Cellular and Molecular Life Sciences

, Volume 76, Issue 22, pp 4413–4421 | Cite as

Plethora of functions packed into 45 kDa arrestins: biological implications and possible therapeutic strategies

  • Vsevolod V. GurevichEmail author
  • Eugenia V. Gurevich


Mammalian arrestins are a family of four highly homologous relatively small ~ 45 kDa proteins with surprisingly diverse functions. The most striking feature is that each of the two non-visual subtypes can bind hundreds of diverse G protein-coupled receptors (GPCRs) and dozens of non-receptor partners. Through these interactions, arrestins regulate the G protein-dependent signaling by the desensitization mechanisms as well as control numerous signaling pathways in the G protein-dependent or independent manner via scaffolding. Some partners prefer receptor-bound arrestins, some bind better to the free arrestins in the cytoplasm, whereas several show no apparent preference for either conformation. Thus, arrestins are a perfect example of a multi-functional signaling regulator. The result of this multi-functionality is that reduction (by knockdown) or elimination (by knockout) of any of these two non-visual arrestins can affect so many pathways that the results are hard to interpret. The other difficulty is that the non-visual subtypes can in many cases compensate for each other, which explains relatively mild phenotypes of single knockouts, whereas double knockout is lethal in vivo, although cultured cells lacking both arrestins are viable. Thus, deciphering the role of arrestins in cell biology requires the identification of specific signaling function(s) of arrestins involved in a particular phenotype. This endeavor should be greatly assisted by identification of structural elements of the arrestin molecule critical for individual functions and by the creation of mutants where only one function is affected. Reintroduction of these biased mutants, or introduction of monofunctional stand-alone arrestin elements, which have been identified in some cases, into double arrestin-2/3 knockout cultured cells, is the most straightforward way to study arrestin functions. This is a laborious and technically challenging task, but the upside is that specific function of arrestins, their timing, subcellular specificity, and relations to one another could be investigated with precision.


Arrestin GPCR Receptor specificity Signaling MAP kinases Protein engineering 



G protein-coupled receptor


N-ethylmaleimide sensitive fusion protein


Electron paramagnetic resonance


Double electron–electron resonance


Nuclear magnetic resonance


Extracellular signal-regulated kinase


c-Jun N-terminal kinase


Apoptosis signal-regulating kinase


Mitogen-activated protein kinase



This study was supported in part by NIH Grants RO1 EY011500, R35 GM122491, and Cornelius Vanderbilt Endowed Chair (VVG), and RO1s NS065868 and DA030103 (EVG).


  1. 1.
    Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV (2011) Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 50:3749–3763PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Alvarez-Curto E, Inoue A, Jenkins L, Raihan SZ, Prihandoko R, Tobin AB, Milligan G (2016) Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein-coupled receptor signaling. J Biol Chem 291:27147–27159PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG, Lefkowitz RJ (1992) Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem 267:17882–17890PubMedPubMedCentralGoogle Scholar
  4. 4.
    Bayburt TH, Vishnivetskiy SA, McLean M, Morizumi T, Huang C-C, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV (2011) Rhodopsin monomer is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–1428PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bhandari D, Trejo J, Benovic JL, Marchese A (2007) Arrestin-2 interacts with the ubiquitin-protein isopeptide ligase atrophin-interacting protein 4 and mediates endosomal sorting of the chemokine receptor CXCR5. J Biol Chem 282:36971–36979PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Breitman M, Kook S, Gimenez LE, Lizama BN, Palazzo MC, Gurevich EV, Gurevich VV (2012) Silent scaffolds: inhibition of c-Jun N-terminal kinase 3 activity in the cell by a dominant-negative arrestin-3 mutant. J Biol Chem 287:19653–19664PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bruchas MR, Macey TA, Lowe JD, Chavkin C (2006) Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem 281:18081–18089PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Celver J, Vishnivetskiy SA, Chavkin C, Gurevich VV (2002) Conservation of the phosphate-sensitive elements in the arrestin family of proteins. J Biol Chem 277:9043–9048PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Chen Q, Iverson TM, Gurevich VV (2018) Structural basis of arrestin-dependent signal transduction. Trends Biochem Sci 43:412–423PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chen Q, Perry NA, Vishnivetskiy SA, Berndt S, Gilbert NC, Zhuo Y, Singh PK, Tholen J, Ohi MD, Gurevich EV et al (2017) Structural basis of arrestin-3 activation and signaling. Nat Commun 8:1427PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Chen Q, Zhuo Y, Kim M, Hanson SM, Vishnivetskiy SA, Altenbach C, Klug CS, Hubbell WL, Gurevich VV (2014) Self-association of arrestin family members. Handb Exp Pharmacol 219:205–223PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Coffa S, Breitman M, Hanson SM, Callaway K, Kook S, Dalby KN, Gurevich VV (2011) The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation. PLoS One 6:e28723PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Coffa S, Breitman M, Spiller BW, Gurevich VV (2011) A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding. Biochemistry 50:6951–6958PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Craft CM, Whitmore DH, Wiechmann AF (1994) Cone arrestin identified by targeting expression of a functional family. J Biol Chem 269:4613–4619PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ferguson SS, Downey WE 3rd, Colapietro AM, Barak LS, Ménard L, Caron MG (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271:363–366PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ferguson SS, Ménard L, Barak LS, Koch WJ, Colapietro AM, Caron MG (1995) Role of phosphorylation in agonist-promoted beta 2-adrenergic receptor sequestration. Rescue of a sequestration-defective mutant receptor by beta ARK1. J Biol Chem 270:24782–24789PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gimenez LE, Babilon S, Wanka L, Beck-Sickinger AG, Gurevich VV (2014) Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes. Cell Signal 26:1523–1531PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV (2012) Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. J Biol Chem 287:29495–29505PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Granzin J, Wilden U, Choe HW, Labahn J, Krafft B, Buldt G (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391:918–921PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Grundmann M, Merten N, Malfacini D, Inoue A, Preis P, Simon K, Rüttiger N, Ziegler N, Benkel T, Schmitt NK et al (2018) Lack of beta-arrestin signaling in the absence of active G proteins. Nat Commun 9:341PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gurevich EV, Gurevich VV (2006) Arrestins are ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133:40–46PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin: sequential multisite binding ensures strict selectivity towards light-activated phosphorylated rhodopsin. J Biol Chem 268:11628–11638PubMedPubMedCentralGoogle Scholar
  25. 25.
    Gurevich VV, Benovic JL (1995) Visual arrestin binding to rhodopsin: diverse functional roles of positively charged residues within the phosphorylation-recignition region of arrestin. J Biol Chem 270:6010–6016PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gurevich VV, Benovic JL (1997) Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state. Mol Pharmacol 51:161–169PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Gurevich VV, Dion SB, Onorato JJ, Ptasienski J, Kim CM, Sterne-Marr R, Hosey MM, Benovic JL (1995) Arrestin interaction with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, b2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 270:720–731PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Gurevich VV, Gurevich EV (2003) The new face of active receptor bound arrestin attracts new partners. Structure 11:1037–1042PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G protein-coupled receptors. Pharm Ther 110:465–502CrossRefGoogle Scholar
  30. 30.
    Gurevich VV, Gurevich EV (2012) Synthetic biology with surgical precision: targeted reengineering of signaling proteins. Cell Signal 24:1899–1908PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gurevich VV, Gurevich EV (2015) Analyzing the roles of multi-functional proteins in cells: the case of arrestins and GRKs. Crit Rev Biochem Mol Biol 50:440–452PubMedPubMedCentralGoogle Scholar
  32. 32.
    Gurevich VV, Gurevich EV (2018) GPCRs and signal transducers: interaction stoichiometry. Trends Pharmacol Sci 39:672–684PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gurevich VV, Gurevich EV, Cleghorn WM (2008) Arrestins as multi-functional signaling adaptors. Handb Exp Pharmacol 186:15–37CrossRefGoogle Scholar
  34. 34.
    Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure 9:869–880PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hanson SM, Cleghorn WM, Francis DJ, Vishnivetskiy SA, Raman D, Song X, Nair KS, Slepak VZ, Klug CS, Gurevich VV (2007) Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. J Mol Biol 368(2):375–387 (in press) PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hanson SM, Francis DJ, Vishnivetskiy SA, Klug CS, Gurevich VV (2006) Visual arrestin binding to microtubules involves a distinct conformational change. J Biol Chem 281:9765–9772PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hanson SM, Francis DJ, Vishnivetskiy SA, Kolobova EA, Hubbell WL, Klug CS, Gurevich VV (2006) Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci USA 103:4900–4905PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, Song X, Gurevich VV (2007) Each rhodopsin molecule binds its own arrestin. Proc Nat Acad Sci USA 104:3125–3128PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Hanson SM, Gurevich VV (2006) The differential engagement of arrestin surface charges by the various functional forms of the receptor. J Biol Chem 281:3458–3462PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hanson SM, Van Eps N, Francis DJ, Altenbach C, Vishnivetskiy SA, Arshavsky VY, Klug CS, Hubbell WL, Gurevich VV (2007) Structure and function of the visual arrestin oligomer. EMBO J 26:1726–1736PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hanson SM, Vishnivetskiy SA, Hubbell WL, Gurevich VV (2008) Opposing effects of inositol hexakisphosphate on rod arrestin and arrestin2 self-association. Biochemistry 47:1070–1075PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Huang SP, Brown BM, Craft CM (2010) Visual Arrestin 1 acts as a modulator for N-ethylmaleimide-sensitive factor in the photoreceptor synapse. J Neurosci 30:9381–9391PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Indrischek H, Prohaska SJ, Gurevich VV, Gurevich EV, Stadler PF (2017) Uncovering missing pieces: duplication and deletion history of arrestins in deuterostomes. BMC Evol Biol 17:163PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW et al (2015) Crystal structure of rhodopsin bound to arrestin determined by femtosecond X-ray laser. Nature 523:561–567PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kim YM, Benovic JL (2002) Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J Biol Chem 277:30760–30768PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kook S, Zhan X, Kaoud TS, Dalby KN, Gurevich VV, Gurevich EV (2013) Arrestin-3 binds JNK1α1 and JNK2α2 and facilitates the activation of these ubiquitous JNK isoforms in cells via scaffolding. J Biol Chem 288:37332–37342PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kovoor A, Celver J, Abdryashitov RI, Chavkin C, Gurevich VV (1999) Targeted construction of phosphorylation-independent b-arrestin mutants with constitutive activity in cells. J Biol Chem 274:6831–6834PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Krupnick JG, Gurevich VV, Benovic JL (1997) Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J Biol Chem 272:18125–18131PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kuhn H (1978) Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochemistry 17:4389–4395PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kuhn H, Hall SW, Wilden U (1984) Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 176:473–478PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SSG, Caron MG, Barak LS (1999) The 2-adrenergic receptor/arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Nat Acad Sci USA 96:3712–3717PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lohse MJ, Andexinger S, Pitcher J, Trukawinski S, Codina J, Faure JP, Caron MG, Lefkowitz RJ (1992) Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J Biol Chem 267:8558–8564PubMedPubMedCentralGoogle Scholar
  54. 54.
    Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK et al (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283:655–661CrossRefPubMedGoogle Scholar
  56. 56.
    Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, Lefkowitz RJ (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 98:2449–2454PubMedCrossRefGoogle Scholar
  57. 57.
    Luttrell LM, Wang J, Plouffe B, Smith JS, Yamani L, Kaur S, Jean-Charles P-Y, Gauthier C, Lee M-H, Pani B et al (2018) Manifold roles of beta-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal 11:eaat7650PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    McDonald PH, Cote NL, Lin FT, Premont RT, Pitcher JA, Lefkowitz RJ (1999) Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation. J Biol Chem 274:10677–10680PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Meng D, Lynch MJ, Huston E, Beyermann M, Eichhorst J, Adams DR, Klusmann E, Houslay MD, Baillie GS (2009) MEK1 binds directly to betaarrestin1, influencing both its phosphorylation by ERK and the timing of its isoprenaline-stimulated internalization. J Biol Chem 284:11425–11435PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Milano SK, Pace HC, Kim YM, Brenner C, Benovic JL (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41:3321–3328PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ (2001) Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3. J Biol Chem 276:27770–27777PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Murakami A, Yajima T, Sakuma H, McLaren MJ, Inana G (1993) X-arrestin: a new retinal arrestin mapping to the X chromosome. FEBS Lett 334:203–209PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Nair KS, Hanson SM, Mendez A, Gurevich EV, Kennedy MJ, Shestopalov VI, Vishnivetskiy SA, Chen J, Hurley JB, Gurevich VV et al (2005) Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions. Neuron 46:555–567PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    O’Hayre M, Eichel K, Avino S, Zhao X, Steffen DJ, Feng X, Kawakami K, Aoki J, Messer K, Sunahara R et al (2017) Genetic evidence that β-arrestins are dispensable for the initiation of β2-adrenergic receptor signaling to ERK. Sci Signal 10:484CrossRefGoogle Scholar
  66. 66.
    Ohguro H, Palczewski K, Walsh KA, Johnson RS (1994) Topographic study of arrestin using differential chemical modifications and hydrogen/deuterium exchange. Protein Sci 3:2428–2434PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Orsini MJ, Benovic JL (1998) Characterization of dominant negative arrestins that inhibit beta2-adrenergic receptor internalization by distinct mechanisms. J Biol Chem 273:34616–34622PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ostermaier MK, Peterhans C, Jaussi R, Deupi X, Standfuss J (2014) Functional map of arrestin-1 at single amino acid resolution. Proc Natl Acad Sci USA 111:1825–1830PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Palczewski K, Pulvermuller A, Buczylko J, Hofmann KP (1991) Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J Biol Chem 266:18649–18654PubMedPubMedCentralGoogle Scholar
  70. 70.
    Perry NA, Kaoud TS, Ortega OO, Kaya AI, Marcus DJ, Pleinis JM, Berndt S, Chen Q, Zhan X, Dalby KN et al (2019) Arrestin-3 scaffolding of the JNK3 cascade suggests a mechanism for signal amplification. Proc Natl Acad Sci USA 116:810–815PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Peterhans C, Lally CC, Ostermaier MK, Sommer ME, Standfuss J (2016) Functional map of arrestin binding to phosphorylated opsin, with and without agonist. Sci Rep 6:28686PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Peterson YK, Luttrell LM (2017) The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol Rev 69:256–297PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Prokop S, Perry NA, Vishnivetskiy SA, Toth AD, Inoue A, Milligan G, Iverson TM, Hunyady L, Gurevich VV (2017) Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors. Cell Signal 36:98–107PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Pulvermuller A, Schroder K, Fischer T, Hofmann KP (2000) Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin. J Biol Chem 275:37679–37685PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Rapoport B, Kaufman KD, Chazenbalk GD (1992) Cloning of a member of the arrestin family from a human thyroid cDNA library. Mol Cell Endocrinol 84:R39–R43PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Seo J, Tsakem EL, Breitman M, Gurevich VV (2011) Identification of arrestin-3-specific residues necessary for JNK3 activation. J Biol Chem 286:27894–27901PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY et al (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–141PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Song X, Coffa S, Fu H, Gurevich VV (2009) How does arrestin assemble MAPKs into a signaling complex? J Biol Chem 284:685–695PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sterne-Marr R, Gurevich VV, Goldsmith P, Bodine RC, Sanders C, Donoso LA, Benovic JL (1993) Polypeptide variants of beta-arrestin and arrestin3. J Biol Chem 268:15640–15648PubMedPubMedCentralGoogle Scholar
  80. 80.
    Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3A: evolution of receptor specificity. J Mol Biol 354:1069–1080PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Szczepek M, Beyriere F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, von Stetten D, Heck M, Sommer ME et al (2014) Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat Commun 5:4801PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Tsukamoto H, Sinha A, Dewitt M, Farrens DL (2010) Monomeric rhodopsin is the minimal functional unit required for arrestin binding. J Mol Biol 399:501–511PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV (2013) Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 288:11741–11750PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Vishnivetskiy SA, Francis DJ, Van Eps N, Kim M, Hanson SM, Klug CS, Hubbell WL, Gurevich VV (2010) The role of arrestin alpha-helix I in receptor binding. J Mol Biol 395:42–54PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV (2011) Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 286:24288–24299PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Vishnivetskiy SA, Hosey MM, Benovic JL, Gurevich VV (2004) Mapping the arrestin-receptor interface: structural elements responsible for receptor specificity of arrestin proteins. J Biol Chem 279:1262–1268PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Vishnivetskiy SA, Ostermaier MK, Singhal A, Panneels V, Homan KT, Glukhova A, Sligar SG, Tesmer JJ, Schertler GF, Standfuss J et al (2013) Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding. Cell Signal 25:2155–2162PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Vishnivetskiy SA, Paz CL, Schubert C, Hirsch JA, Sigler PB, Gurevich VV (1999) How does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem 274:11451–11454PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Vishnivetskiy SA, Schubert C, Climaco GC, Gurevich YV, Velez M-G, Gurevich VV (2000) An additional phosphate-binding element in arrestin molecule: implications for the mechanism of arrestin activation. J Biol Chem 275:41049–41057PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Wacker WB, Donoso LA, Kalsow CM, Yankeelov JA Jr, Organisciak DT (1977) Experimental allergic uveitis. Isolation, characterization, and localization of a soluble uveitopathogenic antigen from bovine retina. J Immunol 119:1949–1958PubMedPubMedCentralGoogle Scholar
  91. 91.
    Wilden U (1995) Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Biochemistry 34:1446–1454PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Wilden U, Hall SW, Kühn H (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci 83:1174–1178PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Wu N, Hanson SM, Francis DJ, Vishnivetskiy SA, Thibonnier M, Klug CS, Shoham M, Gurevich VV (2006) Arrestin binding to calmodulin: a direct interaction between two ubiquitous signaling proteins. J Mol Biol 364:955–963PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, Yates JR, Lefkowitz RJ (2007) Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci USA 104:12011–12016PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Yang F, Xiao P, Qu C-X, Liu Q, Wang L-Y, Liu Z-X, He Q-T, Liu C, Xu J-Y, Li R-R et al (2018) Allosteric mechanisms underlie GPCR signaling to SH3-domain proteins through arrestin. Nat Chem Biol 14:876–886PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual arrestins. J Mol Biol 406:467–478PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Zhan X, Kaoud TS, Dalby KN, Gurevich VV (2011) Non-visual arrestins function as simple scaffolds assembling MKK4- JNK3α2 signaling complex. Biochemistry 50:10520–10529PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Zhan X, Perez A, Gimenez LE, Vishnivetskiy SA, Gurevich VV (2014) Arrestin-3 binds the MAP kinase JNK3α2 via multiple sites on both domains. Cell Signal 26:766–776PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Zhan X, Stoy H, Kaoud TS, Perry NA, Chen Q, Vucak G, Perez A, Els-Heindl S, Slagis JV, Iverson TM et al (2016) Peptide mini-scaffold facilitates JNK3 activation in cells. Sci Rep 6:21025PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Zheng C, Tholen J, Gurevich VV (2019) Critical role of the finger loop in arrestin binding to the receptors. PLoS ONE 14:e0213792PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zhou XE, He Y, de Waal PW, Gao X, Kang Y, Van Eps N, Yin Y, Pal K, Goswami D, White TA et al (2017) Structural identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170:457–469PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zhuang T, Chen Q, Cho M-K, Vishnivetskiy SA, Iverson TM, Gurevich VV, Sanders CR (2013) Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc Nat Acad Sci USA 110:942–947PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS (2014) Identification of receptor binding-induced conformational changes in non-visual arrestins. J Biol Chem 289:20991–21002PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PharmacologyVanderbilt UniversityNashvilleUSA

Personalised recommendations