han X, Archer KA, O’Neill T, Herbst RS, Boto AN, Sanmamed MF, Langermann S, Rimm DL, Chen L (2019) Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med 25(4):656–666. https://doi.org/10.1038/s41591-019-0374-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nitschke L (2014) CD22 and Siglec-G regulate inhibition of B-cell signaling by sialic acid ligand binding and control B-cell tolerance. Glycobiology 24(9):807–817. https://doi.org/10.1093/glycob/cwu066

    Article  CAS  PubMed  Google Scholar 

  71. Pfrengle F, Macauley MS, Kawasaki N, Paulson JC (2013) Copresentation of antigen and ligands of Siglec-G induces B cell tolerance independent of CD22. J Immunol 191(4):1724–1731. https://doi.org/10.4049/jimmunol.1300921

    Article  CAS  PubMed  Google Scholar 

  72. Munday J, Kerr S, Ni J, Cornish AL, Zhang JQ, Nicoll G, Floyd H, Mattei MG, Moore P, Liu D, Crocker PR (2001) Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor. Biochem J 355(Pt 2):489–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kikly KK, Bochner BS, Freeman SD, Tan KB, Gallagher KT, D’Alessio KJ, Holmes SD, Abrahamson JA, Erickson-Miller CL, Murdock PR, Tachimoto H, Schleimer RP, White JR (2000) Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells, and basophils. J Allergy Clin Immunol 105(6 Pt 1):1093–1100

    Article  CAS  PubMed  Google Scholar 

  74. Floyd H, Ni J, Cornish AL, Zeng Z, Liu D, Carter KC, Steel J, Crocker PR (2000) Siglec-8. A novel eosinophil-specific member of the immunoglobulin superfamily. J Biol Chem 275(2):861–866

    Article  CAS  PubMed  Google Scholar 

  75. Song DJ, Cho JY, Lee SY, Miller M, Rosenthal P, Soroosh P, Croft M, Zhang M, Varki A, Broide DH (2009) Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J Immunol 183(8):5333–5341. https://doi.org/10.4049/jimmunol.0801421

    Article  CAS  PubMed  Google Scholar 

  76. Zhang M, Angata T, Cho JY, Miller M, Broide DH, Varki A (2007) Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood 109(10):4280–4287. https://doi.org/10.1182/blood-2006-08-039255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Duan S, Koziol-White CJ, Jester WF Jr, Nycholat CM, Macauley MS, Panettieri RA Jr, Paulson JC (2019) CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J Clin Invest 129(3):1387–1401. https://doi.org/10.1172/JCI125456

    Article  PubMed  Google Scholar 

  78. Lubbers J, Rodriguez E, van Kooyk Y (2018) Modulation of immune tolerance via siglec-sialic acid interactions. Front Immunol 9:2807. https://doi.org/10.3389/fimmu.2018.02807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Crespo HJ, Lau JT, Videira PA (2013) Dendritic cells: a spot on sialic Acid. Front Immunol 4:491. https://doi.org/10.3389/fimmu.2013.00491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bax M, Garcia-Vallejo JJ, Jang-Lee J, North SJ, Gilmartin TJ, Hernandez G, Crocker PR, Leffler H, Head SR, Haslam SM, Dell A, van Kooyk Y (2007) Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J Immunol 179(12):8216–8224

    Article  CAS  PubMed  Google Scholar 

  81. Lock K, Zhang J, Lu J, Lee SH, Crocker PR (2004) Expression of CD33-related siglecs on human mononuclear phagocytes, monocyte-derived dendritic cells and plasmacytoid dendritic cells. Immunobiology 209(1–2):199–207. https://doi.org/10.1016/j.imbio.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  82. Zhang JQ, Biedermann B, Nitschke L, Crocker PR (2004) The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils. Eur J Immunol 34(4):1175–1184. https://doi.org/10.1002/eji.200324723

    Article  CAS  PubMed  Google Scholar 

  83. Perdicchio M, Ilarregui JM, Verstege MI, Cornelissen LA, Schetters ST, Engels S, Ambrosini M, Kalay H, Veninga H, den Haan JM, van Berkel LA, Samsom JN, Crocker PR, Sparwasser T, Berod L, Garcia-Vallejo JJ, van Kooyk Y, Unger WW (2016) Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells. Proc Natl Acad Sci USA 113(12):3329–3334. https://doi.org/10.1073/pnas.1507706113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ding Y, Guo Z, Liu Y, Li X, Zhang Q, Xu X, Gu Y, Zhang Y, Zhao D, Cao X (2016) The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class I-peptide complex formation. Nat Immunol 17(10):1167–1175. https://doi.org/10.1038/ni.3535

    Article  CAS  PubMed  Google Scholar 

  85. Durai V, Murphy KM (2016) Functions of murine dendritic cells. Immunity 45(4):719–736. https://doi.org/10.1016/j.immuni.2016.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Loschko J, Heink S, Hackl D, Dudziak D, Reindl W, Korn T, Krug AB (2011) Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity. J Immunol 187(12):6346–6356. https://doi.org/10.4049/jimmunol.1102307

    Article  CAS  PubMed  Google Scholar 

  87. Nicoll G, Ni J, Liu D, Klenerman P, Munday J, Dubock S, Mattei MG, Crocker PR (1999) Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J Biol Chem 274(48):34089–34095

    Article  CAS  PubMed  Google Scholar 

  88. Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M, Demoulins T, Schneider C, Wehrli M, Hunger RE, Baerlocher GM, Simon HU, Romero P, Munz C, von Gunten S (2014) Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest 124(4):1810–1820. https://doi.org/10.1172/JCI65899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang JQ, Nicoll G, Jones C, Crocker PR (2000) Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J Biol Chem 275(29):22121–22126. https://doi.org/10.1074/jbc.M002788200

    Article  CAS  PubMed  Google Scholar 

  90. Falco M, Biassoni R, Bottino C, Vitale M, Sivori S, Augugliaro R, Moretta L, Moretta A (1999) Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J Exp Med 190(6):793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fong JJ, Tsai CM, Saha S, Nizet V, Varki A, Bui JD (2018) Siglec-7 engagement by GBS beta-protein suppresses pyroptotic cell death of natural killer cells. Proc Natl Acad Sci USA 115(41):10410–10415. https://doi.org/10.1073/pnas.1804108115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Meyer SJ, Linder AT, Brandl C, Nitschke L (2018) B cell Siglecs-news on signaling and its interplay with ligand binding. Front Immunol 9:2820. https://doi.org/10.3389/fimmu.2018.02820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hoffmann A, Kerr S, Jellusova J, Zhang J, Weisel F, Wellmann U, Winkler TH, Kneitz B, Crocker PR, Nitschke L (2007) Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nat Immunol 8(7):695–704. https://doi.org/10.1038/ni1480

    Article  CAS  PubMed  Google Scholar 

  94. Nguyen DH, Hurtado-Ziola N, Gagneux P, Varki A (2006) Loss of Siglec expression on T lymphocytes during human evolution. Proc Natl Acad Sci USA 103(20):7765–7770. https://doi.org/10.1073/pnas.0510484103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Soto PC, Karris MY, Spina CA, Richman DD, Varki A (2013) Cell-intrinsic mechanism involving Siglec-5 associated with divergent outcomes of HIV-1 infection in human and chimpanzee CD4 T cells. J Mol Med (Berl) 91(2):261–270. https://doi.org/10.1007/s00109-012-0951-7

    Article  CAS  Google Scholar 

  96. Brinkman-Van der Linden EC, Hurtado-Ziola N, Hayakawa T, Wiggleton L, Benirschke K, Varki A, Varki N (2007) Human-specific expression of Siglec-6 in the placenta. Glycobiology 17(9):922–931. https://doi.org/10.1093/glycob/cwm065

    Article  CAS  PubMed  Google Scholar 

  97. Tecle E, Reynoso HS, Wang R, Gagneux P (2019) The female reproductive tract contains multiple innate sialic acid-binding immunoglobulin-like lectins (Siglecs) that facilitate sperm survival. J Biol Chem. https://doi.org/10.1074/jbc.RA119.008729

    Article  PubMed  PubMed Central  Google Scholar 

  98. Alkhodair K, Almhanna H, McGetrick J, Gedair S, Gallagher ME, Fernandez-Fuertes B, Tharmalingam T, Larsen PB, Fitzpatrick E, Lonergan P, Evans ACO, Carrington SD, Reid CJ (2018) Siglec expression on the surface of human, bull and ram sperm. Reproduction 155(4):361–371. https://doi.org/10.1530/REP-17-0475

    Article  CAS  PubMed  Google Scholar 

  99. Dharmadhikari G, Stolz K, Hauke M, Morgan NG, Varki A, de Koning E, Kelm S, Maedler K (2017) Siglec-7 restores beta-cell function and survival and reduces inflammation in pancreatic islets from patients with diabetes. Sci Rep 7:45319. https://doi.org/10.1038/srep45319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chang YC, Nizet V (2014) The interplay between Siglecs and sialylated pathogens. Glycobiology 24(9):818–825. https://doi.org/10.1093/glycob/cwu067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carlin AF, Chang YC, Areschoug T, Lindahl G, Hurtado-Ziola N, King CC, Varki A, Nizet V (2009) Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. J Exp Med 206(8):1691–1699. https://doi.org/10.1084/jem.20090691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu YC, Yu MM, Chai YF, Shou ST (2017) Sialic Acids in the Immune Response during Sepsis. Front Immunol 8:1601. https://doi.org/10.3389/fimmu.2017.01601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chang YC, Uchiyama S, Varki A, Nizet V (2012) Leukocyte inflammatory responses provoked by pneumococcal sialidase. MBio. https://doi.org/10.1128/mbio.00220-11

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chen GY, Chen X, King S, Cavassani KA, Cheng J, Zheng X, Cao H, Yu H, Qu J, Fang D, Wu W, Bai XF, Liu JQ, Woodiga SA, Chen C, Sun L, Hogaboam CM, Kunkel SL, Zheng P, Liu Y (2011) Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol 29(5):428–435. https://doi.org/10.1038/nbt.1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen GY, Tang J, Zheng P, Liu Y (2009) CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323(5922):1722–1725. https://doi.org/10.1126/science.1168988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bochner BS, Zimmermann N (2015) Role of siglecs and related glycan-binding proteins in immune responses and immunoregulation. J Allergy Clin Immunol 135(3):598–608. https://doi.org/10.1016/j.jaci.2014.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Suzukawa M, Miller M, Rosenthal P, Cho JY, Doherty TA, Varki A, Broide D (2013) Sialyltransferase ST3Gal-III regulates Siglec-F ligand formation and eosinophilic lung inflammation in mice. J Immunol 190(12):5939–5948. https://doi.org/10.4049/jimmunol.1203455

    Article  CAS  PubMed  Google Scholar 

  108. Rubinstein E, Cho JY, Rosenthal P, Chao J, Miller M, Pham A, Aceves SS, Varki A, Broide DH (2011) Siglec-F inhibition reduces esophageal eosinophilia and angiogenesis in a mouse model of eosinophilic esophagitis. J Pediatr Gastroenterol Nutr 53(4):409–416. https://doi.org/10.1097/MPG.0b013e3182182ff8

    Article  PubMed  PubMed Central  Google Scholar 

  109. Song DJ, Cho JY, Miller M, Strangman W, Zhang M, Varki A, Broide DH (2009) Anti-Siglec-F antibody inhibits oral egg allergen induced intestinal eosinophilic inflammation in a mouse model. Clin Immunol 131(1):157–169. https://doi.org/10.1016/j.clim.2008.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. O’Sullivan JA, Wei Y, Carroll DJ, Moreno-Vinasco L, Cao Y, Zhang F, Lee JJ, Zhu Z, Bochner BS (2018) Frontline science: characterization of a novel mouse strain expressing human Siglec-8 only on eosinophils. J Leukoc Biol 104(1):11–19. https://doi.org/10.1002/JLB.2HI0917-391R

    Article  CAS  PubMed  Google Scholar 

  111. Bandala-Sanchez E, Zhang Y, Reinwald S, Dromey JA, Lee BH, Qian J, Bohmer RM, Harrison LC (2013) T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat Immunol 14(7):741–748. https://doi.org/10.1038/ni.2610

    Article  CAS  PubMed  Google Scholar 

  112. O’Keefe TL, Williams GT, Davies SL, Neuberger MS (1996) Hyperresponsive B cells in CD22-deficient mice. Science 274(5288):798–801

    Article  PubMed  Google Scholar 

  113. Muller J, Lunz B, Schwab I, Acs A, Nimmerjahn F, Daniel C, Nitschke L (2015) Siglec-G deficiency leads to autoimmunity in aging C57BL/6 mice. J Immunol 195(1):51–60. https://doi.org/10.4049/jimmunol.1403139

    Article  CAS  PubMed  Google Scholar 

  114. Jellusova J, Wellmann U, Amann K, Winkler TH, Nitschke L (2010) CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity. J Immunol 184(7):3618–3627. https://doi.org/10.4049/jimmunol.0902711

    Article  CAS  PubMed  Google Scholar 

  115. Macauley MS, Paulson JC (2014) Siglecs induce tolerance to cell surface antigens by BIM-dependent deletion of the antigen-reactive B cells. J Immunol 193(9):4312–4321. https://doi.org/10.4049/jimmunol.1401723

    Article  CAS  PubMed  Google Scholar 

  116. Duong BH, Tian H, Ota T, Completo G, Han S, Vela JL, Ota M, Kubitz M, Bovin N, Paulson JC, Nemazee D (2010) Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J Exp Med 207(1):173–187. https://doi.org/10.1084/jem.20091873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bednar KJ, Nycholat CM, Rao TS, Paulson JC, Fung-Leung WP, Macauley MS (2019) Exploiting CD22 To selectively tolerize autoantibody producing B-cells in rheumatoid arthritis. ACS Chem Biol 14(4):644–654. https://doi.org/10.1021/acschembio.8b01018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Surolia I, Pirnie SP, Chellappa V, Taylor KN, Cariappa A, Moya J, Liu H, Bell DW, Driscoll DR, Diederichs S, Haider K, Netravali I, Le S, Elia R, Dow E, Lee A, Freudenberg J, De Jager PL, Chretien Y, Varki A, MacDonald ME, Gillis T, Behrens TW, Bloch D, Collier D, Korzenik J, Podolsky DK, Hafler D, Murali M, Sands B, Stone JH, Gregersen PK, Pillai S (2010) Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature 466(7303):243–247. https://doi.org/10.1038/nature09115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bandala-Sanchez E, Bediaga NG, Goddard-Borger ED, Ngui K, Naselli G, Stone NL, Neale AM, Pearce LA, Wardak A, Czabotar P, Haselhorst T, Maggioni A, Hartley-Tassell LA, Adams TE, Harrison LC (2018) CD52 glycan binds the proinflammatory B box of HMGB1 to engage the Siglec-10 receptor and suppress human T cell function. Proc Natl Acad Sci USA 115(30):7783–7788. https://doi.org/10.1073/pnas.1722056115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sedlacek HH, Meesmann H, Seiler FR (1975) Regression of spontaneous mammary tumors in dogs after injection of neuraminidase-treated tumor cells. Int J Cancer 15(3):409–416

    Article  CAS  PubMed  Google Scholar 

  121. Currie GA, Bagshawe KD (1968) The role of sialic acid in antigenic expression: further studies of the Landschutz ascites tumour. Br J Cancer 22(4):843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bagshawe KD, Currie GA (1968) Immunogenicity of L 1210 murine leukaemia cells after treatment with neuraminidase. Nature 218(5148):1254–1255

    Article  CAS  PubMed  Google Scholar 

  123. Sanford BH (1967) An alteration in tumor histocompatibility induced by neuraminidase. Transplantation 5(5):1273–1279

    Article  CAS  PubMed  Google Scholar 

  124. Adams OJ, Stanczak MA, von Gunten S, Laubli H (2018) Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer. Glycobiology 28(9):640–647. https://doi.org/10.1093/glycob/cwx108

    Article  CAS  PubMed  Google Scholar 

  125. Bull C, Stoel MA, den Brok MH, Adema GJ (2014) Sialic acids sweeten a tumor’s life. Cancer Res 74(12):3199–3204. https://doi.org/10.1158/0008-5472.CAN-14-0728

    Article  CAS  PubMed  Google Scholar 

  126. Hudak JE, Canham SM, Bertozzi CR (2014) Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol 10(1):69–75. https://doi.org/10.1038/nchembio.1388

    Article  CAS  PubMed  Google Scholar 

  127. Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD, Klausing S, Hillier M, Maher J, Noll T, Crocker PR, Taylor-Papadimitriou J, Burchell JM (2016) The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. https://doi.org/10.1038/ni.3552

    Article  PubMed  PubMed Central  Google Scholar 

  128. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ, Weissman IL (2019) CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. https://doi.org/10.1038/s41586-019-1456-0

    Article  PubMed  PubMed Central  Google Scholar 

  129. Spence S, Greene MK, Fay F, Hams E, Saunders SP, Hamid U, Fitzgerald M, Beck J, Bains BK, Smyth P, Themistou E, Small DM, Schmid D, O’Kane CM, Fitzgerald DC, Abdelghany SM, Johnston JA, Fallon PG, Burrows JF, McAuley DF, Kissenpfennig A, Scott CJ (2015) Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation. Sci Transl Med 7(303):303ra140. https://doi.org/10.1126/scitranslmed.aab3459

    Article  CAS  PubMed  Google Scholar 

  130. Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A (2009) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113(14):3333–3336. https://doi.org/10.1182/blood-2008-11-187302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chang YC, Olson J, Beasley FC, Tung C, Zhang J, Crocker PR, Varki A, Nizet V (2014) Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog 10(1):e1003846. https://doi.org/10.1371/journal.ppat.1003846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bull C, Boltje TJ, Balneger N, Weischer SM, Wassink M, van Gemst JJ, Bloemendal VR, Boon L, van der Vlag J, Heise T, den Brok MH, Adema GJ (2018) Sialic acid blockade suppresses tumor growth by enhancing T-cell-mediated tumor immunity. Cancer Res 78(13):3574–3588. https://doi.org/10.1158/0008-5472.CAN-17-3376

    Article  CAS  PubMed  Google Scholar 

  133. Perdicchio M, Cornelissen LA, Streng-Ouwehand I, Engels S, Verstege MI, Boon L, Geerts D, van Kooyk Y, Unger WW (2016) Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells. Oncotarget 7(8):8771–8782. https://doi.org/10.18632/oncotarget.6822

    Article  PubMed  PubMed Central  Google Scholar 

  134. Cornelissen LAM, Blanas A, van der Horst JC, Kruijssen L, Zaal A, O’Toole T, Wiercx L, van Kooyk Y, van Vliet SJ (2019) Disruption of sialic acid metabolism drives tumor growth by augmenting CD8(+) T cell apoptosis. Int J Cancer 144(9):2290–2302. https://doi.org/10.1002/ijc.32084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xiao H, Woods EC, Vukojicic P, Bertozzi CR (2016) Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc Natl Acad Sci USA 113(37):10304–10309. https://doi.org/10.1073/pnas.1608069113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Varki A, Schnaar RL, Crocker PR (2015) I-Type Lectins. In: Varki A, Cummings RD et al (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 453–467. https://doi.org/10.1101/glycobiology.3e.035

    Chapter  Google Scholar 

  137. Ramya TN, Weerapana E, Liao L, Zeng Y, Tateno H, Liao L, Yates JR 3rd, Cravatt BF, Paulson JC (2010) In situ trans ligands of CD22 identified by glycan-protein photocross-linking-enabled proteomics. Mol Cell Proteom 9(6):1339–1351. https://doi.org/10.1074/mcp.M900461-MCP200

    Article  CAS  Google Scholar 

  138. Malaker SA, Pedram K, Ferracane MJ, Bensing BA, Krishnan V, Pett C, Yu J, Woods EC, Kramer JR, Westerlind U, Dorigo O, Bertozzi CR (2019) The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc Natl Acad Sci USA 116(15):7278–7287. https://doi.org/10.1073/pnas.1813020116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Briard JG, Jiang H, Moremen KW, Macauley MS, Wu P (2018) Cell-based glycan arrays for probing glycan-glycan binding protein interactions. Nat Commun 9(1):880. https://doi.org/10.1038/s41467-018-03245-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rillahan CD, Schwartz E, McBride R, Fokin VV, Paulson JC (2012) Click and pick: identification of sialoside analogues for siglec-based cell targeting. Angew Chem Int Ed Engl 51(44):11014–11018. https://doi.org/10.1002/anie.201205831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Edgar LJ, Kawasaki N, Nycholat CM, Paulson JC (2019) Targeted delivery of antigen to activated CD169(+) macrophages induces bias for expansion of CD8(+) T cells. Cell Chem Biol 26(1):131–136. https://doi.org/10.1016/j.chembiol.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  142. Bednar KJ, Shanina E, Ballet R, Connors EP, Duan S, Juan J, Arlian BM, Kulis MD, Butcher EC, Fung-Leung WP, Rao TS, Paulson JC, Macauley MS (2017) Human CD22 inhibits murine B Cell receptor activation in a human CD22 transgenic mouse Model. J Immunol 199(9):3116–3128. https://doi.org/10.4049/jimmunol.1700898

    Article  CAS  PubMed  Google Scholar 

  143. Ishii T, Angata T, Wan ES, Cho MH, Motegi T, Gao C, Ohtsubo K, Kitazume S, Gemma A, Par EP, Lomas DA, Silverman EK, Taniguchi N, Kida K (2016) Influence of SIGLEC9 polymorphisms on COPD phenotypes including exacerbation frequency. Respirology. https://doi.org/10.1111/resp.12952

    Article  PubMed  Google Scholar 

  144. Yamanaka M, Kato Y, Angata T, Narimatsu H (2009) Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology 19(8):841–846. https://doi.org/10.1093/glycob/cwp052

    Article  CAS  PubMed  Google Scholar 

  145. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ER, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Ruther E, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Gallacher J, Hull M, Rujescu D, Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, Alzheimer’s Disease Neuroimaging I, van Duijn CM, Breteler MM, Ikram MA, DeStefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, consortium C, Berr C, Campion D, Epelbaum J, Dartigues JF, Tzourio C, Alperovitch A, Lathrop M, consortium E, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Bjornsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossu P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O’Donovan M, Amouyel P, Williams J (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435. https://doi.org/10.1038/ng.803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Figure 2 was made with graphs provided by SMART (Servier Medical Art).

Funding

This work was supported by funding to HL from the Goldschmidt-Jacobson Foundation, the Swiss National Science Foundation (Grant 310030_184720 to HL), the Schoenemakers Foundation (to HL), and to NIH Grant (GM32373 AV).

Author information

Authors and Affiliations

Authors

Contributions

HL and AV wrote the manuscript.

Corresponding authors

Correspondence to Heinz Läubli or Ajit Varki.

Ethics declarations

Conflict of interest

HL received travel grants and consultant fees from Bristol-Myers Squibb (BMS), Merck, Sharp and Dohme (MSD), and Roche. HL received research support from BMS and Palleon Pharmaceuticals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Läubli, H., Varki, A. Sialic acid–binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses. Cell. Mol. Life Sci. 77, 593–605 (2020). https://doi.org/10.1007/s00018-019-03288-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03288-x

Keywords

Navigation