Advertisement

Cellular and Molecular Life Sciences

, Volume 77, Issue 1, pp 93–113 | Cite as

Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management

  • Erfaneh Barati
  • Hossein Nikzad
  • Mohammad KarimianEmail author
Review

Abstract

Infertility is a global health problem involving about 15% of couples. Approximately half of the infertility cases are related to male factors. The oxidative stress, which refers to an imbalance in levels of reactive oxygen species (ROS) and antioxidants, is one of the main causes of infertility in men. A small amount of ROS is necessary for the physiological function of sperm including the capacitation, hyperactivation and acrosomal reaction. However, high levels of ROS can cause infertility through not only by lipid peroxidation or DNA damage but inactivation of enzymes and oxidation of proteins in spermatozoa. Oxidative stress (OS) is mainly caused by factors associated with lifestyle. Besides, immature spermatozoa, inflammatory factors, genetic mutations and altering levels of sex hormones are other main source of ROS. Since OS occurs due to the lack of antioxidants and its side effects in semen, lifestyle changes and antioxidant regimens can be helpful therapeutic approaches to overcome this problem. The present study aimed to describe physiological ROS production, roles of genetic and epigenetic factors on the OS and male infertility with various mechanisms such as lipid peroxidation, DNA damage, and disorder of male hormone profile, inflammation, and varicocele. Finally, the roles of oral antioxidants and herbs were explained in coping with OS in male infertility.

Keywords

Male infertility Oxidative stress Reactive oxygen species Genetic factors Antioxidants 

Abbreviations

·OH

Hydroxyl

·ROO

Proxyl

4-HNE

4-Hydroxynonenal

8-OHdG

8-Hydroxy-2-deoxyguanosine

ABP

Androgen-binding protein

ARE

Antioxidant responsive element

ARTs

Assisted reproductive techniques

ATP

Adenosine triphosphate

BER

Base excision repair

cAMP

Cyclic adenosine monophosphate

CAT

Catalase

CK

Creatine kinase

CYP2E

Cytochrome P450 enzymes

ETC

Electron transport chain

G6PD

Glucose-6-phosphate dehydrogenase

GnRH

Gonadotropin releasing hormone

GPx

Glutathione peroxidase

GRX

Glutaredoxin

GSH

Glutathione

GST

Glutathione s-transferase

H2O2

Hydrogen peroxide

HPA

Hypothalamic–pituitary–adrenal

HPG

Hypothalamic–pituitary–gonadal

HPT

Hypothalamo–pituitary–thyroid

IL

Interleukin

LOOHs

Lipid hydroperoxides

MDA

Malondialdehyde

miRNAs

Micro-ribonucleic acids

MPO

Myeloperoxidase

NAC

N-Acetylcysteine

NADPH

Adenine dinucleotide phosphate

NO

Nitrogen oxide

NOS

Nitric oxide synthase

NRF2

Nuclear factor erythroid 2-related factor 2

O2·−

Superoxide anion

ONOO-

Peroxynitrite

OS

Oxidative stress

P-Tyr

Phosphotyrosine

PGE2

Prostaglandin E2

PKA

Protein kinase A

NER

Nucleotide excision repair

PMN

Polymorphonuclear

P-PKA

Phospho-PKA

PRX

Peroxiredoxin

PUFA

Polyunsaturated fatty acids

RF

Radio frequency

ROOH

Hydroperoxide

ROS

Reactive oxygen species

SCI

Spinal cord injury

SDF

Sperm DNA fragmentation

SH-

Sulfhydryl groups

SOD

Superoxide dismutase

SOD3

Extracellular SOD

TAC

Total antioxidant capacity

TNF-α

Tumor necrosis factor alpha

TRX

Thioredoxin

Notes

Acknowledgements

This work was supported by grants from the Vice Chancellor for Research and Technology, Kashan University of Medical Sciences, Kashan, Iran.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Agarwal A, Mulgund A, Hamada A, Chyatte MR (2015) A unique view on male infertility around the globe. Reprod Biol Endocrinol 13(1):37PubMedPubMedCentralGoogle Scholar
  2. 2.
    Agarwal A, Prabakaran S, Allamaneni SS (2006) Relationship between oxidative stress, varicocele and infertility: a meta-analysis. Reprod Biomed Online 12(5):630–633PubMedGoogle Scholar
  3. 3.
    Wagner H, Cheng JW, Ko EY (2018) Role of reactive oxygen species in male infertility: an updated review of literature. Arab J Urol 16(1):35–43PubMedGoogle Scholar
  4. 4.
    Bui A, Sharma R, Henkel R, Agarwal A (2018) Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia 50(8):e13012PubMedGoogle Scholar
  5. 5.
    Gogol P, Szczęśniak-Fabiańczyk B, Wierzchoś-Hilczer A (2009) The photon emission, ATP level and motility of boar spermatozoa during liquid storage. Reprod Biol 9(1):39–49PubMedGoogle Scholar
  6. 6.
    Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D, Henkel R, Sadeghi MR (2018) Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol 16(1):87PubMedPubMedCentralGoogle Scholar
  7. 7.
    Tremellen K (2008) Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update 14(3):243–258PubMedGoogle Scholar
  8. 8.
    Nakamura BN, Lawson G, Chan JY, Banuelos J, Cortés MM, Hoang YD, Ortiz L, Rau BA, Luderer U (2010) Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age-dependent manner. Free Radic Biol Med 49(9):1368–1379PubMedPubMedCentralGoogle Scholar
  9. 9.
    Meseguer M, Antonio Martinez-Conejero J, Muriel L, Pellicer A, Remohí J, Garrido N (2007) The human sperm glutathione system: a key role in male fertility and successful cryopreservation. Drug Metab Lett 1(2):121–126PubMedGoogle Scholar
  10. 10.
    Alahmar AT (2018) The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia. Clin Exp Reprod Med 45(2):57–66PubMedPubMedCentralGoogle Scholar
  11. 11.
    Agarwal A, Rana M, Qiu E, AlBunni H, Bui AD, Henkel R (2018) Role of oxidative stress, infection and inflammation in male infertility. Andrologia 50(11):e13126PubMedGoogle Scholar
  12. 12.
    Leclerc P, De Lamirande E, Gagnon C (1997) Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic Biol Med 22(4):643–656PubMedGoogle Scholar
  13. 13.
    de Lamirande EHA, Gagnon C (1998) Human sperm capacitation induced by biological fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion. J Androl 19(2):215–225PubMedGoogle Scholar
  14. 14.
    Herrero MB, de Lamirande E, Gagnon C (1999) Nitric oxide regulates human sperm capacitation and protein-tyrosine phosphorylation in vitro. Biol Reprod 61(3):575–581PubMedGoogle Scholar
  15. 15.
    Thundathil J, de Lamirande E, Gagnon C (2003) Nitric oxide regulates the phosphorylation of the threonine-glutamine-tyrosine motif in proteins of human spermatozoa during capacitation. Biol Reprod 68(4):1291–1298PubMedGoogle Scholar
  16. 16.
    Cn O’Flaherty, de Lamirande E, Gagnon C (2005) Reactive oxygen species and protein kinases modulate the level of phospho-MEK-like proteins during human sperm capacitation. Biol Reprod 73(1):94–105Google Scholar
  17. 17.
    O’Flaherty C, de Lamirande E, Gagnon C (2006) Reactive oxygen species modulate independent protein phosphorylation pathways during human sperm capacitation. Free Radical Biol Med 40(6):1045–1055Google Scholar
  18. 18.
    Leclerc P, de Lamirande EVE, Gagnon C (1998) Interaction between Ca2+, cyclic 3′, 5′adenosine monophosphate, the superoxide anion, and tyrosine phosphorylation pathways in the regulation of human sperm capacitation. J Androl 19(4):434–443PubMedGoogle Scholar
  19. 19.
    Lefièvre L, Jha KN, de Lamirande E, Visconti PE, Gagnon C (2002) Activation of protein kinase A during human sperm capacitation and acrosome reaction. J Androl 23(5):709–716PubMedGoogle Scholar
  20. 20.
    Condorelli R, Russo GI, Calogero A, Morgia G, La Vignera S (2017) Chronic prostatitis and its detrimental impact on sperm parameters: a systematic review and meta-analysis. J Endocrinol Invest 40(11):1209–1218PubMedGoogle Scholar
  21. 21.
    Harlev A, Agarwal A, Gunes SO, Shetty A, du Plessis SS (2015) Smoking and male infertility: an evidence-based review. World J Mens Health 33(3):143–160PubMedPubMedCentralGoogle Scholar
  22. 22.
    Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ (1996) Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J Androl 17(3):276–287PubMedGoogle Scholar
  23. 23.
    Said TM, Agarwal A, Sharma RK, Mascha E, Sikka SC, Thomas AJ Jr (2004) Human sperm superoxide anion generation and correlation with semen quality in patients with male infertility. Fertil Steril 82(4):871–877PubMedGoogle Scholar
  24. 24.
    Styrna J, Piasecka M, Malek P, Golas A (2010) Sperm mitochondria diaphorase activity–a gene mapping study of recombinant inbred strains of mice. Int J Dev Biol 54(4):667–673PubMedGoogle Scholar
  25. 25.
    Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR (2016) Etiologies of sperm oxidative stress. Int J Reprod Biomed 14(4):231Google Scholar
  26. 26.
    Cooper TG, Noonan E, Von Eckardstein S, Auger J, Baker H, Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT (2010) World Health Organization reference values for human semen characteristics. Hum Reprod Update 16(3):231–245PubMedGoogle Scholar
  27. 27.
    Fariello RM, Del Giudice PT, Spaine DM, Fraietta R, Bertolla RP, Cedenho AP (2009) Effect of leukocytospermia and processing by discontinuous density gradient on sperm nuclear DNA fragmentation and mitochondrial activity. J Assist Reprod Genet 26(2–3):151–157PubMedPubMedCentralGoogle Scholar
  28. 28.
    Yadav SB, Suryakar AN, Huddedar AD, Shukla PS (2006) Effect of antioxidants and antibiotics on levels of seminal oxidative stress in leukocytospermic infertile men. Indian J Clin Biochem 21(1):152PubMedPubMedCentralGoogle Scholar
  29. 29.
    Makker K, Agarwal A, Sharma R (2009) Oxidative stress & male infertility. Indian J Med Res 129(4):357–368PubMedGoogle Scholar
  30. 30.
    Hamada A, Agarwal A, Sharma R, French DB, Ragheb A, Sabanegh ES Jr (2011) Empirical treatment of low-level leukocytospermia with doxycycline in male infertility patients. Urology 78(6):1320–1325PubMedGoogle Scholar
  31. 31.
    Aboulmaouahib S, Madkour A, Kaarouch I, Sefrioui O, Saadani B, Copin H, Benkhalifa M, Louanjli N, Cadi R (2018) Impact of alcohol and cigarette smoking consumption in male fertility potential: looks at lipid peroxidation, enzymatic antioxidant activities and sperm DNA damage. Andrologia 50(3):e12926Google Scholar
  32. 32.
    Brand JS, Chan M-F, Dowsett M, Folkerd E, Wareham NJ, Luben RN, van der Schouw YT, Khaw K-T (2011) Cigarette smoking and endogenous sex hormones in postmenopausal women. J Clin Endocrinol Metab 96(10):3184–3192PubMedGoogle Scholar
  33. 33.
    Valavanidis A, Vlachogianni T, Fiotakis K (2009) Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health 6(2):445–462PubMedPubMedCentralGoogle Scholar
  34. 34.
    Ghaffari MA, Rostami M (2013) The effect of cigarette smoking on human sperm creatine kinase activity: as an ATP buffering system in sperm. Int J Fertil Steril 6(4):258PubMedPubMedCentralGoogle Scholar
  35. 35.
    Hamad M, Shelko N, Kartarius S, Montenarh M, Hammadeh M (2014) Impact of cigarette smoking on histone (H2B) to protamine ratio in human spermatozoa and its relation to sperm parameters. Andrology 2(5):666–677PubMedGoogle Scholar
  36. 36.
    Cui X, Jing X, Wu X, Wang Z, Li Q (2016) Potential effect of smoking on semen quality through DNA damage and the downregulation of Chk1 in sperm. Mol Med Rep 14(1):753–761PubMedPubMedCentralGoogle Scholar
  37. 37.
    Guthauser B, Boitrelle F, Plat A, Thiercelin N, Vialard F (2013) Chronic excessive alcohol consumption and male fertility: a case report on reversible azoospermia and a literature review. Alcohol Alcohol 49(1):42–44PubMedGoogle Scholar
  38. 38.
    Akang EN, Oremosu AA, Osinubi AA, James AB, Biose IJ, Dike SI, Idoko KM (2017) Alcohol-induced male infertility: is sperm DNA fragmentation a causative? J Exp Clin Anat 16(1):53Google Scholar
  39. 39.
    Manzo-Avalos S, Saavedra-Molina A (2010) Cellular and mitochondrial effects of alcohol consumption. Int J Environ Res Public Health 7(12):4281–4304PubMedPubMedCentralGoogle Scholar
  40. 40.
    Bailey SM, Robinson G, Pinner A, Chamlee L, Ulasova E, Pompilius M, Page G, Chhieng D, Jhala N, Landar A (2006) S-Adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in rat liver. Am J Physiol Gastrointest Liver Physiol 291(5):G857–G867PubMedGoogle Scholar
  41. 41.
    Radi R, Cassina A, Hodara R, Quijano C, Castro L (2002) Peroxynitrite reactions and formation in mitochondria. Free Radical Biol Med 33(11):1451–1464Google Scholar
  42. 42.
    Angelopoulou R, Lavranos G, Manolakou P (2009) ROS in the aging male: model diseases with ROS-related pathophysiology. Reprod Toxicol 28(2):167–171PubMedGoogle Scholar
  43. 43.
    Kesari KK, Agarwal A, Henkel R (2018) Radiations and male fertility. Reprod Biol Endocrinol 16(1):118PubMedPubMedCentralGoogle Scholar
  44. 44.
    Gautam R, Singh KV, Nirala J, Murmu NN, Meena R, Rajamani P (2018) Oxidative stress-mediated alterations on sperm parameters in male Wistar rats exposed to 3G mobile phone radiation. Andrologia 51(3):e13201PubMedGoogle Scholar
  45. 45.
    Desai NR, Kesari KK, Agarwal A (2009) Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol 7(1):114PubMedPubMedCentralGoogle Scholar
  46. 46.
    Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P (2016) Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev 28(1–2):1–10PubMedGoogle Scholar
  47. 47.
    Chauhan P, Verma HN, Sisodia R, Kesari KK (2017) Microwave radiation (2.45 GHz)-induced oxidative stress: whole-body exposure effect on histopathology of Wistar rats. Electromagn Biol Med 36(1):20–30PubMedGoogle Scholar
  48. 48.
    Kesari KK, Kumar S, Behari J (2011) 900-MHz microwave radiation promotes oxidation in rat brain. Electromagn Biol Med 30(4):219–234PubMedGoogle Scholar
  49. 49.
    Du Plessis SS, Agarwal A, Sabanegh Jr ES (2014) Male infertility: a complete guide to lifestyle and environmental factors. Springer, New York, pp 1–268Google Scholar
  50. 50.
    Sabés-Alsina M, Tallo-Parra O, Mogas MT, Morrell JM, Lopez-Bejar M (2016) Heat stress has an effect on motility and metabolic activity of rabbit spermatozoa. Anim Reprod Sci 173:18–23PubMedGoogle Scholar
  51. 51.
    Pérez-Crespo M, Pintado B, Gutiérrez-Adán A (2008) Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol Reprod Dev 75(1):40–47PubMedGoogle Scholar
  52. 52.
    Paul C, Teng S, Saunders PT (2009) A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol Reprod 80(5):913–919PubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhang M, Jiang M, Bi Y, Zhu H, Zhou Z, Sha J (2012) Autophagy and apoptosis act as partners to induce germ cell death after heat stress in mice. PLoS One 7(7):e41412PubMedPubMedCentralGoogle Scholar
  54. 54.
    Li Y, Cao Y, Wang F, Li C (2014) Scrotal heat induced the Nrf2-driven antioxidant response during oxidative stress and apoptosis in the mouse testis. Acta Histochem 116(5):883–890PubMedGoogle Scholar
  55. 55.
    Pereira C, Mapuskar K, Rao CV (2006) Chronic toxicity of diethyl phthalate in male Wistar rats—A dose–response study. Regul Toxicol Pharmacol 45(2):169–177PubMedGoogle Scholar
  56. 56.
    Hauser R, Meeker J, Singh N, Silva M, Ryan L, Duty S, Calafat A (2006) DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod 22(3):688–695PubMedGoogle Scholar
  57. 57.
    Pant N, Shukla M, Patel DK, Shukla Y, Mathur N, Gupta YK, Saxena DK (2008) Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol 231(1):112–116PubMedGoogle Scholar
  58. 58.
    Radwan M, Jurewicz J, Polańska K, Sobala W, Radwan P, Bochenek M, Hanke W (2016) Exposure to ambient air pollution-does it affect semen quality and the level of reproductive hormones? Ann Hum Biol 43(1):50–56PubMedGoogle Scholar
  59. 59.
    Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151(2):362–367PubMedGoogle Scholar
  60. 60.
    Hsu P-C, Guo YL (2002) Antioxidant nutrients and lead toxicity. Toxicology 180(1):33–44PubMedGoogle Scholar
  61. 61.
    Acharya U, Acharya S, Mishra M (2003) Lead acetate induced cytotoxicity in male germinal cells of Swiss mice. Ind Health 41(3):291–294PubMedGoogle Scholar
  62. 62.
    Xu D-X, Shen H-M, Zhu Q-X, Chua L, Wang Q-N, Chia S-E, Ong C-N (2003) The associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutat Res Genet Toxicol Environ Mutagen 534(1–2):155–163Google Scholar
  63. 63.
    Storgaard L, Bonde JP, Ernst E, Andersen CY, Spano M, Christensen K, Petersen HC, Olsen J (2006) Genetic and environmental correlates of semen quality: a twin study. Epidemiology 17(6):674–681PubMedGoogle Scholar
  64. 64.
    Mobasseri N, Babaei F, Karimian M, Nikzad H (2018) Androgen receptor (AR)-CAG trinucleotide repeat length and idiopathic male infertility: a case-control trial and a meta-analysis. Excli J 17:1167–1179PubMedPubMedCentralGoogle Scholar
  65. 65.
    Rafatmanesh A, Nikzad H, Ebrahimi A, Karimian M, Zamani T (2018) Association of the c.-9C> T and c.368A> G transitions in H2BFWT gene with male infertility in an Iranian population. Andrologia 50(1):e12805Google Scholar
  66. 66.
    Yu B, Huang Z (2015) Variations in antioxidant genes and male infertility. Biomed Res Int 2015:513196PubMedPubMedCentralGoogle Scholar
  67. 67.
    Holland R, Fishbein JC (2010) Chemistry of the cysteine sensors in Kelch-like ECH-associated protein 1. Antioxid Redox Signal 13(11):1749–1761PubMedPubMedCentralGoogle Scholar
  68. 68.
    Chan K, Lu R, Chang JC, Kan YW (1996) NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci USA 93(24):13943–13948PubMedGoogle Scholar
  69. 69.
    Chyra-Jach D, Kaletka Z, Dobrakowski M (2018) The associations between infertility and antioxidants, proinflammatory cytokines, and chemokines. Oxidative Med Cell Longev 2018:8354747Google Scholar
  70. 70.
    Aitken RJ, Buckingham DW, Carreras A, Irvine DS (1996) Superoxide dismutase in human sperm suspensions: relationship with cellular composition, oxidative stress, and sperm function. Free Radic Biol Med 21(4):495–504PubMedGoogle Scholar
  71. 71.
    Faure C, Leveille P, Dupont C, Julia C, Chavatte-Palmer P, Sutton A, Levy R (2014) Are superoxide dismutase 2 and nitric oxide synthase polymorphisms associated with idiopathic infertility? Antioxid Redox Signal 21(4):565–569PubMedGoogle Scholar
  72. 72.
    Sabouhi S, Salehi Z, Bahadori M, Mahdavi M (2015) Human catalase gene polymorphism (CAT C-262 T) and risk of male infertility. Andrologia 47(1):97–101PubMedGoogle Scholar
  73. 73.
    Tefik T, Kucukgergin C, Sanli O, Oktar T, Seckin S, Ozsoy C (2013) Manganese superoxide dismutase Ile58Thr, catalase C-262 T and myeloperoxidase G-463 A gene polymorphisms in patients with prostate cancer: relation to advanced and metastatic disease. BJU Int 112(4):E406–E414PubMedGoogle Scholar
  74. 74.
    Selvaratnam JS, Robaire B (2016) Effects of aging and oxidative stress on spermatozoa of superoxide-dismutase 1-and catalase-null mice. Biol Reprod 95(3):60PubMedPubMedCentralGoogle Scholar
  75. 75.
    Willoughby DS, Hwang P, Willoughby DS (2015) Intracellular mechanistic role of nitric oxide: a comparative analysis of the effectiveness of l-arginine and l-citrulline supplementation on nitric oxide synthesis and subsequent exercise performance in humans. J Food Sci Nutr 2(1):1–8Google Scholar
  76. 76.
    Stuehr DJ, Griffith OW (1992) Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Biol 65:287–346PubMedGoogle Scholar
  77. 77.
    Doshi SB, Khullar K, Sharma RK, Agarwal A (2012) Role of reactive nitrogen species in male infertility. Reprod Biol Endocrinol 10(1):109PubMedPubMedCentralGoogle Scholar
  78. 78.
    Mostafa T, Rashed LA, Nabil N, Fouad H, Sabry D, El-Saied DM (2015) Endothelial nitric oxide synthase gene polymorphism relationship with semen parameters and oxidative stress in infertile oligoasthenoteratozoospermic men. Urology 85(5):1058–1061PubMedGoogle Scholar
  79. 79.
    Oakley A (2011) Glutathione transferases: a structural perspective. Drug Metab Rev 43(2):138–151PubMedGoogle Scholar
  80. 80.
    Udomsinprasert R, Pongjaroenkit S, Wongsantichon J, Oakley AJ, Prapanthadara L-a, Wilce MC, Ketterman AJ (2005) Identification, characterization and structure of a new Delta class glutathione transferase isoenzyme. Biochem J 388(3):763–771PubMedPubMedCentralGoogle Scholar
  81. 81.
    Safarinejad MR, Shafiei N, Safarinejad S (2010) The association of glutathione-S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) with idiopathic male infertility. J Hum Genet 55(9):565PubMedGoogle Scholar
  82. 82.
    Xiong D-K, Chen H-H, Ding X-P, Zhang S-H, Zhang J-H (2015) Association of polymorphisms in glutathione S-transferase genes (GSTM1, GSTT1, GSTP1) with idiopathic azoospermia or oligospermia in Sichuan. China Asian J Androl 17(3):481PubMedGoogle Scholar
  83. 83.
    Arnér ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267(20):6102–6109PubMedGoogle Scholar
  84. 84.
    Hansen JM, Go Y-M, Jones DP (2006) Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 46:215–234PubMedGoogle Scholar
  85. 85.
    Drevet JR (2006) The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol 250(1–2):70–79PubMedGoogle Scholar
  86. 86.
    Schneider M, Förster H, Boersma A, Seiler A, Wehnes H, Sinowatz F, Neumüller C, Deutsch MJ, Walch A, Hrabé de Angelis M (2009) Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J 23(9):3233–3242PubMedGoogle Scholar
  87. 87.
    Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, Garrel C, Saez F, Cadet R, Henry-Berger J (2009) Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest 119(7):2074–2085PubMedPubMedCentralGoogle Scholar
  88. 88.
    Salimi S, Keshavarzi F, Mohammadpour-Gharehbagh A, Moodi M, Mousavi M, Karimian M, Sandoughi M (2017) Polymorphisms of the folate metabolizing enzymes: association with SLE susceptibility and in silico analysis. Gene 637:161–172PubMedGoogle Scholar
  89. 89.
    Bafrani HH, Ahmadi M, Jahantigh D, Karimian M (2019) Association analysis of the common varieties of IL17A and IL17F genes with the risk of knee osteoarthritis. J Cell Biochem.  https://doi.org/10.1002/jcb.29105 CrossRefPubMedGoogle Scholar
  90. 90.
    Karimian M, Aftabi Y, Mazoochi T, Babaei F, Khamechian T, Boojari H, Nikzad H (2018) Survivin polymorphisms and susceptibility to prostate cancer: a genetic association study and an in silico analysis. EXCLI J 17:479–491PubMedPubMedCentralGoogle Scholar
  91. 91.
    Nejati M, Atlasi MA, Karimian M, Nikzad H, Tameh AA (2018) Lipoprotein lipase gene polymorphisms as risk factors for stroke: a computational and meta-analysis. Iran J Basic Med Sci 21(7):701–708PubMedPubMedCentralGoogle Scholar
  92. 92.
    Mobasseri N, Nikzad H, Karimian M (2019) Protective effect of estrogen receptor alpha-PvuII transition against idiopathic male infertility: a case-control study and meta-analysis. Reprod Biomed Online 38(4):588–598PubMedGoogle Scholar
  93. 93.
    Noureddini M, Mobasseri N, Karimian M, Behjati M, Nikzad H (2018) Arg399Gln substitution in XRCC1 as a prognostic and predictive biomarker for prostate cancer: evidence from 8662 subjects and a structural analysis. J Gene Med 20(10–11):e3053PubMedGoogle Scholar
  94. 94.
    Tameh AA, Karimian M, Zare-Dehghanani Z, Aftabi Y, Beyer C (2018) Role of steroid therapy after ischemic stroke by N-methyl-d-aspartate receptor gene regulation. J Stroke Cerebrovasc Dis 27(11):3066–3075PubMedGoogle Scholar
  95. 95.
    Behrouzi S, Mashayekhi F, Bahadori MH (2018) The association of PON1 192 Q/R polymorphism with the risk of idiopathic male infertility in northern Iran. Avicenna J Med Biotechnol 11(1):253–256Google Scholar
  96. 96.
    Garcia Rodriguez A, de la Casa M, Johnston S (2019) Association of polymorphisms in genes coding for antioxidant enzymes and human male infertility. Ann Hum Genet 83(1):63–72PubMedGoogle Scholar
  97. 97.
    Vučić N, Nikolić Z, Vukotić V, Tomović S, Vuković I, Kanazir S, Savić-Pavićević D, Brajušković G (2018) NOS 3 gene variants and male infertility: association of 4a/4b with oligoasthenozoospermia. Andrologia 50(1):e12817Google Scholar
  98. 98.
    Mazjin M, Salehi Z, Mashayekhi F, Bahadori M (2016) Evaluation of GPx1 Pro198Leu polymorphism in idiopathic male infertility. Mol Biol 50(1):77–80Google Scholar
  99. 99.
    Yan L, Guo W, Wu S, Liu J, Zhang S, Shi L, Ji G, Gu A (2014) Genetic variants in nitric oxide synthase genes and the risk of male infertility in a Chinese population: a case-control study. PLoS One 9(12):e115190PubMedPubMedCentralGoogle Scholar
  100. 100.
    Ji G, Yan L, Liu W, Qu J, Gu A (2013) OGG1 Ser326Cys polymorphism interacts with cigarette smoking to increase oxidative DNA damage in human sperm and the risk of male infertility. Toxicol Lett 218(2):144–149PubMedGoogle Scholar
  101. 101.
    Kolesnikova L, Kurashova N, Bairova T, Dolgikh M, Ershova O, Natyaganova L, Dashiev B, Gutnik I, Koroleva N (2017) Features of lipoperoxidation, antioxidant defense, and thiol/disulfide system in the pathogenesis of infertility in males, carriers of nonfunctional variants of GSTT1 and GSTM1 gene polymorphisms. Bull Exp Biol Med 163(3):378–380PubMedGoogle Scholar
  102. 102.
    Hashad D, Mohamed N, Hashad M (2012) Luteinising hormone β-subunit gene Gly102Ser variant and oxidative stress biomarkers in Egyptian infertile males. Andrologia 44:484–489PubMedGoogle Scholar
  103. 103.
    Liu H, Zhao J, Xu J, Zhu P, Yu M, Jiang W, Zhang J, Li W, Wu Q, Li Z (2018) Correlation of the single nucleotide polymorphism rs662 of PON1 with the risk of male infertility. Zhonghua Nan Ke Xue 24(8):708–712PubMedGoogle Scholar
  104. 104.
    Trang NT, Huyen VT, Tuan NT, Phan TD (2018) Association of N-acetyltransferase-2 and glutathione S-transferase polymorphisms with idiopathic male infertility in Vietnam male subjects. Chem Biol Interact 286:11–16PubMedGoogle Scholar
  105. 105.
    Inbar-Feigenberg M, Choufani S, Butcher DT, Roifman M, Weksberg R (2013) Basic concepts of epigenetics. Fertil Steril 99(3):607–615PubMedGoogle Scholar
  106. 106.
    Feinberg AP, Cui H, Ohlsson R (2002) DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol 12(5):389–398PubMedGoogle Scholar
  107. 107.
    Jue K, Benoit G, Alcivar-Warren AA, Trasler JM (1995) Developmental and hormonal regulation of DNA methyltransferase in the rat testis. Biol Reprod 52:1364–1371PubMedGoogle Scholar
  108. 108.
    Omisanjo OA, Biermann K, Hartmann S, Heukamp LC, Sonnack V, Hild A, Brehm R, Bergmann M, Weidner W, Steger K (2007) DNMT1 and HDAC1 gene expression in impaired spermatogenesis and testicular cancer. Histochem Cell Biol 127(2):175–181PubMedGoogle Scholar
  109. 109.
    Ariel M, Cedar H, McCarrey J (1994) Developmental changes in methylation of spermatogenesis–specific genes include reprogramming in the epididymis. Nat Genet 7(1):59PubMedGoogle Scholar
  110. 110.
    Olszewska M, Barciszewska MZ, Fraczek M, Huleyuk N, Chernykh VB, Zastavna D, Barciszewski J, Kurpisz M (2017) Global methylation status of sperm DNA in carriers of chromosome structural aberrations. Asian J Androl 19(1):117PubMedGoogle Scholar
  111. 111.
    Tunc O, Tremellen K (2009) Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet 26(9–10):537–544PubMedPubMedCentralGoogle Scholar
  112. 112.
    Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer lett 266(1):6–11PubMedGoogle Scholar
  113. 113.
    Hepburn P, Margison G, Tisdale M (1991) Enzymatic methylation of cytosine in DNA is prevented by adjacent O6-methylguanine residues. J Biol Chem 266(13):7985–7987PubMedGoogle Scholar
  114. 114.
    Turk PW, Laayoun A, Smith SS, Weitzman SA (1995) DNA adduct 8-hydroxyl-2′-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase. Carcinogenesis 16(5):1253–1255PubMedGoogle Scholar
  115. 115.
    Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 275(38):29318–29323PubMedGoogle Scholar
  116. 116.
    Jamaluddin MS, Chen I, Yang F, Jiang X, Jan M, Liu X, Schafer AI, Durante W, Yang X, Wang H (2007) Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin Agene. Blood 110(10):3648–3655PubMedPubMedCentralGoogle Scholar
  117. 117.
    Karimian M, Hosseinzadeh Colagar A (2018) Human MTHFR-G1793A transition may be a protective mutation against male infertility: a genetic association study and in silico analysis. Hum Fertil 21(2):128–136Google Scholar
  118. 118.
    Aitken RJ, Curry BJ (2011) Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal 14(3):367–381PubMedGoogle Scholar
  119. 119.
    Noblanc A, Damon-Soubeyrand C, Karrich B, Henry-Berger J, Cadet R, Saez F, Guiton R, Janny L, Pons-Rejraji H, Alvarez JG (2013) DNA oxidative damage in mammalian spermatozoa: where and why is the male nucleus affected? Free Radical Biol Med 65:719–723Google Scholar
  120. 120.
    Ohno M, Sakumi K, Fukumura R, Furuichi M, Iwasaki Y, Hokama M, Ikemura T, Tsuzuki T, Gondo Y, Nakabeppu Y (2014) 8-Oxoguanine causes spontaneous de novo germline mutations in mice. Sci Rep 4:4689PubMedPubMedCentralGoogle Scholar
  121. 121.
    Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, Forti G, Baldi E (2015) Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med 21(1):109–122PubMedPubMedCentralGoogle Scholar
  122. 122.
    Bauer NC, Corbett AH, Doetsch PW (2015) The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 43(21):10083–10101PubMedPubMedCentralGoogle Scholar
  123. 123.
    Dorostghoal M, Kazeminejad S, Shahbazian N, Pourmehdi M, Jabbari A (2017) Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia 49(10):e12762Google Scholar
  124. 124.
    Aitken R, Smith T, Lord T, Kuczera L, Koppers A, Naumovski N, Connaughton H, Baker M, De Iuliis G (2013) On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid. Andrology 1(2):192–205PubMedGoogle Scholar
  125. 125.
    Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482(3):419–425PubMedPubMedCentralGoogle Scholar
  126. 126.
    Saleh RA, Ashok Agarwal HCLD (2002) Oxidative stress and male infertility: from research bench to clinical practice. J Androl 23(6):737–752PubMedGoogle Scholar
  127. 127.
    Aitken RJ, Whiting S, De Iuliis GN, McClymont S, Mitchell LA, Baker MA (2012) Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. J Biol Chem 287(39):33048–33060PubMedPubMedCentralGoogle Scholar
  128. 128.
    Talebi E, Karimian M, Nikzad H (2018) Association of sperm mitochondrial DNA deletions with male infertility in an Iranian population. Mitochondrial DNA A DNA Mapp Seq Anal 29(4):615–623PubMedGoogle Scholar
  129. 129.
    Moretti E, Collodel G, Fiaschi AI, Micheli L, Iacoponi F, Cerretani D (2017) Nitric oxide, malondialdheyde and non-enzymatic antioxidants assessed in viable spermatozoa from selected infertile men. Reprod Biol 17(4):370–375PubMedGoogle Scholar
  130. 130.
    Turner TT, Bang HJ, Lysiak JJ (2005) Experimental testicular torsion: reperfusion blood flow and subsequent testicular venous plasma testosterone concentrations. Urology 65(2):390–394PubMedGoogle Scholar
  131. 131.
    Hanukoglu I (2006) Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab Rev 38(1–2):171–196PubMedGoogle Scholar
  132. 132.
    Aitken RJ, Baker MA, Sawyer D (2003) Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease. Reprod Biomed Online 7(1):65–70PubMedGoogle Scholar
  133. 133.
    Mancini A, Leone E, Festa R, Grande G, Silvestrini A, De Marinis L, Pontecorvi A, Maira G, Littarru GP, Meucci E (2008) Effects of testosterone on antioxidant systems in male secondary hypogonadism. J Androl 29(6):622–629PubMedGoogle Scholar
  134. 134.
    Shang X, Huang Y, Ye Z, Yu X, Gu W (2004) Protection of melatonin against damage of sperm mitochondrial function induced by reactive oxygen species. Zhonghua Nan Ke Xue 10(8):604–607PubMedGoogle Scholar
  135. 135.
    Adewoyin M, Mohsin SMN, Arulselvan P, Hussein MZ, Fakurazi S (2015) Enhanced anti-inflammatory potential of cinnamate-zinc layered hydroxide in lipopolysaccharide-stimulated RAW 264.7 macrophages. Drug Des Devel Ther 9:2475PubMedPubMedCentralGoogle Scholar
  136. 136.
    Sarkar O, Bahrainwala J, Chandrasekaran S, Kothari S, Mathur PP, Agarwal A (2011) Impact of inflammation on male fertility. Front Biosci (Elite Ed) 3:89–95Google Scholar
  137. 137.
    Liew SH, Meachem SJ, Hedger MP (2007) A stereological analysis of the response of spermatogenesis to an acute inflammatory episode in adult rats. J Androl 28(1):176–185PubMedGoogle Scholar
  138. 138.
    Pasqualotto FF, Sharma RK, Potts JM, Nelson DR, Thomas AJ Jr, Agarwal A (2000) Seminal oxidative stress in patients with chronic prostatitis. Urology 55(6):881–885PubMedGoogle Scholar
  139. 139.
    Zamani-Badi T, Karimian M, Azami-Tameh A, Nikzad H (2019) Association of C3953T transition in interleukin 1β gene with idiopathic male infertility in an Iranian population. Hum Fertil 22(2):111–117Google Scholar
  140. 140.
    Zamani-Badi T, Nikzad H, Karimian M (2018) IL-1RA VNTR and IL-1α 4845G> T polymorphisms and risk of idiopathic male infertility in Iranian men: a case–control study and an in silico analysis. Andrologia 50(9):e13081PubMedGoogle Scholar
  141. 141.
    Azenabor A, Ekun AO, Akinloye O (2015) Impact of inflammation on male reproductive tract. J Reprod Infertil 16(3):123PubMedPubMedCentralGoogle Scholar
  142. 142.
    Agarwal A, Esteves SC (2016) Varicocele and male infertility: current concepts and future perspectives. Asian J Androl 18(2):161PubMedPubMedCentralGoogle Scholar
  143. 143.
    Mostafa T, Anis T, El Nashar A, Imam H, Osman I (2012) Seminal plasma reactive oxygen species–antioxidants relationship with varicocele grade. Andrologia 44(1):66–69PubMedGoogle Scholar
  144. 144.
    Agarwal A, Hamada A, Esteves SC (2012) Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol 9(12):678PubMedGoogle Scholar
  145. 145.
    Hamada A, Esteves SC, Agarwal A (2013) Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol 10(1):26PubMedGoogle Scholar
  146. 146.
    Türkyilmaz Z, Gülen Ş, Sönmez K, Karabulut R, Dinçer S, Can Başaklar A, Kale N (2004) Increased nitric oxide is accompanied by lipid oxidation in adolescent varicocele. Int J Androl 27(3):183–187PubMedGoogle Scholar
  147. 147.
    Altunoluk B, Efe E, Kurutas EB, Gul AB, Atalay F, Eren M (2012) Elevation of both reactive oxygen species and antioxidant enzymes in vein tissue of infertile men with varicocele. Urol Int 88(1):102–106PubMedGoogle Scholar
  148. 148.
    Soubry A, Guo L, Huang Z, Hoyo C, Romanus S, Price T, Murphy SK (2016) Obesity-related DNA methylation at imprinted genes in human sperm: results from the TIEGER study. Clin Epigenetics 8(1):51PubMedPubMedCentralGoogle Scholar
  149. 149.
    Bakos H, Mitchell M, Setchell B, Lane M (2011) The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model. Int J Androl 34(5pt1):402–410PubMedGoogle Scholar
  150. 150.
    Garolla A, Torino M, Miola P, Caretta N, Pizzol D, Menegazzo M, Bertoldo A, Foresta C (2015) Twenty-four-hour monitoring of scrotal temperature in obese men and men with a varicocele as a mirror of spermatogenic function. Hum Reprod 30(5):1006–1013PubMedGoogle Scholar
  151. 151.
    Du Plessis SS, Cabler S, McAlister DA, Sabanegh E, Agarwal A (2010) The effect of obesity on sperm disorders and male infertility. Nat Rev Urol 7(3):153PubMedGoogle Scholar
  152. 152.
    Jia Y-F, Feng Q, Ge Z-Y, Guo Y, Zhou F, Zhang K-S, Wang X-W, Lu W-H, Liang X-W, Gu Y-Q (2018) Obesity impairs male fertility through long-term effects on spermatogenesis. BMC Urol 18(1):42PubMedPubMedCentralGoogle Scholar
  153. 153.
    Adewoyin M, Ibrahim M, Roszaman R, Isa M, Alewi N, Rafa A, Anuar M (2017) Male infertility: the effect of natural antioxidants and phytocompounds on seminal oxidative stress. Diseases 5(1):9PubMedCentralGoogle Scholar
  154. 154.
    Walczak-Jedrzejowska R, Wolski JK, Slowikowska-Hilczer J (2013) The role of oxidative stress and antioxidants in male fertility. Cent Eur J Urol 66(1):60Google Scholar
  155. 155.
    Esteves SC, Agarwal A (2011) Novel concepts in male infertility. Int Braz J Urol 37(1):5–15PubMedGoogle Scholar
  156. 156.
    Zini A, San Gabriel M, Baazeem A (2009) Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet 26(8):427–432PubMedPubMedCentralGoogle Scholar
  157. 157.
    Sengupta P, Agarwal A, Pogrebetskaya M, Roychoudhury S, Durairajanayagam D, Henkel R (2018) Role of Withania somnifera (Ashwagandha) in the management of male infertility. Reprod Biomed Online 36(3):311–326PubMedGoogle Scholar
  158. 158.
    Fujii J, Iuchi Y, Matsuki S, Ishii T (2003) Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues. Asian J Androl 5(3):231–242PubMedGoogle Scholar
  159. 159.
    Kobayashi T, Miyazaki T, Natori M, Nozawa S (1991) Protective role of superoxide dismutase in human sperm motifity: superoxide dismutase activity and lipid peroxide in human seminal plasma and spermatozoa. Hum Reprod 6(7):987–991PubMedGoogle Scholar
  160. 160.
    Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40PubMedGoogle Scholar
  161. 161.
    Lenzi A, Lombardo F, Sgrò P, Salacone P, Caponecchia L, Dondero F, Gandini L (2003) Use of carnitine therapy in selected cases of male factor infertility: a double-blind crossover trial. Fertil Steril 79(2):292–300PubMedGoogle Scholar
  162. 162.
    Opuwari CS, Henkel RR (2016) An update on oxidative damage to spermatozoa and oocytes. Biomed Res Int 2016:9540142PubMedPubMedCentralGoogle Scholar
  163. 163.
    Ciftci H, Verit A, Savas M, Yeni E, Erel O (2009) Effects of N-acetylcysteine on semen parameters and oxidative/antioxidant status. Urology 74(1):73–76PubMedGoogle Scholar
  164. 164.
    Kefer JC, Agarwal A, Sabanegh E (2009) Role of antioxidants in the treatment of male infertility. Int J Urol 16(5):449–457PubMedGoogle Scholar
  165. 165.
    Da Silva RF, Borges CdS, Villela e Silva P, Missassi G, Kiguti LRA, Pupo AS, Barbosa Junior F, Anselmo-Franci JA, Kempinas WDG (2016) The coadministration of N-acetylcysteine ameliorates the effects of arsenic trioxide on the male mouse genital system. Oxidative Med Cell Longev 2016:4257498Google Scholar
  166. 166.
    Bucak MN, Ateşşahin A, Varışlı Ö, Yüce A, Tekin N, Akçay A (2007) The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen: microscopic and oxidative stress parameters after freeze–thawing process. Theriogenology 67(5):1060–1067PubMedGoogle Scholar
  167. 167.
    Maya-Soriano MJ, Taberner E, Sabes-Alsina M, Lopez-Bejar M (2013) Retinol might stabilize sperm acrosomal membrane in situations of oxidative stress because of high temperatures. Theriogenology 79(2):367–373PubMedGoogle Scholar
  168. 168.
    Comhaire F, Mahmoud A (2016) The andrologist’s contribution to a better life for ageing men: part 1. Andrologia 48(1):87–98PubMedGoogle Scholar
  169. 169.
    Jacob RA, Pianalto FS, Agee RE (1992) Cellular ascorbate depletion in healthy men. J Nutr 122(5):1111–1118PubMedGoogle Scholar
  170. 170.
    Thiele JJ, Friesleben HJ, Fuchs J, Ochsendorf FR (1995) Ascorbic acid and urate in human seminal plasma: determination and interrelationships with chemiluminescence in washed semen. Human Reprod 10(1):110–115Google Scholar
  171. 171.
    Song GJ, Norkus EP, Lewis V (2006) Relationship between seminal ascorbic acid and sperm DNA integrity in infertile men. Int J Androl 29(6):569–575PubMedGoogle Scholar
  172. 172.
    Eskenazi B, Kidd S, Marks A, Sloter E, Block G, Wyrobek A (2005) Antioxidant intake is associated with semen quality in healthy men. Human Reprod 20(4):1006–1012Google Scholar
  173. 173.
    Geva E, Bartoov B, Zabludovsky N, Lessing JB, Lerner-Geva L, Amit A (1996) The effect of antioxidant treatment on human spermatozoa and fertilization rate in an in vitro fertilization program. Fertil Steril 66(3):430–434PubMedGoogle Scholar
  174. 174.
    Suleiman SA, Ali ME, Zaki Z, El-Malik E, Nasr M (1996) Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl 17(5):530–537PubMedGoogle Scholar
  175. 175.
    Comhaire F (2010) The role of food supplementation in the treatment of the infertile couple and for assisted reproduction. Andrologia 42(5):331–340PubMedGoogle Scholar
  176. 176.
    Gvozdjáková A, Kucharská J, Dubravicky J, Mojto V, Singh RB (2015) Coenzyme Q10, α-tocopherol, and oxidative stress could be important metabolic biomarkers of male infertility. Dis Markers 2015:827941PubMedPubMedCentralGoogle Scholar
  177. 177.
    Balercia G, Buldreghini E, Vignini A, Tiano L, Paggi F, Amoroso S, Ricciardo-Lamonica G, Boscaro M, Lenzi A, Littarru G (2009) Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trial. Fertil Steril 91(5):1785–1792PubMedGoogle Scholar
  178. 178.
    Safarinejad MR (2012) The effect of coenzyme Q 10 supplementation on partner pregnancy rate in infertile men with idiopathic oligoasthenoteratozoospermia: an open-label prospective study. Int Urol Nephrol 44(3):689–700PubMedGoogle Scholar
  179. 179.
    Mancini A, Conte G, Milardi D, De Marinis L, Littarru G (1998) Relationship between sperm cell ubiquinone and seminal parameters in subjects with and without varicocele. Andrologia 30(1):1–4PubMedGoogle Scholar
  180. 180.
    Atig F, Raffa M, Ali HB, Abdelhamid K, Saad A, Ajina M (2012) Altered antioxidant status and increased lipid per-oxidation in seminal plasma of tunisian infertile men. J Hum Reprod Sci 8(1):139Google Scholar
  181. 181.
    Agarwal A, Sekhon LH (2011) Oxidative stress and antioxidants for idiopathic oligoasthenoteratospermia: is it justified? Indian J Urol 27(1):74PubMedPubMedCentralGoogle Scholar
  182. 182.
    Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J (2005) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26(3):349–353PubMedGoogle Scholar
  183. 183.
    Mishra M, Acharya UR (2004) Protective action of vitamins on the spermatogenesis in lead-treated Swiss mice. J Trace Elem Med Biol 18(2):173–178PubMedGoogle Scholar
  184. 184.
    Aguirre-Arias MV, Velarde V, Moreno RD (2017) Effects of ascorbic acid on spermatogenesis and sperm parameters in diabetic rats. Cell Tissue Res 370(2):305–317PubMedGoogle Scholar
  185. 185.
    Tahvilzadeh M, Hajimahmoodi M, Toliyat T, Karimi M, Rahimi R (2016) An evidence-based approach to medicinal plants for the treatment of sperm abnormalities in traditional Persian medicine. Andrologia 48(8):860–879PubMedGoogle Scholar
  186. 186.
    Zhang L, Diao RY, Duan YG, Yi TH, Cai ZM (2017) In vitro antioxidant effect of curcumin on human sperm quality in leucocytospermia. Andrologia 49(10):e12760Google Scholar
  187. 187.
    Yüce A, Türk G, Çeribaşi S, Sönmez M, Ciftci M, Güvenç M (2013) Effects of cinnamon (Cinnamomum zeylanicum) bark oil on testicular antioxidant values, apoptotic germ cell and sperm quality. Andrologia 45(4):248–255PubMedGoogle Scholar
  188. 188.
    Heidary M, Vahhabi S, Nejadi JR, Delfan B, Birjandi M, Kaviani H, Givrad S (2008) Effect of saffron on semen parameters of infertile men. Urol J 5(4):255–259PubMedGoogle Scholar
  189. 189.
    Safarinejad MR, Shafiei N, Safarinejad S (2011) A prospective double-blind randomized placebo-controlled study of the effect of saffron (Crocus sativus Linn.) on semen parameters and seminal plasma antioxidant capacity in infertile men with idiopathic oligoasthenoteratozoospermia. Phytother Res 25(4):508–516PubMedGoogle Scholar
  190. 190.
    Kolahdooz M, Nasri S, Modarres SZ, Kianbakht S, Huseini HF (2014) Effects of Nigella sativa L. seed oil on abnormal semen quality in infertile men: a randomized, double-blind, placebo-controlled clinical trial. Phytomedicine 21(6):901–905PubMedGoogle Scholar
  191. 191.
    Roychoudhury S, Agarwal A, Virk G, Cho C-L (2017) Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reprod Biomed online 34(5):487–498PubMedGoogle Scholar
  192. 192.
    Omu AE, Al-Azemi MK, Al-Maghrebi M, Mathew CT, Omu FE, Kehinde EO, Anim JT, Oriowo MA, Memon A (2015) Molecular basis for the effects of zinc deficiency on spermatogenesis: an experimental study in the Sprague-dawley rat model. Indian J Urol 31(1):57PubMedPubMedCentralGoogle Scholar
  193. 193.
    Hijazi MM, Khatoon N, Azmi MA, Rajput MT, Zaidi H, Ijaz S, Azmi MA, Perveen R, Naqvi H, Naimul S (2015) Effects of Camellia sinensis L. (green tea) extract on the body and testicular weight changes in adult Wistar rate. Pak J Pharm Sci 28(1):249–253PubMedGoogle Scholar
  194. 194.
    Sakr SA, Zowail ME, Marzouk AM (2014) Effect of saffron (Crocus sativus L.) on sodium valporate induced cytogenetic and testicular alterations in albino rats. Anat Cell Biol 47(3):171–179PubMedPubMedCentralGoogle Scholar
  195. 195.
    Modaresi M, Messripour M, Asadi Marghmaleki M, Hamadanian M (2008) Effect of saffron (Crocus sativus) extract on level of FSH, LH and testosterone in mice. J Adv Med Biomed Res 16(63):11–18Google Scholar
  196. 196.
    Parandin R, Yousofvand N, Ghorbani R (2012) The enhancing effects of alcoholic extract of Nigella sativa seed on fertility potential, plasma gonadotropins and testosterone in male rats. Iran J Reprod Med 10(4):355PubMedPubMedCentralGoogle Scholar
  197. 197.
    Ashamu E, Salawu E, Oyewo O, Alhassan A, Alamu O, Adegoke A (2010) Efficacy of vitamin C and ethanolic extract of Sesamum indicum in promoting fertility in male Wistar rats. J Hum Reprod Sci 3(1):11PubMedPubMedCentralGoogle Scholar
  198. 198.
    Zarepourfard H, Riasi A, Frouzanfar M, Hajian M, Esfahani MHN (2019) Pomegranate seed in diet, affects sperm parameters of cloned goats following freezing-thawing. Theriogenology 125:203–209PubMedGoogle Scholar
  199. 199.
    Chenniappan K, Murugan K (2017) Therapeutic and fertility restoration effects of Ionidium suffruticosum on sub-fertile male albino Wistar rats: effects on testis and caudal spermatozoa. Pharm Biol 55(1):946–957PubMedPubMedCentralGoogle Scholar
  200. 200.
    Hala A, Khattab Z, Abdallah G, Kamel M (2010) Grape seed extract alleviate reproductive toxicity caused by aluminium chloride in male rats. J Am Sci 6(12):352–361Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Anatomical Sciences Research CenterKashan University of Medical SciencesKashanIran
  2. 2.Gametogenesis Research CenterKashan University of Medical SciencesKashanIran

Personalised recommendations