Cellular and Molecular Life Sciences

, Volume 76, Issue 23, pp 4673–4687 | Cite as

The long non-coding RNA H19: an active player with multiple facets to sustain the hallmarks of cancer

  • Clément Lecerf
  • Xuefen Le Bourhis
  • Eric AdriaenssensEmail author


Cancer cells exhibit hallmarks in terms of proliferation, resistance to cell death, angiogenesis, invasion, metastasis, and genomic instability. Despite the progress in cancer research and the comprehension of tumorigenesis mechanisms, cancer remains a major issue in public health. A better understanding of the molecular factors associated with the appearance or progression of cancer may allow the development of therapeutic alternatives. Increasing data highlight the role of long non-coding RNAs in many diseases, including cancer. The long non-coding RNA H19 was the first discovered riboregulator, and it has been shown to be involved at multiple steps of tumorigenesis. Indeed, this lncRNA exert its action at various molecular scales. Understanding the role of H19 in cancer progression may allow to set up therapeutic strategies to prevent tumor expansion and metastatic dissemination. In this review, we will summarize the overexpression of the long non-coding RNA H19 in several types of cancer and the multiple implications of the long non-coding RNA H19 in the different hallmarks that define human cancer.


lncRNA H19 Hallmarks of cancer Proliferation Metastasis miRNA 



This work was supported by INSERM and grants from “Canceropôle Nord-Ouest (Grant No. 2017)” and “Ligue contre le cancer (Grant No. 2019)”. CL was supported by doctoral fellowships from the University of Lille.


  1. 1.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. CrossRefGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. CrossRefGoogle Scholar
  3. 3.
    The ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816. CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Qu H, Fang X (2013) A brief review on the human encyclopedia of DNA elements (ENCODE) project. Genom Proteom Bioinform 11:135–141. CrossRefGoogle Scholar
  5. 5.
    Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488. CrossRefPubMedGoogle Scholar
  6. 6.
    Scott MS, Ono M (2011) From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie 93:1987–1992. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hon C-C, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJL, Gough J et al (2017) An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543:199–204. CrossRefGoogle Scholar
  8. 8.
    Wu H, Yang L, Chen L-L (2017) The diversity of long noncoding RNAs and their generation. Trends Genet 33:540–552. CrossRefPubMedGoogle Scholar
  9. 9.
    Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62. CrossRefGoogle Scholar
  10. 10.
    Luo Q, Chen Y (2016) Long noncoding RNAs and Alzheimer’s disease. Clin Investig Aging 11:867–872CrossRefGoogle Scholar
  11. 11.
    Huang X, Luo Y, Mao Y, Ji J (2017) The link between long noncoding RNAs and depression. Prog Neuropsychopharmacol Biol Psychiatry 73:73–78. CrossRefPubMedGoogle Scholar
  12. 12.
    Mirza AH, Kaur S, Pociot F (2017) Long non-coding RNAs as novel players in β cell function and type 1 diabetes. Hum Genom. CrossRefGoogle Scholar
  13. 13.
    Bhan A, Soleimani M, Mandal SS (2017) Long noncoding RNA and cancer: a new paradigm. Cancer Res 77:3965–3981. CrossRefGoogle Scholar
  14. 14.
    Ma Y, Zhang P, Wang F, Yang J, Yang Z, Qin H (2010) The relationship between early embryo development and tumourigenesis. J Cell Mol Med 14:2697–2701. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153CrossRefGoogle Scholar
  16. 16.
    Delaval K, Wagschal A, Feil R (2006) Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. BioEssays News Rev Mol Cell Dev Biol 28:453–459. CrossRefGoogle Scholar
  17. 17.
    Brannan CI, Dees EC, Ingram RS, Tilghman SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10:28–36. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vennin C, Dahmani F, Spruyt N, Adriaenssens E (2013) Role of long non-coding RNA in cells: example of the H19/IGF2 locus. Adv Biosci Biotechnol 04:34–44. CrossRefGoogle Scholar
  19. 19.
    Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP (1993) Relaxation of imprinted genes in human cancer. Nature 362:747–749. CrossRefPubMedGoogle Scholar
  20. 20.
    Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 long non-coding RNA in cancer initiation, progression and metastasis—a proposed unifying theory. Mol Cancer. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Adriaenssens E, Dumont L, Lottin S, Bolle D, Leprêtre A, Delobelle A et al (1998) H19 overexpression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression. Am J Pathol 153:1597–1607CrossRefGoogle Scholar
  22. 22.
    Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J et al (2002) Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis 23:1885–1895. CrossRefPubMedGoogle Scholar
  23. 23.
    Cooper MJ, Fischer M, Komitowski D, Shevelev A, Schulze E, Ariel I et al (1996) Developmentally imprinted genes as markers for bladder tumor progression. J Urol 155:2120–2127CrossRefGoogle Scholar
  24. 24.
    Ariel I, Miao HQ, Ji XR, Schneider T, Roll D, de Groot N et al (1998) Imprinted H19 oncofetal RNA is a candidate tumour marker for hepatocellular carcinoma. Mol Pathol 51:21–25. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kondo M, Suzuki H, Ueda R, Osada H, Takagi K, Takahashi T et al (1995) Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene 10:1193–1198PubMedGoogle Scholar
  26. 26.
    Hibi K, Nakamura H, Hirai A, Fujikake Y, Kasai Y, Akiyama S et al (1996) Loss of H19 imprinting in esophageal cancer. Cancer Res 56:480–482PubMedGoogle Scholar
  27. 27.
    Liu F, Pan H, Xia G, Qiu C, Zhu Z (2016) Prognostic and clinicopathological significance of long noncoding RNA H19 overexpression in human solid tumors: evidence from a meta-analysis. Oncotarget 7:83177–83186. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhang T, Zhou J, Zhang W, Lin J, Ma J, Wen X et al (2018) H19 overexpression promotes leukemogenesis and predicts unfavorable prognosis in acute myeloid leukemia. Clin Epigenet. CrossRefGoogle Scholar
  29. 29.
    Li Z, Li Y, Li Y, Ren K, Li X, Han X et al (2017) Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR-152. J Biochem Mol Toxicol 31:e21933. CrossRefGoogle Scholar
  30. 30.
    Jia P, Cai H, Liu X, Chen J, Ma J, Wang P et al (2016) Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett 381:359–369. CrossRefPubMedGoogle Scholar
  31. 31.
    Jiang X, Yan Y, Hu M, Chen X, Wang Y, Dai Y et al (2016) Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J Neurosurg 124:129–136. CrossRefPubMedGoogle Scholar
  32. 32.
    Tan D, Wu Y, Hu L, He P, Xiong G, Bai Y et al (2017) Long noncoding RNA H19 is up-regulated in esophageal squamous cell carcinoma and promotes cell proliferation and metastasis. Dis Esophagus 30:1–9. CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang D-M, Lin Z-Y, Yang Z-H, Wang Y-Y, Wan D, Zhong J-L et al (2017) IncRNA H19 promotes tongue squamous cell carcinoma progression through β-catenin/GSK3β/EMT signaling via association with EZH2. Am J Transl Res 9:3474–3486PubMedPubMedCentralGoogle Scholar
  34. 34.
    Huang C, Cao L, Qiu L, Dai X, Ma L, Zhou Y et al (2015) Upregulation of H19 promotes invasion and induces epithelial-to-mesenchymal transition in esophageal cancer. Oncol Lett 10:291–296. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sun J, Lian M, Ma H, Wang R, Ma Z, Wang H et al (2018) Competing endogenous RNA network analysis of CD274, IL-10 and FOXP3 co-expression in laryngeal squamous cell carcinoma. Mol Med Rep 17:3859–3869. CrossRefPubMedGoogle Scholar
  36. 36.
    Wang Q, Cheng N, Li X, Pan H, Li C, Ren S et al (2016) Correlation of long non-coding RNA H19 expression with cisplatin-resistance and clinical outcome in lung adenocarcinoma. Oncotarget 8:2558–2567. CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Fu Y, Wang W, Li X, Liu Y, Niu Y, Zhang B et al (2018) LncRNA H19 interacts with S-adenosylhomocysteine hydrolase to regulate LINE-1 methylation in human lung-derived cells exposed to Benzo[a]pyrene. Chemosphere 207:84–90. CrossRefPubMedGoogle Scholar
  38. 38.
    Luo J, Li Q, Pan J, Li L, Fang L, Zhang Y (2018) Expression level of long noncoding RNA H19 in plasma of patients with nonsmall cell lung cancer and its clinical significance. J Cancer Res Ther 14:860–863. CrossRefPubMedGoogle Scholar
  39. 39.
    Matouk IJ, Raveh E, Abu-lail R, Mezan S, Gilon M, Gershtain E et al (2014) Oncofetal H19 RNA promotes tumor metastasis. Biochim Biophys Acta BBA Mol Cell Res 1843:1414–1426. CrossRefGoogle Scholar
  40. 40.
    Berteaux N, Lottin S, Monté D, Pinte S, Quatannens B, Coll J et al (2005) H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem 280:29625–29636. CrossRefPubMedGoogle Scholar
  41. 41.
    Basak P, Chatterjee S, Weger S, Bruce MC, Murphy LC, Raouf A (2015) Estrogen regulates luminal progenitor cell differentiation through H19 gene expression. Endocr Relat Cancer 22:505–517. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sun H, Sun H, Wang G, Wang G, Peng Y, Peng Y et al (2015) H19 lncRNA mediates 17β-estradiol-induced cell proliferation in MCF-7 breast cancer cells. Oncol Rep 33:3045–3052. CrossRefPubMedGoogle Scholar
  43. 43.
    Si X, Zang R, Zhang E, Liu Y, Shi X, Zhang E et al (2016) LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK. Oncotarget 7:81452–81462. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vennin C, Spruyt N, Robin Y-M, Chassat T, Le Bourhis X, Adriaenssens E (2017) The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/IGF2 expression through epigenetic modifications. Cancer Lett 385:198–206. CrossRefPubMedGoogle Scholar
  45. 45.
    Vennin C, Spruyt N, Dahmani F, Julien S, Bertucci F, Finetti P et al (2015) H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget 6:29209–29223. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhang K, Luo Z, Zhang Y, Zhang L, Wu L, Liu L et al (2016) Circulating lncRNA H19 in plasma as a novel biomarker for breast cancer. Cancer Biomark 17:187–194. CrossRefPubMedGoogle Scholar
  47. 47.
    Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J et al (2012) Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J 279:3159–3165. CrossRefPubMedGoogle Scholar
  48. 48.
    Liu G, Xiang T, Wu Q-F, Wang W-X (2016) Long noncoding RNA H19-derived miR-675 enhances proliferation and invasion via RUNX1 in Gastric cancer cells. Oncol Res Featur Preclin Clin Cancer Ther 23:99–107. CrossRefGoogle Scholar
  49. 49.
    Yan J, Zhang Y, She Q, Li X, Peng L, Wang X et al (2017) Long noncoding RNA H19/miR-675 axis promotes gastric cancer via FADD/caspase 8/caspase 3 signaling pathway. Cell Physiol Biochem 42:2364–2376. CrossRefPubMedGoogle Scholar
  50. 50.
    Li H, Yu B, Li J, Su L, Yan M, Zhu Z et al (2014) Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget 5:2318–2329. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ishii S, Yamashita K, Harada H, Ushiku H, Tanaka T, Nishizawa N et al (2017) The H19-PEG10/IGF2BP3 axis promotes gastric cancer progression in patients with high lymph node ratios. Oncotarget 8:74567–74581. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhou X, Yin C, Dang Y, Ye F, Zhang G (2015) Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep 5:11516. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ramani K, Mavila N, Ko KS, Mato JM, Lu SC (2016) Prohibitin 1 regulates the H19-Igf2 axis and proliferation in hepatocytes. J Biol Chem 291:24148–24159. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Pu H, Zheng Q, Li H, Wu M, An J, Gui X et al (2015) CUDR promotes liver cancer stem cell growth through upregulating TERT and C-Myc. Oncotarget 6:40775–40798. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F et al (2015) CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Li H, Li J, Jia S, Wu M, An J, Zheng Q et al (2015) miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cancer. Oncotarget 6:31958–31984PubMedPubMedCentralGoogle Scholar
  57. 57.
    Song Y, Liu C, Liu X, Trottier J, Beaudoin M, Zhang L et al (2017) H19 promotes cholestatic liver fibrosis by preventing ZEB1-mediated inhibition of EpCAM. Hepatol Baltim 66:1183–1196. CrossRefGoogle Scholar
  58. 58.
    Zhang Y, Liu C, Barbier O, Smalling R, Tsuchiya H, Lee S et al (2016) Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and lncRNA H19 function. Sci Rep 6:20559. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Han Y, Ma J, Wang J, Wang L (2018) Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b. Mol Immunol 93:107–114. CrossRefPubMedGoogle Scholar
  60. 60.
    Xu Y, Wang Z, Jiang X, Cui Y (2017) Overexpression of long noncoding RNA H19 indicates a poor prognosis for cholangiocarcinoma and promotes cell migration and invasion by affecting epithelial-mesenchymal transition. Biomed Pharmacother 92:17–23. CrossRefPubMedGoogle Scholar
  61. 61.
    Wang W-T, Ye H, Wei P-P, Han B-W, He B, Chen Z-H et al (2016) LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ma L, Tian X, Wang F, Zhang Z, Du C, Xie X et al (2016) The long noncoding RNA H19 promotes cell proliferation via E2F-1 in pancreatic ductal adenocarcinoma. Cancer Biol Ther 17:1051–1061. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    He H, Wang N, Yi X, Tang C, Wang D (2017) Long non-coding RNA H19 regulates E2F1 expression by competitively sponging endogenous miR-29a-3p in clear cell renal cell carcinoma. Cell Biosci. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lv M, Zhong Z, Huang M, Tian Q, Jiang R, Chen J (2017) lncRNA H19 regulates epithelial–mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. Biochim Biophys Acta BBA Mol Cell Res 1864:1887–1899. CrossRefGoogle Scholar
  65. 65.
    Elkin M, Ariel I, Miao H-Q, Nagler A, Pines M, de Groot N et al (1999) Inhibition of bladder carcinoma angiogenesis, stromal support, and tumor growth by halofuginone. Cancer Res 59:4111–4118PubMedGoogle Scholar
  66. 66.
    Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J (2013) Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 333:213–221. CrossRefPubMedGoogle Scholar
  67. 67.
    Han D, Gao X, Wang M, Qiao Y, Xu Y, Yang J et al (2016) Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget 7:22159–22173. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Yang W, Ning N, Jin X (2017) The lncRNA H19 Promotes cell proliferation by competitively binding to miR-200a and derepressing β-catenin expression in colorectal cancer. BioMed Res Int. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tsang WP, Ng EKO, Ng SSM, Jin H, Yu J, Sung JJY et al (2010) Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 31:350–358. CrossRefPubMedGoogle Scholar
  70. 70.
    Ou L, Wang D, Zhang H, Yu Q, Hua F (2018) Decreased expression of miR-138-5p by lncRNA H19 in cervical cancer promotes tumor proliferation. Oncol Res Featur Preclin Clin Cancer Ther 26:401–410. CrossRefGoogle Scholar
  71. 71.
    Zhu Z, Song L, He J, Sun Y, Liu X, Zou X (2015) Ectopic expressed long non-coding RNA H19 contributes to malignant cell behavior of ovarian cancer. Int J Clin Exp Pathol 8:10082–10091PubMedPubMedCentralGoogle Scholar
  72. 72.
    Zheng Z-G, Xu H, Suo S-S, Xu X-L, Ni M-W, Gu L-H et al (2016) The essential role of H19 contributing to Cisplatin resistance by regulating glutathione metabolism in high-grade serous ovarian cancer. Sci Rep 6:26093. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Guo G, Kang Q, Chen Q, Chen Z, Wang J, Tan L et al (2014) High expression of long non-coding RNA H19 is required for efficient tumorigenesis induced by Bcr-Abl oncogene. FEBS Lett 588:1780–1786. CrossRefPubMedGoogle Scholar
  74. 74.
    El Hajj J, Nguyen E, Liu Q, Bouyer C, Adriaenssens E, Hilal G et al (2018) Telomerase regulation by the long non-coding RNA H19 in human acute promyelocytic leukemia cells. Mol Cancer. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Li M, Chen H, Zhao Y, Gao S, Cheng C (2016) H19 functions as a ceRNA in Promoting metastasis through decreasing miR-200s activity in osteosarcoma. DNA Cell Biol 35:235–240. CrossRefPubMedGoogle Scholar
  76. 76.
    Luan W, Zhou Z, Ni X, Xia Y, Wang J, Yan Y et al (2018) Long non-coding RNA H19 promotes glucose metabolism and cell growth in malignant melanoma via miR-106a-5p/E2F3 axis. J Cancer Res Clin Oncol 144:531–542. CrossRefPubMedGoogle Scholar
  77. 77.
    Angrand P-O, Vennin C, Le Bourhis X, Adriaenssens E (2015) The role of long non-coding RNAs in genome formatting and expression. Front Genet. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13:313–316. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Chen L, Wang Y, He J, Zhang C, Chen J, Shi D (2018) Long non-coding RNA H19 promotes proliferation and invasion in human glioma cells by downregulating miR-152. Oncol Res Featur Preclin Clin Cancer Ther. CrossRefGoogle Scholar
  80. 80.
    Zhou X, Ye F, Yin C, Zhuang Y, Yue G, Zhang G (2015) The interaction between MiR-141 and lncRNA-H19 in regulating cell proliferation and migration in gastric cancer. Cell Physiol Biochem 36:1440–1452. CrossRefPubMedGoogle Scholar
  81. 81.
    Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J et al (2014) Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One 9:e86295. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Wang J, Wang X, Chen T, Jiang L, Yang Q (2017) Huaier extract inhibits breast cancer progression through a lncRNA-H19/MiR-675-5p pathway. Cell Physiol Biochem 44:581–593. CrossRefPubMedGoogle Scholar
  83. 83.
    He D, Wang J, Zhang C, Shan B, Deng X, Li B et al (2015) Down-regulation of miR-675-5p contributes to tumor progression and development by targeting pro-tumorigenic GPR55 in non-small cell lung cancer. Mol Cancer 14:73. CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Zhou Y-W, Zhang H, Duan C-J, Gao Y, Cheng Y-D, He D et al (2016) miR-675-5p enhances tumorigenesis and metastasis of esophageal squamous cell carcinoma by targeting REPS2. Oncotarget 7:30730–30747. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hernandez JM, Elahi A, Clark CW, Wang J, Humphries LA, Centeno B et al (2013) miR-675 mediates downregulation of twist1 and Rb in AFP-secreting hepatocellular carcinoma. Ann Surg Oncol 20:625–635. CrossRefGoogle Scholar
  86. 86.
    Costa V, Lo Dico A, Rizzo A, Rajata F, Tripodi M, Alessandro R et al (2017) MiR-675-5p supports hypoxia induced epithelial to mesenchymal transition in colon cancer cells. Oncotarget 8:24292–24302. CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Gong L, Bao Q, Hu C, Wang J, Zhou Q, Wei L et al (2018) Exosomal miR-675 from metastatic osteosarcoma promotes cell migration and invasion by targeting CALN1. Biochem Biophys Res Commun 500:170–176. CrossRefPubMedGoogle Scholar
  88. 88.
    Liu G, Xiang T, Wu Q-F, Wang W-X (2016) Curcumin suppresses the proliferation of gastric cancer cells by downregulating H19. Oncol Lett 12:5156–5162. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Li B, Xie Z, Li B (2016) miR-152 functions as a tumor suppressor in colorectal cancer by targeting PIK3R3. Tumour Biol J Int Soc Oncodevelopmental Biol Med 37:10075–10084. CrossRefGoogle Scholar
  90. 90.
    Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A et al (2007) The H19 non-coding RNA is essential for human tumor growth. PLoS One 2:e845. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Li W, Jiang P, Sun X, Xu S, Ma X, Zhan R (2016) Suppressing H19 modulates tumorigenicity and stemness in U251 and U87MG glioma cells. Cell Mol Neurobiol 36:1219–1227. CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622. CrossRefPubMedGoogle Scholar
  93. 93.
    Adriaenssens E, Lottin S, Berteaux N, Hornez L, Fauquette W, Fafeur V et al (2002) Cross-talk between mesenchyme and epithelium increases H19 gene expression during scattering and morphogenesis of epithelial cells. Exp Cell Res 275:215–229. CrossRefPubMedGoogle Scholar
  94. 94.
    Wang J, Zhang Y, Wei H, Zhang X, Wu Y, Gong A et al (2017) The mir-675-5p regulates the progression and development of pancreatic cancer via the UBQLN1-ZEB1-mir200 axis. Oncotarget 8:24978–24987. CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Wolanin K, Magalska A, Mosieniak G, Klinger R, McKenna S, Vejda S et al (2006) Curcumin affects components of the chromosomal passenger complex and induces mitotic catastrophe in apoptosis-resistant Bcr-Abl-expressing cells. Mol Cancer Res 4:457–469. CrossRefPubMedGoogle Scholar
  96. 96.
    Kujundžić RN, Grbeša I, Ivkić M, Katdare M, Gall-Trošelj K (2008) Curcumin downregulates H19 gene transcription in tumor cells. J Cell Biochem 104:1781–1792. CrossRefGoogle Scholar
  97. 97.
    Ravid O, Shoshani O, Sela M, Weinstock A, Sadan T, Gur E et al (2014) Relative genomic stability of adipose tissue derived mesenchymal stem cells: analysis of ploidy, H19 long non-coding RNA and p53 activity. Stem Cell Res Ther 5:139. CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Saito K, Kawakami K, Matsumoto I, Oda M, Watanabe G, Minamoto T (2010) Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non-small cell lung cancer. Clin Cancer Res 16:2418–2426. CrossRefPubMedGoogle Scholar
  99. 99.
    Tarnowski M, Tarnowski M, Tkacz M, Tkacz M, Czerewaty M, Czerewaty M et al (2015) 5-Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin-like growth factor 2 expression and reactivating the H19 gene product miR-675, which negatively affects insulin-like growth factors and insulin signaling. Int J Oncol 46:2241–2250. CrossRefPubMedGoogle Scholar
  100. 100.
    DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29:309–316. CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899. CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Peng F, Wang J-H, Fan W-J, Meng Y-T, Li M-M, Li T-T et al (2018) Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 37:1062–1074. CrossRefPubMedGoogle Scholar
  103. 103.
    Vajdic CM, van Leeuwen MT (2009) Cancer incidence and risk factors after solid organ transplantation. Int J Cancer 125:1747–1754. CrossRefPubMedGoogle Scholar
  104. 104.
    Lazar DC, Morris KV, Saayman SM (2016) The emerging role of long non-coding RNAs in HIV infection. Virus Res 212:114–126. CrossRefPubMedGoogle Scholar
  105. 105.
    Sorin V, Ohana P, Mizrahi A, Matouk I, Birman T, Hochberg A et al (2011) Regional therapy with DTA-H19 vector suppresses growth of colon adenocarcinoma metastases in the rat liver. Int J Oncol 39:1407–1412. CrossRefPubMedGoogle Scholar
  106. 106.
    Gofrit ON, Benjamin S, Halachmi S, Leibovitch I, Dotan Z, Lamm DL et al (2014) DNA based therapy with diphtheria toxin-A BC-819: a phase 2b marker lesion trial in patients with intermediate risk nonmuscle invasive bladder cancer. J Urol 191:1697–1702. CrossRefPubMedGoogle Scholar
  107. 107.
    Lavie O, Edelman D, Levy T, Fishman A, Hubert A, Segev Y et al (2017) A phase 1/2a, dose-escalation, safety, pharmacokinetic, and preliminary efficacy study of intraperitoneal administration of BC-819 (H19-DTA) in subjects with recurrent ovarian/peritoneal cancer. Arch Gynecol Obstet 295:751–761. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Clément Lecerf
    • 1
    • 2
  • Xuefen Le Bourhis
    • 1
    • 2
  • Eric Adriaenssens
    • 1
    • 2
    Email author
  1. 1.INSERM, U908LilleFrance
  2. 2.Univ. Lille, U908 - CPAC - Cell plasticity and CancerLilleFrance

Personalised recommendations