Advertisement

Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis

  • Suja Ann MathewEmail author
  • Charuta Naik
  • Paul A. Cahill
  • Ramesh R. BhondeEmail author
Review

Abstract

Dysregulation of angiogenesis is a phenomenon observed in several disorders such as diabetic foot, critical limb ischemia and myocardial infarction. Mesenchymal stromal cells (MSCs) possess angiogenic potential and have recently emerged as a powerful tool for cell therapy to promote angiogenesis. Although bone marrow-derived MSCs are the primary cell of choice, obtaining them has become a challenge. The placenta has become a popular alternative as it is a highly vascular organ, easily available and ethically more favorable with a rich supply of MSCs. Comparatively, placenta-derived MSCs (PMSCs) are clinically promising due to their proliferative, migratory, clonogenic and immunomodulatory properties. PMSCs release a plethora of cytokines and chemokines key to angiogenic signaling and facilitate the possibility of delivering PMSC-derived exosomes as a targeted therapy to promote angiogenesis. However, there still remains the challenge of heterogeneity in the isolated populations, questions on the maternal or fetal origin of these cells and the diversity in previously reported isolation and culture conditions. Nonetheless, the growing rate of clinical trials using PMSCs clearly indicates a shift in favor of PMSCs. The overall aim of the review is to highlight the importance of this rather poorly understood cell type and emphasize the need for further investigations into their angiogenic potential as an alternative source for therapeutic angiogenesis.

Keywords

Placental mesenchymal stem cells Stem cells Wound healing Exosomes Secretome Conditioned media Immunomodulation Differentiation potential Ischemia Hypoxia Vasculature Pregnancy Cell based therapy Regenerative medicine Clinical trials 

Notes

Acknowledgements

The authors wish to thank the Vice-Chancellor and Registrar, Manipal Academy of Higher Education, India, for extending all the facilities needed to carry out the present work. We would also like to thank Dr. Gopal Pande, Dean SORM, for his continuous guidance and support and Mr. Febin Varghese for his contribution to the graphic work.

Author contributions

Suja A. Mathew: conceived, designed and wrote the paper; Charuta Naik: collected the data and prepared the image; Paul A. Cahill: critical editing and writing of the paper; Ramesh Bhonde: designed and critical editing of the paper.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest in their study.

References

  1. 1.
    Sherwood LM, Parris EE, Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186CrossRefGoogle Scholar
  2. 2.
    Cao Y, Langer R (2008) A review of Judah Folkman’s remarkable achievements in biomedicine. Proc Natl Acad Sci 105(36):13203–13205CrossRefPubMedGoogle Scholar
  3. 3.
    Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674CrossRefPubMedGoogle Scholar
  4. 4.
    Yin G, Liu W, An P, Li P, Ding I, Planelles V et al (2002) Endostatin gene transfer inhibits joint angiogenesis and pannus formation in inflammatory arthritis. Mol Ther 5(5):547–554CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang H, van Olden C, Sweeney D, Martin-Rendon E (2014) Blood vessel repair and regeneration in the ischaemic heart. Open Heart 1(1):e000016CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Laurenzana A, Fibbi G, Chillà A, Margheri G, Del Rosso T, Rovida E et al (2015) Lipid rafts: integrated platforms for vascular organization offering therapeutic opportunities. Cell Mol Life Sci 72(8):1537–1557CrossRefPubMedGoogle Scholar
  7. 7.
    Schipani E, Kronenberg HM (2008) Adult mesenchymal stem cells. In: StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute.  https://doi.org/10.3824/stembook.1.38.1. https://www.ncbi.nlm.nih.gov/books/NBK27056/
  8. 8.
    Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17(1):387–403CrossRefPubMedGoogle Scholar
  9. 9.
    Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M et al (2007) Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 21(7):11CrossRefGoogle Scholar
  10. 10.
    Rae PC, Kelly RD, Egginton S, St John JC (2011) Angiogenic potential of endothelial progenitor cells and embryonic stem cells. Vasc Cell 3(1):11CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lim R (2017) Concise review: fetal membranes in regenerative medicine: new tricks from an old dog?: fetal membranes in regenerative medicine. Stem Cells Transl Med 6(9):1767–1776CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring H-J, Evangelista M et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26(2):300–311CrossRefPubMedGoogle Scholar
  13. 13.
    in’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GMJS, Claas FHJ, Fibbe WE et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345CrossRefGoogle Scholar
  14. 14.
    Schroeder DI, Blair JD, Lott P, Yu HOK, Hong D, Crary F et al (2013) The human placenta methylome. Proc Natl Acad Sci 110(15):6037–6042CrossRefPubMedGoogle Scholar
  15. 15.
    Castrechini NM, Murthi P, Gude NM, Erwich JJHM, Gronthos S, Zannettino A et al (2010) Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta 31(3):203–212CrossRefPubMedGoogle Scholar
  16. 16.
    Chen C-Y, Liu S-H, Chen C-Y, Chen P-C, Chen C-P (2015) Human placenta-derived multipotent mesenchymal stromal cells involved in placental angiogenesis via the PDGF-BB and STAT3 pathways1. Biol Reprod 1(103):1–10Google Scholar
  17. 17.
    Demir R, Kaufmann P, Castellucci M, Erbengi T, Kotowski A (1989) Fetal vasculogenesis and angiogenesis in human placental villi. Acta Anat (Basel) 136(3):190–203CrossRefGoogle Scholar
  18. 18.
    Pogozhykh O, Prokopyuk V, Figueiredo C, Pogozhykh D (2018) Placenta and placental derivatives in regenerative therapies: experimental studies, history, and prospects. Stem Cells Int 2018:1–14CrossRefGoogle Scholar
  19. 19.
    Abumaree MH, Abomaray FM, Alshabibi MA, AlAskar AS, Kalionis B (2017) Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta 59:87–95CrossRefPubMedGoogle Scholar
  20. 20.
    Jaramillo-Ferrada PA, Wolvetang EJ, Cooper-White JJ (2012) Differential mesengenic potential and expression of stem cell-fate modulators in mesenchymal stromal cells from human-term placenta and bone marrow. J Cell Physiol 227(9):3234–3242CrossRefPubMedGoogle Scholar
  21. 21.
    Makhoul G, Chiu RCJ, Cecere R (2013) Placental mesenchymal stem cells: a unique source for cellular cardiomyoplasty. Ann Thorac Surg 95(5):1827–1833CrossRefPubMedGoogle Scholar
  22. 22.
    Chen C-Y, Tsai C-H, Chen C-Y, Wu Y-H, Chen C-P (2016) Human placental multipotent mesenchymal stromal cells modulate placenta angiogenesis through Slit2-Robo signaling. Cell Adhes Migr 10(1–2):66–76CrossRefGoogle Scholar
  23. 23.
    Mathew SA, Chandravanshi B, Bhonde R (2017) Hypoxia primed placental mesenchymal stem cells for wound healing. Life Sci 182:85–92CrossRefPubMedGoogle Scholar
  24. 24.
    Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK et al (2011) Human chorionic-plate-derived mesenchymal stem cells and Wharton’s jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Cell Tissue Res 346(1):53–64CrossRefPubMedGoogle Scholar
  25. 25.
    Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J (2019) Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci.  https://doi.org/10.1007/s00018-019-03104-6 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tamagawa T, Ishiwata I, Saito S (2004) Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell 17(3):125–130CrossRefPubMedGoogle Scholar
  27. 27.
    Moraghebi R, Kirkeby A, Chaves P, Rönn RE, Sitnicka E, Parmar M et al (2017) Term amniotic fluid: an unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications. Stem Cell Res Ther.  https://doi.org/10.1186/s13287-017-0582-6 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gonzalez AC, Costa TF, Andrade Z, Medrado ARAP (2016) Wound healing—a literature review. Anais Brasileiros de Dermatologia 91(5):614–620CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, AlTalabani AA et al (2013) Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev Rep 9(1):16–31CrossRefPubMedGoogle Scholar
  30. 30.
    Mathew SA, Rajendran S, Gupta PK, Bhonde R (2013) Modulation of physical environment makes placental mesenchymal stromal cells suitable for therapy. Cell Biol Int 37(11):1197–1204PubMedGoogle Scholar
  31. 31.
    Abomaray FM, Al Jumah MA, Alsaad KO, Jawdat D, Al Khaldi A, AlAskar AS et al (2016) Phenotypic and functional characterization of mesenchymal stem/multipotent stromal cells from Decidua Basalis of human term placenta. Stem Cells Int 2016:1–18CrossRefGoogle Scholar
  32. 32.
    Ferraro F, Celso CL, Scadden D (2010) Adult stem cells and their niches. Adv Exp Med Biol 695:155–168CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pereira RD, De Long NE, Wang RC, Yazdi FT, Holloway AC, Raha S (2015) Angiogenesis in the placenta: the role of reactive oxygen species signaling. Biomed Res Int 2015:1–12Google Scholar
  34. 34.
    Antoniadou E, David AL (2016) Placental stem cells. Best Pract Res Clin Obstetr Gynaecol 31:13–29CrossRefGoogle Scholar
  35. 35.
    Abdulrazzak H, Moschidou D, Jones G, Guillot PV (2010) Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. J R Soc Interface 7(Suppl 6):S689–S706PubMedPubMedCentralGoogle Scholar
  36. 36.
    Barlow S, Brooke G, Chatterjee K, Price G, Pelekanos R, Rossetti T et al (2008) Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev 17(6):1095–1108CrossRefPubMedGoogle Scholar
  37. 37.
    Kusuma GD, Brennecke SP, O’Connor AJ, Kalionis B, Heath DE (2017) Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion. PLOS One 12(2):e0171488CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lee M-Y, Huang J-P, Chen Y-Y, Aplin JD, Wu Y-H, Chen C-Y et al (2009) Angiogenesis in differentiated placental multipotent mesenchymal stromal cells is dependent on integrin α5β1. PLoS One 4(10):e6913CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Li G, Zhang X, Wang H, Wang X, Meng C, Chan C et al (2009) Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: implication in the migration. Proteomics 9(1):20–30CrossRefPubMedGoogle Scholar
  40. 40.
    Kamprom W, Kheolamai P, U-Pratya Y, Supokawej A, Wattanapanitch M, Laowtammathron C et al (2016) Endothelial progenitor cell migration-enhancing factors in the secretome of placental-derived mesenchymal stem cells. Stem Cells Int 2016:1–13CrossRefGoogle Scholar
  41. 41.
    Le Blanc K, Ringdén O (2005) Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transpl 11(5):321–334CrossRefGoogle Scholar
  42. 42.
    Talwadekar MD, Kale VP, Limaye LS (2015) Placenta-derived mesenchymal stem cells possess better immunoregulatory properties compared to their cord-derived counterparts—a paired sample study. Sci Rep 5:15784CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lee JM, Jung J, Lee H-J, Jeong SJ, Cho KJ, Hwang S-G et al (2012) Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. Int Immunopharmacol 13(2):219–224CrossRefPubMedGoogle Scholar
  44. 44.
    He S, Gleason J, Fik-Rymarkiewicz E, DiFiglia A, Bharathan M, Morschauser A et al (2017) Human placenta-derived mesenchymal stromal-like cells enhance angiogenesis via T cell-dependent reprogramming of macrophage differentiation: PDA-002 enhances angiogenesis via immunomodulation. Stem Cells 35(6):1603–1613CrossRefPubMedGoogle Scholar
  45. 45.
    Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, Abomaray FM et al (2013) Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev Rep 9:620–641CrossRefPubMedGoogle Scholar
  46. 46.
    Choi JH, Jung J, Na K-H, Cho KJ, Yoon TK, Kim GJ (2014) Effect of mesenchymal stem cells and extracts derived from the placenta on trophoblast invasion and immune responses. Stem Cells Dev 23(2):132–145CrossRefPubMedGoogle Scholar
  47. 47.
    Chang C-J, Yen M-L, Chen Y-C, Chien C-C, Huang H-I, Bai C-H et al (2006) Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-γ. Stem Cells 24(11):2466–2477CrossRefPubMedGoogle Scholar
  48. 48.
    Jones BJ, Brooke G, Atkinson K, McTaggart SJ (2007) Immunosuppression by placental indoleamine 2,3-dioxygenase: a role for mesenchymal stem cells. Placenta 28(11–12):1174–1181CrossRefPubMedGoogle Scholar
  49. 49.
    Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L et al (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4 CD25 FOXP3 regulatory T cells. Stem Cells 26:212–222CrossRefPubMedGoogle Scholar
  50. 50.
    Alshabibi MA, Khatlani T, Abomaray FM, AlAskar AS, Kalionis B, Messaoudi SA et al (2018) Human decidua basalis mesenchymal stem/stromal cells protect endothelial cell functions from oxidative stress induced by hydrogen peroxide and monocytes. Stem Cell Res Ther.  https://doi.org/10.1186/s13287-018-1021-z CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Liao S, Zhang Y, Ting S, Zhen Z, Luo F, Zhu Z et al (2019) Potent immunomodulation and angiogenic effects of mesenchymal stem cells versus cardiomyocytes derived from pluripotent stem cells for treatment of heart failure. Stem Cell Res Ther 10(1):78CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4):313–319CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Liang L, Li Z, Ma T, Han Z, Du W, Geng J et al (2017) Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats. Cell Transpl 26(1):45–61CrossRefGoogle Scholar
  54. 54.
    Meraviglia V, Vecellio M, Grasselli A, Baccarin M, Farsetti A, Capogrossi MC et al (2012) Human chorionic villus mesenchymal stromal cells reveal strong endothelial conversion properties. Differentiation 83(5):260–270CrossRefPubMedGoogle Scholar
  55. 55.
    Watt SM, Gullo F, van der Garde M, Markeson D, Camicia R, Khoo CP et al (2013) The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br Med Bull 108(1):25–53CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Zahavi-Goldstein E, Blumenfeld M, Fuchs-Telem D, Pinzur L, Rubin S, Aberman Z et al (2017) Placenta-derived PLX-PAD mesenchymal-like stromal cells are efficacious in rescuing blood flow in hind limb ischemia mouse model by a dose- and site-dependent mechanism of action. Cytotherapy.  https://doi.org/10.1016/j.jcyt.2017.09.010 CrossRefPubMedGoogle Scholar
  57. 57.
    Komaki M, Numata Y, Morioka C, Honda I, Tooi M, Yokoyama N et al (2017) Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther.  https://doi.org/10.1186/s13287-017-0660-9 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Restrepo Y, Merle M, Petry D, Michon J (1985) Empty perineurial tube graft used to repair a digital nerve: a first case report. Microsurgery 6(2):73–77CrossRefPubMedGoogle Scholar
  59. 59.
    Clark D, Nakamura M, Miclau T, Marcucio R (2017) Effects of aging on fracture healing. Curr Osteoporos Rep 15:601.  https://doi.org/10.1007/s11914-017-0413-9 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Liang T, Zhu L, Gao W, Gong M, Ren J, Yao H et al (2017) Coculture of endothelial progenitor cells and mesenchymal stem cells enhanced their proliferation and angiogenesis through PDGF and Notch signaling. FEBS Open Bio 7(11):1722–1736CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    DeCicco-Skinner KL, Henry GH, Cataisson C, Tabib T, Gwilliam JC, Watson NJ et al (2014) Endothelial cell tube formation assay for the in vitro study of angiogenesis. J Vis Exp 91:51312.  https://doi.org/10.3791/51312 CrossRefGoogle Scholar
  62. 62.
    König J, Weiss G, Rossi D, Wankhammer K, Reinisch A, Kinzer M et al (2015) Placental mesenchymal stromal cells derived from blood vessels or avascular tissues: what is the better choice to support endothelial cell function? Stem Cells Dev 24(1):115–131CrossRefPubMedGoogle Scholar
  63. 63.
    Cuiffo BG, Karnoub AE (2012) Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adhes Migr 6(3):220–230CrossRefGoogle Scholar
  64. 64.
    Makhoul G, Jurakhan R, Jaiswal PK, Ridwan K, Li L, Selvasandran K et al (2016) Conditioned medium of H9c2 triggers VEGF dependent angiogenesis by activation of p38/pSTAT3 pathways in placenta derived stem cells for cardiac repair. Life Sci 153:213–221CrossRefPubMedGoogle Scholar
  65. 65.
    Kadekar D, Rangole S, Kale V, Limaye L (2016) Conditioned medium from placental mesenchymal stem cells reduces oxidative stress during the cryopreservation of ex vivo expanded umbilical cord blood cells. PLOS One 11(10):e0165466CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Prockop DJ (2007) “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther 82(3):241–243CrossRefPubMedGoogle Scholar
  67. 67.
    Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347CrossRefPubMedGoogle Scholar
  68. 68.
    Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell-free therapy: MSC-derived exosomes. Stem Cells 35(4):851–858CrossRefPubMedGoogle Scholar
  70. 70.
    Tooi M, Komaki M, Morioka C, Honda I, Iwasaki K, Yokoyama N et al (2016) Placenta mesenchymal stem cell derived exosomes confer plasticity on fibroblasts: a novel function of MSC-exosomes in vitro. J Cell Biochem 117(7):1658–1670CrossRefPubMedGoogle Scholar
  71. 71.
    Gong M, Yu B, Wang J, Wang Y, Liu M, Paul C et al (2017) Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget.  https://doi.org/10.18632/oncotarget.16778 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hua Z, Lv Q, Ye W, Wong C-KA, Cai G, Gu D et al (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1(1):e116CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Donker RB, Mouillet JF, Chu T, Hubel CA, Stolz DB, Morelli AE et al (2012) The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. Mol Hum Reprod 18(8):417–424CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Delorme-Axford E, Donker RB, Mouillet J-F, Chu T, Bayer A, Ouyang Y et al (2013) Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci 110(29):12048–12053CrossRefPubMedGoogle Scholar
  75. 75.
    Kuehbacher A, Urbich C, Dimmeler S (2008) Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci 29(1):12–15CrossRefPubMedGoogle Scholar
  76. 76.
    Liang X, Zhang L, Wang S, Han Q, Zhao RC (2016) Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci 129(11):2182–2189CrossRefPubMedGoogle Scholar
  77. 77.
    Wang B, Jia H, Zhang B, Wang J, Ji C, Zhu X et al (2017) Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy. Stem Cell Res Ther.  https://doi.org/10.1186/s13287-016-0463-4 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(9):1852CrossRefPubMedCentralGoogle Scholar
  79. 79.
    Liang L (2019) Prenatal mesenchymal stem cell secretome and its clinical implication. In: Han ZC, Takahashi TA, Han Z, Li Z (eds) Perinatal stem cells. Springer, Singapore, pp 167–173.  https://doi.org/10.1007/978-981-13-2703-2_13 CrossRefGoogle Scholar
  80. 80.
    Marquez-Curtis LA, Janowska-Wieczorek A (2013) Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR80 axis. Biomed Res Int 2013:1–15CrossRefGoogle Scholar
  81. 81.
    Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129(3):163–173CrossRefPubMedGoogle Scholar
  82. 82.
    Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660CrossRefPubMedGoogle Scholar
  83. 83.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495CrossRefPubMedGoogle Scholar
  84. 84.
    Pacini S, Petrini I (2014) Are MSCs angiogenic cells? New insights on human nestin-positive bone marrow-derived multipotent cells. Front Cell Dev Biol 2:20PubMedPubMedCentralGoogle Scholar
  85. 85.
    Charnock-Jones DS (2016) Placental hypoxia, endoplasmic reticulum stress and maternal endothelial sensitisation by sFLT1 in pre-eclampsia. J Reprod Immunol 114:81–85CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Xu C, Li X, Guo P, Wang J (2017) Hypoxia-induced activation of JAK/STAT3 signaling pathway promotes trophoblast cell viability and angiogenesis in preeclampsia. Med Sci Monit 23:4909–4917CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Li Y, Liu H, Cao L, Wu Y, Shi X, Qiao F et al (2017) Hypoxia downregulates the angiogenesis in human placenta via Notch1 signaling pathway. J Huazhong Univ Sci Technol [Medical Sciences] 37(4):541–546CrossRefGoogle Scholar
  88. 88.
    Fujii T, Nagamatsu T, Morita K, Schust DJ, Iriyama T, Komatsu A et al (2017) Enhanced HIF2α expression during human trophoblast differentiation into syncytiotrophoblast suppresses transcription of placental growth factor. Sci Rep.  https://doi.org/10.1038/s41598-017-12685-w CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    de Oliveira LF, Almeida TR, Ribeiro Machado MP, Cuba MB, Alves AC, da Silva MV et al (2015) Priming mesenchymal stem cells with endothelial growth medium boosts stem cell therapy for systemic arterial hypertension. Stem Cells Int 2015:1–12CrossRefGoogle Scholar
  90. 90.
    Mizukami T, Iso Y, Sato C, Sasai M, Spees JL, Toyoda M et al (2016) Priming with erythropoietin enhances cell survival and angiogenic effect of mesenchymal stem cell implantation in rat limb ischemia. Regener Ther 4:1–8CrossRefGoogle Scholar
  91. 91.
    Mathew SA, Bhonde RR (2018) Omega-3 polyunsaturated fatty acids promote angiogenesis in placenta derived mesenchymal stromal cells. Pharmacol Res 132:90–98CrossRefPubMedGoogle Scholar
  92. 92.
    Wang J, Shi Y, Zhang L, Zhang F, Hu X, Zhang W et al (2014) Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiol Dis 68:91–103CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Hitzerd E, Broekhuizen M, Neuman RI, Colafella KMM, Merkus D, Schoenmakers S et al (2019) Human placental vascular reactivity in health and disease: implications for the treatment of pre-eclampsia. Curr Pharm Des 25(5):505–527CrossRefPubMedGoogle Scholar
  94. 94.
    Fuchi N, Miura K, Doi H, Li T-S, Masuzaki H (2017) Feasibility of placenta-derived mesenchymal stem cells as a tool for studying pregnancy-related disorders. Sci Rep 7:46220CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Kim J, Piao Y, Pak YK, Chung D, Han YM, Hong JS et al (2015) Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells Dev 24(5):575–586CrossRefPubMedGoogle Scholar
  96. 96.
    Mathew SA, Bhonde R (2017) Mesenchymal stromal cells isolated from gestationally diabetic human placenta exhibit insulin resistance, decreased clonogenicity and angiogenesis. Placenta 59:1–8CrossRefPubMedGoogle Scholar
  97. 97.
    Francki A, Labazzo K, He S, Baum EZ, Abbot SE, Herzberg U et al (2016) Angiogenic properties of human placenta-derived adherent cells and efficacy in hindlimb ischemia. J Vasc Surg 64(3):746–756CrossRefPubMedGoogle Scholar
  98. 98.
    Xie N, Li Z, Adesanya TM, Guo W, Liu Y, Fu M et al (2016) Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice. J Cell Mol Med 20(1):29–37CrossRefPubMedGoogle Scholar
  99. 99.
    Alshareeda AT, Rakha E, Alghwainem A, Alrfaei B, Alsowayan B, Albugami A et al (2018) The effect of human placental chorionic villi derived mesenchymal stem cell on triple-negative breast cancer hallmarks. PLOS One 13(11):e0207593CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Lee J-K, Park S-R, Jung B-K, Jeon Y-K, Lee Y-S, Kim M-K et al (2013) Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 8(12):e84256CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Zhang D, Zheng L, Shi H, Chen X, Wan Y, Zhang H et al (2014) Suppression of peritoneal tumorigenesis by placenta-derived mesenchymal stem cells expressing endostatin on colorectal cancer. Int J Med Sci 11(9):870–879CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Kim K-S, Park J-M, Kong T, Kim C, Bae S-H, Kim HW et al (2016) Retinal angiogenesis effects of TGF-β1 and paracrine factors secreted from human placental stem cells in response to a pathological environment. Cell Transpl 25(6):1145–1157CrossRefGoogle Scholar
  103. 103.
    Ji L, Zhang L, Li Y, Guo L, Cao N, Bai Z et al (2017) MiR-136 contributes to pre-eclampsia through its effects on apoptosis and angiogenesis of mesenchymal stem cells. Placenta 50:102–109CrossRefPubMedGoogle Scholar
  104. 104.
    Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transpl 16(4):557–564Google Scholar
  105. 105.
    Prather WR, Toren A, Meiron M, Ofir R, Tschope C, Horwitz EM (2009) The role of placental-derived adherent stromal cell (PLX-PAD) in the treatment of critical limb ischemia. Cytotherapy 11(4):427–434CrossRefPubMedGoogle Scholar
  106. 106.
    Kadekar D, Kale V, Limaye L (2015) Differential ability of MSCs isolated from placenta and cord as feeders for supporting ex vivo expansion of umbilical cord blood derived CD34 + cells. Stem Cell Res Ther 6:201CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Du W, Li X, Chi Y, Ma F, Li Z, Yang S et al (2016) VCAM-1 + placenta chorionic villi-derived mesenchymal stem cells display potent pro-angiogenic activity. Stem Cell Res Ther 7:49CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Heazlewood CF, Sherrell H, Ryan J, Atkinson K, Wells CA, Fisk NM (2014) High incidence of contaminating maternal cell overgrowth in human placental mesenchymal stem/stromal cell cultures: a systematic review: maternal contamination in placental MSCs: a review. Stem Cells Transl Med 3(11):1305–1311CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Sardesai VS, Shafiee A, Fisk NM, Pelekanos RA (2017) Avoidance of maternal cell contamination and overgrowth in isolating fetal chorionic villi mesenchymal stem cells from human term placenta: determinants of pure feto-placental MSC isolation. Stem Cells Transl Med 6(4):1070–1084CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Mathews S, Lakshmi Rao K, Suma Prasad K, Kanakavalli MK, Govardhana Reddy A, Avinash Raj T et al (2015) Propagation of pure fetal and maternal mesenchymal stromal cells from terminal chorionic villi of human term placenta. Sci Rep 5:10054CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Alrefaei GI, Al-Karim S, Ayuob NN, Ali SS (2015) Does the maternal age affect the mesenchymal stem cell markers and gene expression in the human placenta? What is the evidence? Tissue Cell 47(4):406–419CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Regenerative MedicineManipal Academy of Higher Education, MAHEBangaloreIndia
  2. 2.School of Biotechnology, Faculty of Science and HealthDublin City UniversityGlasnevin Dublin 9Ireland
  3. 3.Dr. D.Y. Patil Vidyapeeth (DPU)PuneIndia

Personalised recommendations