Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 23, pp 4613–4633 | Cite as

The biological functions and clinical applications of exosomes in lung cancer

  • Rui Chen
  • Xin Xu
  • Zijun Qian
  • Congcong Zhang
  • Yongjie Niu
  • Zhixian Wang
  • Jianli SunEmail author
  • Xiao ZhangEmail author
  • Yongchun YuEmail author
Review

Abstract

Lung cancer remains the leading cause of cancer-related death worldwide, and the high incidence rates are worrisome. Exosomes are a class of extracellular vesicles secreted by most cells, including RNAs, proteins and lipids. Exosomes can mediate cell-to-cell communication in both physiologic and pathologic processes. Accumulated evidences show that cancer-derived exosomes aid in the recruitment and reprogramming of constituents correlated with tumor microenvironment. Furthermore, exosome-based clinical trials have been completed in advanced lung cancer patients. In this review, we discuss the roles of exosomes in a lung cancer microenvironment, such as its participation in lung cancer initiation, progression and metastasis as well as being involved in angiogenesis, epithelial–mesenchymal transition (EMT), immune escape, and drug resistance. In addition, we focus on the potential of exosomes as diagnostic and prognostic biomarkers in lung cancer, as well as the challenges faced by and advantages of exosomes as drug delivery vehicles and in exosome-based immunotherapy.

Keywords

Lung cancer Exosomes Biomarkers Immunotherapy Drug delivery vehicles 

Notes

Acknowledgements

The study was supported by Natural Science Foundation of China (Grants 81472124, 81774291 to Yongchun Yu, and 81573890 to Jianli Sun).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin.  https://doi.org/10.3322/caac.21492 CrossRefPubMedGoogle Scholar
  2. 2.
    Herbst Roy S, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359(13):1367–1380.  https://doi.org/10.1056/NEJMra0802714 CrossRefPubMedGoogle Scholar
  3. 3.
    Shepherd FA, Pereira JR, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, Mv Kooten, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabárbara P, Seymour L (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353(2):123–132.  https://doi.org/10.1056/NEJMoa050753 CrossRefPubMedGoogle Scholar
  4. 4.
    Mok TS, Wu Y-L, Thongprasert S, Yang C-H, Chu D-T, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang J-J, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10):947–957.  https://doi.org/10.1056/NEJMoa0810699 CrossRefGoogle Scholar
  5. 5.
    Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I, Fujita Y, Okinaga S, Hirano H, Yoshimori K, Harada T, Ogura T, Ando M, Miyazawa H, Tanaka T, Saijo Y, Hagiwara K, Morita S, Nukiwa T (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362(25):2380–2388.  https://doi.org/10.1056/NEJMoa0909530 CrossRefPubMedGoogle Scholar
  6. 6.
    Park K, Tan E-H, O’Byrne K, Zhang L, Boyer M, Mok T, Hirsh V, Yang JC-H, Lee KH, Lu S, Shi Y, Kim S-W, Laskin J, Kim D-W, Arvis CD, Kölbeck K, Laurie SA, Tsai C-M, Shahidi M, Kim M, Massey D, Zazulina V, Paz-Ares L (2016) Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol 17(5):577–589.  https://doi.org/10.1016/s1470-2045(16)30033-x CrossRefPubMedGoogle Scholar
  7. 7.
    Soria J-C, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, Okamoto I, Zhou C, Cho BC, Cheng Y, Cho EK, Voon PJ, Planchard D, Su W-C, Gray JE, Lee S-M, Hodge R, Marotti M, Rukazenkov Y, Ramalingam SS (2018) Osimertinib in untreated EGFR-mutated advanced non-small-cell Lung cancer. N Engl J Med 378(2):113–125.  https://doi.org/10.1056/NEJMoa1713137 CrossRefPubMedGoogle Scholar
  8. 8.
    Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Janne PA, Costa DB, Varella-Garcia M, Kim WH, Lynch TJ, Fidias P, Stubbs H, Engelman JA, Sequist LV, Tan W, Gandhi L, Mino-Kenudson M, Wei GC, Shreeve SM, Ratain MJ, Settleman J, Christensen JG, Haber DA, Wilner K, Salgia R, Shapiro GI, Clark JW, Iafrate AJ (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–1703.  https://doi.org/10.1056/NEJMoa1006448 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550.  https://doi.org/10.1056/NEJMoa061884 CrossRefPubMedGoogle Scholar
  10. 10.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L, Investigators K- (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028.  https://doi.org/10.1056/NEJMoa1501824 CrossRefPubMedGoogle Scholar
  11. 11.
    Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y, Molina J, Kim J-H, Arvis CD, Ahn M-J, Majem M, Fidler MJ, de Castro G, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550.  https://doi.org/10.1016/s0140-6736(15)01281-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, Investigators K- (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833.  https://doi.org/10.1056/NEJMoa1606774 CrossRefPubMedGoogle Scholar
  13. 13.
    Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135.  https://doi.org/10.1056/NEJMoa1504627 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639.  https://doi.org/10.1056/NEJMoa1507643 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, Horn L, Lena H, Minenza E, Mennecier B, Otterson GA, Campos LT, Gandara DR, Levy BP, Nair SG, Zalcman G, Wolf J, Souquet P-J, Baldini E, Cappuzzo F, Chouaid C, Dowlati A, Sanborn R, Lopez-Chavez A, Grohe C, Huber RM, Harbison CT, Baudelet C, Lestini BJ, Ramalingam SS (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16(3):257–265.  https://doi.org/10.1016/s1470-2045(15)70054-9 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braiteh F, Waterkamp D, He P, Zou W, Chen DS, Yi J, Sandler A, Rittmeyer A (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387(10030):1837–1846.  https://doi.org/10.1016/s0140-6736(16)00587-0 CrossRefPubMedGoogle Scholar
  17. 17.
    Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, Cortinovis DL, Leach J, Polikoff J, Barrios C, Kabbinavar F, Frontera OA, De Marinis F, Turna H, Lee J-S, Ballinger M, Kowanetz M, He P, Chen DS, Sandler A, Gandara DR (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389(10066):255–265.  https://doi.org/10.1016/s0140-6736(16)32517-x CrossRefPubMedGoogle Scholar
  18. 18.
    Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579.  https://doi.org/10.1038/nri855 CrossRefPubMedGoogle Scholar
  19. 19.
    Kalluri R (2016) The biology and function of exosomes in cancer. J Clin Invest 126(4):1208–1215.  https://doi.org/10.1172/JCI81135 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bullock MD, Silva AM, Kanlikilicer-Unaldi P, Filant J, Rashed MH, Sood AK, Lopez-Berestein G, Calin GA (2015) Exosomal non-coding RNAs: diagnostic, prognostic and therapeutic applications in cancer. Noncoding RNA 1(1):53–68.  https://doi.org/10.3390/ncrna1010053 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Johnstone RM, Adam M, Hammon JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. J Biol Chem 262(19):9412–9420PubMedGoogle Scholar
  22. 22.
    Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, Fissell WH, Patton JG, Rome LH, Burnette DT, Coffey RJ (2019) Reassessment of exosome composition. Cell 177(2):428–445e418.  https://doi.org/10.1016/j.cell.2019.02.029 CrossRefPubMedGoogle Scholar
  23. 23.
    Kahlert C, Kalluri R (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl) 91(4):431–437.  https://doi.org/10.1007/s00109-013-1020-6 CrossRefGoogle Scholar
  24. 24.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383.  https://doi.org/10.1083/jcb.201211138 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ung TH, Madsen HJ, Hellwinkel JE, Lencioni AM, Graner MW (2014) Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci 105(11):1384–1392.  https://doi.org/10.1111/cas.12534 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289.  https://doi.org/10.1146/annurev-cellbio-101512-122326 CrossRefPubMedGoogle Scholar
  27. 27.
    Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Hoen ENN-t, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2(1):20360.  https://doi.org/10.3402/jev.v2i0.20360 CrossRefGoogle Scholar
  28. 28.
    Cheng L, Sharples RA, Scicluna BJ, Hill AF (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles.  https://doi.org/10.3402/jev.v3.23743 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, Hsu DH, Le Pecq JB, Lyerly HK (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3(1):9.  https://doi.org/10.1186/1479-5876-3-9 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A, Ploix S, Vimond N, Peguillet I, Thery C, Lacroix L, Zoernig I, Dhodapkar K, Dhodapkar M, Viaud S, Soria JC, Reiners KS, Pogge von Strandmann E, Vely F, Rusakiewicz S, Eggermont A, Pitt JM, Zitvogel L, Chaput N (2016) Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5(4):e1071008.  https://doi.org/10.1080/2162402X.2015.1071008 CrossRefPubMedGoogle Scholar
  31. 31.
    Srivastava A, Amreddy N, Babu A, Panneerselvam J, Mehta M, Muralidharan R, Chen A, Zhao YD, Razaq M, Riedinger N, Kim H, Liu S, Wu S, Abdel-Mageed AB, Munshi A, Ramesh R (2016) Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep 6:38541.  https://doi.org/10.1038/srep38541 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga AH, Munagala R, Gupta R (2016) Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol 101(1):12–21.  https://doi.org/10.1016/j.yexmp.2016.05.013 CrossRefPubMedGoogle Scholar
  33. 33.
    Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, Kabanov AV, Batrakova EV (2018) Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine 14(1):195–204.  https://doi.org/10.1016/j.nano.2017.09.011 CrossRefPubMedGoogle Scholar
  34. 34.
    Ela S, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357.  https://doi.org/10.1038/nrd3978 CrossRefGoogle Scholar
  35. 35.
    Merchant ML, Rood IM, Deegens JKJ, Klein JB (2017) Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol 13(12):731–749.  https://doi.org/10.1038/nrneph.2017.148 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colas E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Kramer-Albers EM, Laitinen S, Lasser C, Lener T, Ligeti E, Line A, Lipps G, Llorente A, Lotvall J, Mancek-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-’t Hoen EN, Nyman TA, O’Driscoll L, Olivan M, Oliveira C, Pallinger E, Del Portillo HA, Reventos J, Rigau M, Rohde E, Sammar M, Sanchez-Madrid F, Santarem N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066.  https://doi.org/10.3402/jev.v4.27066 CrossRefPubMedGoogle Scholar
  37. 37.
    Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I, Buzas EI, Lotvall J (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles.  https://doi.org/10.3402/jev.v2i0.20677 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51.  https://doi.org/10.1016/j.tcb.2008.11.003 CrossRefPubMedGoogle Scholar
  39. 39.
    Colao IL, Corteling R, Bracewell D, Wall I (2018) Manufacturing exosomes: a promising therapeutic platform. Trends Mol Med 24(3):242–256.  https://doi.org/10.1016/j.molmed.2018.01.006 CrossRefPubMedGoogle Scholar
  40. 40.
    Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458(7237):445–452.  https://doi.org/10.1038/nature07961 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228.  https://doi.org/10.1038/nrm.2017.125 CrossRefPubMedGoogle Scholar
  42. 42.
    Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16(4):415–421.  https://doi.org/10.1016/j.ceb.2004.06.003 CrossRefPubMedGoogle Scholar
  43. 43.
    Lo Cicero A, Stahl PD, Raposo G (2015) Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol 35:69–77.  https://doi.org/10.1016/j.ceb.2015.04.013 CrossRefPubMedGoogle Scholar
  44. 44.
    Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91.  https://doi.org/10.1016/j.devcel.2011.05.015 CrossRefPubMedGoogle Scholar
  45. 45.
    Williams RL, Urbe S (2007) The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8(5):355–368.  https://doi.org/10.1038/nrm2162 CrossRefPubMedGoogle Scholar
  46. 46.
    Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11(8):556–566.  https://doi.org/10.1038/nrm2937 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wollert T, Hurley JH (2010) Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464(7290):864–869.  https://doi.org/10.1038/nature08849 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH (2009) Membrane scission by the ESCRT-III complex. Nature 458(7235):172–177.  https://doi.org/10.1038/nature07836 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, Zimmermann P, David G (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14(7):677–685.  https://doi.org/10.1038/ncb2502 CrossRefPubMedGoogle Scholar
  50. 50.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247.  https://doi.org/10.1126/science.1153124 CrossRefPubMedGoogle Scholar
  51. 51.
    Andreu Z, Yanez-Mo M (2014) Tetraspanins in extracellular vesicle formation and function. Front Immunol 5:442.  https://doi.org/10.3389/fimmu.2014.00442 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zoller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9(1):40–55.  https://doi.org/10.1038/nrc2543 CrossRefPubMedGoogle Scholar
  53. 53.
    Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525.  https://doi.org/10.1038/nrm2728 CrossRefPubMedGoogle Scholar
  54. 54.
    Zeigerer A, Gilleron J, Bogorad RL, Marsico G, Nonaka H, Seifert S, Epstein-Barash H, Kuchimanchi S, Peng CG, Ruda VM, Del Conte-Zerial P, Hengstler JG, Kalaidzidis Y, Koteliansky V, Zerial M (2012) Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485(7399):465–470.  https://doi.org/10.1038/nature11133 CrossRefPubMedGoogle Scholar
  55. 55.
    Vanlandingham PA, Ceresa BP (2009) Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration. J Biol Chem 284(18):12110–12124.  https://doi.org/10.1074/jbc.M809277200 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hsu C, Morohashi Y, Yoshimura S-i, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Gronborg M, Bius WM, Rhee J, Barr FA, Simons M (2014) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189(2):223–232.  https://doi.org/10.1083/icb.200911018 CrossRefGoogle Scholar
  57. 57.
    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30.  https://doi.org/10.1038/ncb2000(sup pp 11-13) CrossRefPubMedGoogle Scholar
  58. 58.
    Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285(23):17442–17452.  https://doi.org/10.1074/jbc.M110.107821 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sánchez-Madrid F (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980.  https://doi.org/10.1038/ncomms3980 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Squadrito ML, Baer C, Fdr Burdet, Maderna C, Gilfillan GD, Lyle R, Ibberson M, Palma MD (2014) Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8:1432–1446.  https://doi.org/10.1016/j.celrep.2014.07.035 CrossRefPubMedGoogle Scholar
  61. 61.
    Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593.  https://doi.org/10.1038/nri2567 CrossRefPubMedGoogle Scholar
  62. 62.
    Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425.  https://doi.org/10.1146/annurev.immunol.20.100301.064801 CrossRefPubMedGoogle Scholar
  63. 63.
    Skotland T, Sandvig K, Llorente A (2017) Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res 66:30–41.  https://doi.org/10.1016/j.plipres.2017.03.001 CrossRefPubMedGoogle Scholar
  64. 64.
    Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450(7168):435–439.  https://doi.org/10.1038/nature06307 CrossRefPubMedGoogle Scholar
  65. 65.
    Denzer K, Mv Eijk, Kleijmeer MJ, Jakobson E, Groot Cd, Geuze HJ (2000) Follicular dendritic cells carry MHC Class II-expressing microvesicles at their surface. J Immunol Methods 165(3):1259–1265.  https://doi.org/10.4049/jimmunol.165.3.1259 CrossRefGoogle Scholar
  66. 66.
    Damke H, Baba T, Bliek AM, Schmid SL (2014) Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol 131(1):69–80.  https://doi.org/10.1083/jcb.131.1.69 CrossRefGoogle Scholar
  67. 67.
    Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, Xiao ZD (2014) Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem 289(32):22258–22267.  https://doi.org/10.1074/jbc.M114.588046 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Nakase I, Kobayashi NB, Takatani-Nakase T, Yoshida T (2015) Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep 5:10300.  https://doi.org/10.1038/srep10300 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, Zhou Q, Sui SF (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11(5):675–687.  https://doi.org/10.1111/j.1600-0854.2010.01041.x CrossRefPubMedGoogle Scholar
  70. 70.
    Tian T, Wang Y, Wang H, Zhu Z, Xiao Z (2010) Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem 111(2):488–496.  https://doi.org/10.1002/jcb.22733 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Théry C, Clayton A, Amigorena S, Ga Raposo (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3(22):1–29.  https://doi.org/10.1002/0471143030.cb0322s30 CrossRefGoogle Scholar
  72. 72.
    Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H (2018) New technologies for analysis of extracellular vesicles. Chem Rev 118(4):1917–1950.  https://doi.org/10.1021/acs.chemrev.7b00534 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ (2015) Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release 199:145–155.  https://doi.org/10.1016/j.jconrel.2014.12.013 CrossRefPubMedGoogle Scholar
  74. 74.
    Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen L-AA, Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31(1):114–121.  https://doi.org/10.1165/rcmb.2003-0238OC CrossRefPubMedGoogle Scholar
  75. 75.
    Yuana Y, Levels J, Grootemaat A, Sturk A, Nieuwland R (2014) Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. J Extracell Vesicles.  https://doi.org/10.3402/jev.v3.23262 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK (2012) Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int 82(9):1024–1032.  https://doi.org/10.1038/ki.2012.256 CrossRefPubMedGoogle Scholar
  77. 77.
    Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles. J Extracell Vesicles 3:26913.  https://doi.org/10.3402/jev.v3.26913 CrossRefPubMedGoogle Scholar
  78. 78.
    Claytona A, Courta J, Navabia H, Adamsa M, Mason MD, Hobot JA, Newman GR, Jasani B (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247(1–2):163–174CrossRefGoogle Scholar
  79. 79.
    Lamparski HG, Metha-Damani A, Yao J-Y, Patel S, Hsu D-H, Ruegg C, Pecq J-BL (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270(2):211–226.  https://doi.org/10.1016/s0022-1759(02)00330-7 CrossRefPubMedGoogle Scholar
  80. 80.
    Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, Moller A (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031.  https://doi.org/10.3402/jev.v4.27031 CrossRefPubMedGoogle Scholar
  81. 81.
    Boing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles.  https://doi.org/10.3402/jev.v3.23430 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, Fang J, Rampersaud S, Hoshino A, Matei I, Kenific CM, Nakajima M, Mutvei AP, Sansone P, Buehring W, Wang H, Jimenez JP, Cohen-Gould L, Paknejad N, Brendel M, Manova-Todorova K, Magalhaes A, Ferreira JA, Osorio H, Silva AM, Massey A, Cubillos-Ruiz JR, Galletti G, Giannakakou P, Cuervo AM, Blenis J, Schwartz R, Brady MS, Peinado H, Bromberg J, Matsui H, Reis CA, Lyden D (2018) Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 20(3):332–343.  https://doi.org/10.1038/s41556-018-0040-4 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Reategui E, van der Vos KE, Lai CP, Zeinali M, Atai NA, Aldikacti B, Floyd FP Jr, Khankhel AH, Thapar V, Hochberg FH, Sequist LV, Nahed BV, Carter BS, Toner M, Balaj L, Ting TD, Breakefield XO, Stott SL (2018) Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat Commun 9(1):175.  https://doi.org/10.1038/s41467-017-02261-1 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Shelke GV, Lasser C, Gho YS, Lotvall J (2014) Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles.  https://doi.org/10.3402/jev.v3.24783 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, Giebel B (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87(1):146–150.  https://doi.org/10.1016/j.colsurfb.2011.05.013 CrossRefPubMedGoogle Scholar
  86. 86.
    Yuana Y, Koning RI, Kuil ME, Rensen PC, Koster AJ, Bertina RM, Osanto S (2013) Cryo-electron microscopy of extracellular vesicles in fresh plasma. J Extracell Vesicles 2:1.  https://doi.org/10.3402/jev.v2i0.21494 CrossRefGoogle Scholar
  87. 87.
    Sharma S, Rasoo HI, Palanisamy V, Mathisen C, Schmidt M, Wong DT, Gimzewski JK (2010) Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano 4(4):1921–1926.  https://doi.org/10.1021/nn901824n CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, Carr B, Redman CW, Harris AL, Dobson PJ, Harrison P, Sargent IL (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7(6):780–788.  https://doi.org/10.1016/j.nano.2011.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Xu Y, Nakane N, Maurer-Spurej E (2011) Novel test for microparticles in platelet-rich plasma and platelet concentrates using dynamic light scattering. Transfusion 51(2):363–370.  https://doi.org/10.1111/j.1537-2995.2010.02819.x CrossRefPubMedGoogle Scholar
  90. 90.
    Coumans FA, van der Pol E, Boing AN, Hajji N, Sturk G, van Leeuwen TG, Nieuwland R (2014) Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Vesicles 3:25922.  https://doi.org/10.3402/jev.v3.25922 CrossRefPubMedGoogle Scholar
  91. 91.
    Khodashenas S, Khalili S, Forouzandeh Moghadam M (2019) A cell ELISA based method for exosome detection in diagnostic and therapeutic applications. Biotechnol Lett 41(4–5):523–531.  https://doi.org/10.1007/s10529-019-02667-5 CrossRefPubMedGoogle Scholar
  92. 92.
    Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR (2015) Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res 14(6):2367–2384.  https://doi.org/10.1021/pr501279t CrossRefPubMedGoogle Scholar
  93. 93.
    Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180.  https://doi.org/10.1038/ncomms1180 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, Kohli M, Thibodeau SN, Boardman L, Wang L (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14:319.  https://doi.org/10.1186/1471-2164-14-319 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, Kohli M, Thibodeau SN, Boardman L, Wang L (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14:319.  https://doi.org/10.1186/1471-2164-14-319 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40(21):10937–10949.  https://doi.org/10.1093/nar/gks832 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Wei Z, Batagov AO, Schinelli S, Wang J, Wang Y, El Fatimy R, Rabinovsky R, Balaj L, Chen CC, Hochberg F, Carter B, Breakefield XO, Krichevsky AM (2017) Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun 8(1):1145.  https://doi.org/10.1038/s41467-017-01196-x CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Mittelbrunn M, Sanchez-Madrid F (2012) Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 13(5):328–335.  https://doi.org/10.1038/nrm3335 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257.  https://doi.org/10.1038/35025220 CrossRefPubMedGoogle Scholar
  100. 100.
    Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, Oeh J, Modrusan Z, Bais C, Sampath D, Ferrara N (2012) Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 31(17):3513–3523.  https://doi.org/10.1038/emboj.2012.183 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Al-Nedawi K, Meehana B, Kerbelb RS, Allisonc AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. PNAS 106(10):3794–3799.  https://doi.org/10.1073/pnas.0804543106 CrossRefPubMedGoogle Scholar
  102. 102.
    Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, Wu CY, Kuo PL (2017) Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 36(34):4929–4942.  https://doi.org/10.1038/onc.2017.105 CrossRefPubMedGoogle Scholar
  103. 103.
    Liu Y, Luo F, Wang B, Li H, Xu Y, Liu X, Shi L, Lu X, Xu W, Lu L, Qin Y, Xiang Q, Liu Q (2016) STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett 370(1):125–135.  https://doi.org/10.1016/j.canlet.2015.10.011 CrossRefPubMedGoogle Scholar
  104. 104.
    Wu DM, Deng SH, Liu T, Han R, Zhang T, Xu Y (2018) TGF-beta-mediated exosomal lnc-MMP2-2 regulates migration and invasion of lung cancer cells to the vasculature by promoting MMP2 expression. Cancer Med 7(10):5118–5129.  https://doi.org/10.1002/cam4.1758 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Cui H, Seubert B, Stahl E, Dietz H, Reuning U, Moreno-Leon L, Ilie M, Hofman P, Nagase H, Mari B, Kruger A (2015) Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene 34(28):3640–3650.  https://doi.org/10.1038/onc.2014.300 CrossRefPubMedGoogle Scholar
  106. 106.
    Greening DW, Gopala SK, Mathiasa RA, Liub L, Shengb J, Zhub H-J, Simpsona RJ (2015) Emerging roles of exosomes during epithelial-mesenchymal transition and cancer progression. Semin Cell Dev Biol 40:60–71.  https://doi.org/10.1016/j.semcdb.2015.02.008 CrossRefPubMedGoogle Scholar
  107. 107.
    Blackwell RH, Foreman KE, Gupta GN (2017) The role of cancer-derived exosomes in tumorigenicity and epithelial-to-mesenchymal Transition. Cancers (Basel).  https://doi.org/10.3390/cancers9080105 CrossRefPubMedCentralGoogle Scholar
  108. 108.
    Syn N, Wang L, Sethi G, Thiery JP, Goh BC (2016) Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci 37(7):606–617.  https://doi.org/10.1016/j.tips.2016.04.006 CrossRefPubMedGoogle Scholar
  109. 109.
    Kim J, Kim TY, Lee MS, Mun JY, Ihm C, Kim SA (2016) Exosome cargo reflects TGF-beta1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells. Biochem Biophys Res Commun 478(2):643–648.  https://doi.org/10.1016/j.bbrc.2016.07.124 CrossRefPubMedGoogle Scholar
  110. 110.
    Rahman MA, Barger JF, Lovat F, Gao M, Otterson GA, Nana-Sinkam P (2016) Lung cancer exosomes as drivers of epithelial mesenchymal transition. Oncotarget 7(34):54852–54866.  https://doi.org/10.18632/oncotarget.10243 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Wang S, Li X, Zhu R, Han Q, Zhao RC (2016) Lung cancer exosomes initiate global long non-coding RNA changes in mesenchymal stem cells. Int J Oncol 48(2):681–689.  https://doi.org/10.3892/ijo.2015.3272 CrossRefPubMedGoogle Scholar
  112. 112.
    Xiao H, Lasser C, Shelke GV, Wang J, Radinger M, Lunavat TR, Malmhall C, Lin LH, Li J, Li L, Lotvall J (2014) Mast cell exosomes promote lung adenocarcinoma cell proliferation role of KIT-stem cell factor signaling. Cell Commun Signal 12:64.  https://doi.org/10.1186/s12964-014-0064-8 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Fabbria M, Paonea A, Calorea F, Gallia R, Gaudioa E, Santhanama R, Lovata F, Faddaa P, Maoa C, Nuovob GJ, Zanesia N, Crawfordc M, Ozera GH, Wernickea D, Aldera H, Caligiurid MA, Nana-Sinkamc P, Perrottia D, Crocea CM (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. PNAS 109(31):2110–2116.  https://doi.org/10.1073/pnas.1209414109 CrossRefGoogle Scholar
  114. 114.
    Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113(5):752–760.  https://doi.org/10.1002/ijc.20657 CrossRefPubMedGoogle Scholar
  115. 115.
    Lawson J, Dickman C, Towle R, Jabalee J, Javer A, Garnis C (2018) Extracellular vesicle secretion of miR-142-3p from lung adenocarcinoma cells induces tumor promoting changes in the stroma through cell-cell communication. Mol Carcinog.  https://doi.org/10.1002/mc.22935 CrossRefPubMedGoogle Scholar
  116. 116.
    Whiteside TL (2016) Exosomes and tumor-mediated immune suppression. J Clin Invest 126(4):1216–1223.  https://doi.org/10.1172/JCI81136 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, Xia H, Man Q, Zhong W, Antelo LF, Wu B, Xiong X, Liu X, Guan L, Li T, Liu S, Yang R, Lu Y, Dong L, McGettigan S, Somasundaram R, Radhakrishnan R, Mills G, Lu Y, Kim J, Chen YH, Dong H, Zhao Y, Karakousis GC, Mitchell TC, Schuchter LM, Herlyn M, Wherry EJ, Xu X, Guo W (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560(7718):382–386.  https://doi.org/10.1038/s41586-018-0392-8 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L, Blelloch R (2019) Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177(2):414–427e413.  https://doi.org/10.1016/j.cell.2019.02.016 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Berchem G, Noman MZ, Bosseler M, Paggetti J, Baconnais S, Le Cam E, Nanbakhsh A, Moussay E, Mami-Chouaib F, Janji B, Chouaib S (2016) Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-beta and miR23a transfer. Oncoimmunology 5(4):e1062968.  https://doi.org/10.1080/2162402X.2015.1062968 CrossRefPubMedGoogle Scholar
  120. 120.
    Huang SH, Li Y, Zhang J, Rong J, Ye S (2013) Epidermal growth factor receptor-containing exosomes induce tumor-specific regulatory T cells. Cancer Invest 31(5):330–335.  https://doi.org/10.3109/07357907.2013.789905 CrossRefPubMedGoogle Scholar
  121. 121.
    Steinbichler TB, Dudas J, Riechelmann H, Skvortsova II (2017) The role of exosomes in cancer metastasis. Semin Cancer Biol 44:170–181.  https://doi.org/10.1016/j.semcancer.2017.02.006 CrossRefPubMedGoogle Scholar
  122. 122.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335.  https://doi.org/10.1038/nature15756 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Liang H, Yan X, Pan Y, Wang Y, Wang N, Li L, Liu Y, Chen X, Zhang CY, Gu H, Zen K (2015) MicroRNA-223 delivered by platelet-derived microvesicles promotes lung cancer cell invasion via targeting tumor suppressor EPB41L3. Mol Cancer 14:58.  https://doi.org/10.1186/s12943-015-0327-z CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Huang WT, Chong IW, Chen HL, Li CY, Hsieh CC, Kuo HF, Chang CY, Chen YH, Liu YP, Lu CY, Liu YR, Liu PL (2018) Pigment epithelium-derived factor inhibits lung cancer migration and invasion by upregulating exosomal thrombospondin 1. Cancer Lett 442:287–298.  https://doi.org/10.1016/j.canlet.2018.10.031 CrossRefPubMedGoogle Scholar
  125. 125.
    Wang J, Wu Y, Guo J, Fei X, Yu L, Ma S (2017) Adipocyte-derived exosomes promote lung cancer metastasis by increasing MMP9 activity via transferring MMP3 to lung cancer cells. Oncotarget 8(47):81880–81891.  https://doi.org/10.18632/oncotarget.18737 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Taverna S, Pucci M, Giallombardo M, Di Bella MA, Santarpia M, Reclusa P, Gil-Bazo I, Rolfo C, Alessandro R (2017) Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway. Sci Rep 7(1):3170.  https://doi.org/10.1038/s41598-017-03460-y CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Xu Z, Liu X, Wang H, Li J, Dai L, Li J, Dong C (2018) Lung adenocarcinoma cell-derived exosomal miR-21 facilitates osteoclastogenesis. Gene 666:116–122.  https://doi.org/10.1016/j.gene.2018.05.008 CrossRefPubMedGoogle Scholar
  128. 128.
    Xu ZH, Miao ZW, Jiang QZ, Gan DX, Wei XG, Xue XZ, Li JQ, Zheng F, Qin XX, Fang WG, Chen YH, Li B (2019) Brain microvascular endothelial cell exosome-mediated S100A16 upregulation confers small-cell lung cancer cell survival in brain. FASEB J 33(2):1742–1757.  https://doi.org/10.1096/fj.201800428r CrossRefPubMedGoogle Scholar
  129. 129.
    Jing C, Cao H, Qin X, Yu S, Wu J, Wang Z, Ma R, Feng J (2018) Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol Lett 15(6):9811–9817.  https://doi.org/10.3892/ol.2018.8604 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Zhang W, Cai X, Yu J, Lu X, Qian Q, Qian W (2018) Exosome-mediated transfer of lncRNA RP11838N2.4 promotes erlotinib resistance in non-small cell lung cancer. Int J Oncol 53(2):527–538.  https://doi.org/10.3892/ijo.2018.4412 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Choi DY, You S, Jung JH, Lee JC, Rho JK, Lee KY, Freeman MR, Kim KP, Kim J (2014) Extracellular vesicles shed from gefitinib-resistant nonsmall cell lung cancer regulate the tumor microenvironment. Proteomics 14(16):1845–1856.  https://doi.org/10.1002/pmic.201400008 CrossRefPubMedGoogle Scholar
  132. 132.
    Zhang Y, Li M, Hu C (2018) Exosomal transfer of miR-214 mediates gefitinib resistance in non-small cell lung cancer. Biochem Biophys Res Commun 507(1–4):457–464.  https://doi.org/10.1016/j.bbrc.2018.11.061 CrossRefPubMedGoogle Scholar
  133. 133.
    Lei Y, Guo W, Chen B, Chen L, Gong J, Li W (2018) Tumorreleased lncRNA H19 promotes gefitinib resistance via packaging into exosomes in nonsmall cell lung cancer. Oncol Rep 40(6):3438–3446.  https://doi.org/10.3892/or.2018.6762 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Team NLSTR, Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, Duan F, Fagerstrom RM, Gareen IF, Gierada DS, Jones GC, Mahon I, Marcus PM, Sicks JD, Jain A, Baum S (2013) Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med 368(21):1980–1991.  https://doi.org/10.1056/NEJMoa1209120 CrossRefGoogle Scholar
  135. 135.
    Team TNLSTR (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409.  https://doi.org/10.1056/NEJMoa1102873 CrossRefGoogle Scholar
  136. 136.
    Levy B, Hu ZI, Cordova KN, Close S, Lee K, Becker D (2016) Clinical utility of liquid diagnostic platforms in non-small cell lung cancer. Oncologist 21(9):1121–1130.  https://doi.org/10.1634/theoncologist.2016-0082 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Ajona D, Pajares MJ, Corrales L, Perez-Gracia JL, Agorreta J, Lozano MD, Torre W, Massion PP, de-Torres JP, Jantus-Lewintre E, Camps C, Zulueta JJ, Montuenga LM, Pio R (2013) Investigation of complement activation product c4d as a diagnostic and prognostic biomarker for lung cancer. J Natl Cancer Inst 105(18):1385–1393.  https://doi.org/10.1093/jnci/djt205 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Sozzi G, Boeri M, Rossi M, Verri C, Suatoni P, Bravi F, Roz L, Conte D, Grassi M, Sverzellati N, Marchiano A, Negri E, La Vecchia C, Pastorino U (2014) Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol 32(8):768–773.  https://doi.org/10.1200/JCO.2013.50.4357 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Montani F, Marzi MJ, Dezi F, Dama E, Carletti RM, Bonizzi G, Bertolotti R, Bellomi M, Rampinelli C, Maisonneuve P, Spaggiari L, Veronesi G, Nicassio F, Di Fiore PP, Bianchi F (2015) miR-Test: a blood test for lung cancer early detection. J Natl Cancer Inst 107(6):djv063.  https://doi.org/10.1093/jnci/djv063 CrossRefPubMedGoogle Scholar
  140. 140.
    Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, Hruban RH, Wolfgang CL, Goggins MG, Dal Molin M, Wang TL, Roden R, Klein AP, Ptak J, Dobbyn L, Schaefer J, Silliman N, Popoli M, Vogelstein JT, Browne JD, Schoen RE, Brand RE, Tie J, Gibbs P, Wong HL, Mansfield AS, Jen J, Hanash SM, Falconi M, Allen PJ, Zhou S, Bettegowda C, Diaz LA Jr, Tomasetti C, Kinzler KW, Vogelstein B, Lennon AM, Papadopoulos N (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359(6378):926–930.  https://doi.org/10.1126/science.aar3247 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Wu H, Zhou J, Mei S, Wu D, Mu Z, Chen B, Xie Y, Ye Y, Liu J (2017) Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J Cell Mol Med 21(6):1228–1236.  https://doi.org/10.1111/jcmm.13056 CrossRefPubMedGoogle Scholar
  142. 142.
    Jin X, Chen Y, Chen H, Fei S, Chen D, Cai X, Liu L, Lin B, Su H, Zhao L, Su M, Pan H, Shen L, Xie D, Xie C (2017) Evaluation of Tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res 23(17):5311–5319.  https://doi.org/10.1158/1078-0432.CCR-17-0577 CrossRefPubMedGoogle Scholar
  143. 143.
    Dejima H, Iinuma H, Kanaoka R, Matsutani N, Kawamura M (2017) Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 13(3):1256–1263.  https://doi.org/10.3892/ol.2017.5569 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10(1):42–46.  https://doi.org/10.3816/clc.2009.n.006 CrossRefPubMedGoogle Scholar
  145. 145.
    Grimolizzi F, Monaco F, Leoni F, Bracci M, Staffolani S, Bersaglieri C, Gaetani S, Valentino M, Amati M, Rubini C, Saccucci F, Neuzil J, Tomasetti M, Santarelli L (2017) Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression. Sci Rep 7(1):15277.  https://doi.org/10.1038/s41598-017-15475-6 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Hydbring P, De Petris L, Zhang Y, Branden E, Koyi H, Novak M, Kanter L, Haag P, Hurley J, Tadigotla V, Zhu B, Skog J, Viktorsson K, Ekman S, Lewensohn R (2018) Exosomal RNA-profiling of pleural effusions identifies adenocarcinoma patients through elevated miR-200 and LCN2 expression. Lung Cancer 124:45–52.  https://doi.org/10.1016/j.lungcan.2018.07.018 CrossRefPubMedGoogle Scholar
  147. 147.
    Wei F, Ma C, Zhou T, Dong X, Luo Q, Geng L, Ding L, Zhang Y, Zhang L, Li N, Li Y, Liu Y (2017) Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol Cancer 16(1):132.  https://doi.org/10.1186/s12943-017-0694-8 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Wang Y, Xu YM, Zou YQ, Lin J, Huang B, Liu J, Li J, Zhang J, Yang WM, Min QH, Li SQ, Gao QF, Sun F, Chen QG, Zhang L, Jiang YH, Deng LB, Wang XZ (2017) Identification of differential expressed PE exosomal miRNA in lung adenocarcinoma, tuberculosis, and other benign lesions. Medicine (Baltimore) 96(44):e8361.  https://doi.org/10.1097/MD.0000000000008361 CrossRefGoogle Scholar
  149. 149.
    Lai X, Friedman A (2016) Exosomal miRs in lung cancer: a mathematical model. PLoS ONE 11(12):e0167706.  https://doi.org/10.1371/journal.pone.0167706 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Cazzoli R, Buttitta F, Di Nicola M, Malatesta S, Marchetti A, Rom WN, Pass HI (2013) microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol 8(9):1156–1162.  https://doi.org/10.1097/JTO.0b013e318299ac32 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Yuwen DL, Sheng BB, Liu J, Wenyu W, Shu YQ (2017) miR-146a-5p level in serum exosomes predicts therapeutic effect of cisplatin in non-small cell lung cancer. Eur Rev Med Pharmacol Sci 21(11):2650–2658PubMedGoogle Scholar
  152. 152.
    Giallombardo M, Chacartegui Borras J, Castiglia M, Van Der Steen N, Mertens I, Pauwels P, Peeters M, Rolfo C (2016) Exosomal miRNA analysis in non-small cell lung cancer (NSCLC) patients’ plasma through qPCR: a feasible liquid biopsy tool. J Vis Exp.  https://doi.org/10.3791/53900 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Lin J, Wang Y, Zou YQ, Chen X, Huang B, Liu J, Xu YM, Li J, Zhang J, Yang WM, Min QH, Sun F, Li SQ, Gao QF, Wang XZ (2016) Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumour Biol.  https://doi.org/10.1007/s13277-016-5410-6 CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Liu Q, Yu Z, Yuan S, Xie W, Li C, Hu Z, Xiang Y, Wu N, Wu L, Bai L, Li Y (2017) Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 8(8):13048–13058.  https://doi.org/10.18632/oncotarget CrossRefPubMedGoogle Scholar
  155. 155.
    Yuwen D, Ma Y, Wang D, Gao J, Li X, Xue W, Fan M, Xu Q, Shen Y, Shu Y (2018) Prognostic role of circulating exosomal miR-425-3p for the response of NSCLC to platinum-based chemotherapy. Cancer Epidemiol Biomarkers Prev.  https://doi.org/10.1158/1055-9965.epi-18-0569 CrossRefPubMedGoogle Scholar
  156. 156.
    Wang N, Song X, Liu L, Niu L, Wang X, Song X, Xie L (2018) Circulating exosomes contain protein biomarkers of metastatic non-small-cell lung cancer. Cancer Sci 109(5):1701–1709.  https://doi.org/10.1111/cas.13581 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Sandfeld-Paulsen B, Jakobsen KR, Baek R, Folkersen BH, Rasmussen TR, Meldgaard P, Varming K, Jorgensen MM, Sorensen BS (2016) Exosomal proteins as diagnostic biomarkers in lung cancer. J Thorac Oncol 11(10):1701–1710.  https://doi.org/10.1016/j.jtho.2016.05.034 CrossRefPubMedGoogle Scholar
  158. 158.
    Jakobsen KR, Paulsen BS, Baek R, Varming K, Sorensen BS, Jorgensen MM (2015) Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles 4:26659.  https://doi.org/10.3402/jev.v4.26659 CrossRefPubMedGoogle Scholar
  159. 159.
    Sandfeld-Paulsen B, Aggerholm-Pedersen N, Baek R, Jakobsen KR, Meldgaard P, Folkersen BH, Rasmussen TR, Varming K, Jorgensen MM, Sorensen BS (2016) Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Oncol 10(10):1595–1602.  https://doi.org/10.1016/j.molonc.2016.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Gao J, Qiu X, Li X, Fan H, Zhang F, Lv T, Song Y (2018) Expression profiles and clinical value of plasma exosomal Tim-3 and Galectin-9 in non-small cell lung cancer. Biochem Biophys Res Commun 498(3):409–415.  https://doi.org/10.1016/j.bbrc.2018.02.114 CrossRefPubMedGoogle Scholar
  161. 161.
    Vykoukal J, Sun N, Aguilar-Bonavides C, Katayama H, Tanaka I, Fahrmann JF, Capello M, Fujimoto J, Aguilar M, Wistuba II, Taguchi A, Ostrin EJ, Hanash SM (2017) Plasma-derived extracellular vesicle proteins as a source of biomarkers for lung adenocarcinoma. Oncotarget 8(56):95466–95480.  https://doi.org/10.18632/oncotarget.20748 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Li Y, Zhang Y, Qiu F, Qiu Z (2011) Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis 32(15):1976–1983.  https://doi.org/10.1002/elps.201000598 CrossRefPubMedGoogle Scholar
  163. 163.
    Zhang R, Xia Y, Wang Z, Zheng J, Chen Y, Li X, Wang Y, Ming H (2017) Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun 490(2):406–414.  https://doi.org/10.1016/j.bbrc.2017.06.055 CrossRefPubMedGoogle Scholar
  164. 164.
    Li C, Lv Y, Shao C, Chen C, Zhang T, Wei Y, Fan H, Lv T, Liu H, Song Y (2019) Tumor-derived exosomal lncRNA GAS5 as a biomarker for early-stage non-small-cell lung cancer diagnosis. J Cell Physiol.  https://doi.org/10.1002/jcp.28678 CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Fan TWM, Zhang X, Wang C, Yang Y, Kang WY, Arnold S, Higashi RM, Liu J, Lane AN (2018) Exosomal lipids for classifying early and late stage non-small cell lung cancer. Anal Chim Acta 1037:256–264.  https://doi.org/10.1016/j.aca.2018.02.051 CrossRefPubMedGoogle Scholar
  166. 166.
    Syn NL, Wang L, Chow EK, Lim CT, Goh BC (2017) Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol 35(7):665–676.  https://doi.org/10.1016/j.tibtech.2017.03.004 CrossRefPubMedGoogle Scholar
  167. 167.
    Pitt JM, Andre F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L (2016) Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 126(4):1224–1232.  https://doi.org/10.1172/JCI81137 CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Li W, Mu D, Tian F, Hu Y, Jiang T, Han Y, Chen J, Han G, Li X (2013) Exosomes derived from Rab27a overexpressing tumor cells elicit efficient induction of antitumor immunity. Mol Med Rep 8(6):1876–1882.  https://doi.org/10.3892/mmr.2013.1738 CrossRefPubMedGoogle Scholar
  169. 169.
    Wang J, Wang L, Lin Z, Tao L, Chen M (2014) More efficient induction of antitumor T cell immunity by exosomes from CD40L gene-modified lung tumor cells. Mol Med Rep 9(1):125–131.  https://doi.org/10.3892/mmr.2013.1759 CrossRefPubMedGoogle Scholar
  170. 170.
    Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405.  https://doi.org/10.1016/j.jconrel.2015.07.030 CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705.  https://doi.org/10.1124/pr.112.005983 CrossRefPubMedGoogle Scholar
  172. 172.
    Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18(9):1606–1614.  https://doi.org/10.1038/mt.2010.105 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Maguire CA, Balaj L, Sivaraman S, Crommentuijn MH, Ericsson M, Mincheva-Nilsson L, Baranov V, Gianni D, Tannous BA, Sena-Esteves M, Breakefield XO, Skog J (2012) Microvesicle-associated AAV vector as a novel gene delivery system. Mol Ther 20(5):960–971.  https://doi.org/10.1038/mt.2011.303 CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP, Strobel T, Breakefield XO, Saydam O (2013) Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther 21(1):101–108.  https://doi.org/10.1038/mt.2012.161 CrossRefPubMedGoogle Scholar
  175. 175.
    Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35(7):2383–2390.  https://doi.org/10.1016/j.biomaterials.2013.11.083 CrossRefPubMedGoogle Scholar
  176. 176.
    Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, Hingtgen SD, Kabanov AV, Batrakova EV (2016) Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12(3):655–664.  https://doi.org/10.1016/j.nano.2015.10.012 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
  2. 2.Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of OncologyLonghua Hospital Shanghai University of Traditional Chinese MedicineShanghaiChina

Personalised recommendations