Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 20, pp 4071–4102 | Cite as

Mechanisms regulating mammalian spermatogenesis and fertility recovery following germ cell depletion

  • Hue M. La
  • Robin M. HobbsEmail author
Review
  • 357 Downloads

Abstract

Mammalian spermatogenesis is a highly complex multi-step process sustained by a population of mitotic germ cells with self-renewal potential known as spermatogonial stem cells (SSCs). The maintenance and regulation of SSC function are strictly dependent on a supportive niche that is composed of multiple cell types. A detailed appreciation of the molecular mechanisms underpinning SSC activity and fate is of fundamental importance for spermatogenesis and male fertility. However, different models of SSC identity and spermatogonial hierarchy have been proposed and recent studies indicate that cell populations supporting steady-state germline maintenance and regeneration following damage are distinct. Importantly, dynamic changes in niche properties may underlie the fate plasticity of spermatogonia evident during testis regeneration. While formation of spermatogenic colonies in germ-cell-depleted testis upon transplantation is a standard assay for SSCs, differentiation-primed spermatogonial fractions have transplantation potential and this assay provides readout of regenerative rather than steady-state stem cell capacity. The characterisation of spermatogonial populations with regenerative capacity is essential for the development of clinical applications aimed at restoring fertility in individuals following germline depletion by genotoxic treatments. This review will discuss regulatory mechanisms of SSCs in homeostatic and regenerative testis and the conservation of these mechanisms between rodent models and man.

Keywords

Spermatogonial stem cells Regeneration Spermatogenesis Fertility Adult stem cells 

Notes

Acknowledgements

We would like to thank Julien Legrand for helpful discussions and comments. An ARC Future Fellowship (FT140101029) supported R. M. H. and H. M. L. is supported by an Australian Government Research Training Program (RTP) Scholarship. The Australian Regenerative Medicine Institute is supported by grants from the State Government of Victoria and Australian Government.

References

  1. 1.
    Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River Press, Clearwater.  https://doi.org/10.1111/j.1365-2605.1993.tb01156.x (ISBN: 0-9627422-0-1) CrossRefGoogle Scholar
  2. 2.
    de Rooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 21:776–798PubMedGoogle Scholar
  3. 3.
    de Rooij DG (2017) The nature and dynamics of spermatogonial stem cells. Development 144:3022–3030.  https://doi.org/10.1242/dev.146571 CrossRefPubMedGoogle Scholar
  4. 4.
    Helsel AR, Yang QE, Oatley MJ, Lord T, Sablitzky F, Oatley JM (2017) ID4 levels dictate the stem cell state in mouse spermatogonia. Development 144:624–634.  https://doi.org/10.1242/dev.146928 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hara K, Nakagawa T, Enomoto H, Suzuki M, Yamamoto M, Simons BD, Yoshida S (2014) Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell 14:658–672.  https://doi.org/10.1016/j.stem.2014.01.019 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Aloisio GM, Nakada Y, Saatcioglu HD, Pena CG, Baker MD, Tarnawa ED, Mukherjee J, Manjunath H, Bugde A, Sengupta AL, Amatruda JF, Cuevas I, Hamra FK, Castrillon DH (2014) PAX7 expression defines germline stem cells in the adult testis. J Clin Investig 124:3929–3944.  https://doi.org/10.1172/JCI75943 CrossRefPubMedGoogle Scholar
  7. 7.
    Oatley JM, Brinster RL (2008) Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 24:263–286.  https://doi.org/10.1146/annurev.cellbio.24.110707.175355 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Phillips BT, Gassei K, Orwig KE (2010) Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365:1663–1678.  https://doi.org/10.1098/rstb.2010.0026 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Griswold MD (1998) The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol 9:411–416.  https://doi.org/10.1006/scdb.1998.0203 CrossRefPubMedGoogle Scholar
  10. 10.
    de Rooij DG (2009) The spermatogonial stem cell niche. Microsc Res Tech 72:580–585.  https://doi.org/10.1002/jemt.20699 CrossRefPubMedGoogle Scholar
  11. 11.
    Oatley MJ, Racicot KE, Oatley JM (2011) Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol Reprod 84:639–645.  https://doi.org/10.1095/biolreprod.110.087320 CrossRefPubMedGoogle Scholar
  12. 12.
    Yoshida S (2010) Stem cells in mammalian spermatogenesis. Dev Growth Differ 52:311–317.  https://doi.org/10.1111/j.1440-169X.2010.01174.x CrossRefPubMedGoogle Scholar
  13. 13.
    de Rooij DG, Grootegoed JA (1998) Spermatogonial stem cells. Curr Opin Cell Biol 10:694–701CrossRefPubMedGoogle Scholar
  14. 14.
    Lok D, Weenk D, De Rooij DG (1982) Morphology, proliferation, and differentiation of undifferentiated spermatogonia in the Chinese hamster and the ram. Anat Rec 203:83–99.  https://doi.org/10.1002/ar.1092030109 CrossRefPubMedGoogle Scholar
  15. 15.
    De Rooij DG (1988) Regulation of the proliferation of spermatogonial stem cells. J Cell Sci Suppl 10:181–194CrossRefPubMedGoogle Scholar
  16. 16.
    de Rooij DG (1998) Stem cells in the testis. Int J Exp Pathol 79:67–80CrossRefPubMedGoogle Scholar
  17. 17.
    Oakberg EF (1971) Spermatogonial stem-cell renewal in the mouse. Anat Rec 169:515–531.  https://doi.org/10.1002/ar.1091690305 CrossRefPubMedGoogle Scholar
  18. 18.
    Huckins C (1971) The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat Rec 169:533–557.  https://doi.org/10.1002/ar.1091690306 CrossRefPubMedGoogle Scholar
  19. 19.
    Yoshida S (2018) Regulatory mechanism of spermatogenic stem cells in mice: their dynamic and context-dependent behavior. In: Kobayash K, Kitano T, Iwao Y, Kondo M (eds) Reproductive and developmental strategies. Springer, Tokyo, pp 47–67CrossRefGoogle Scholar
  20. 20.
    Ahmed EA, de Rooij DG (2009) Staging of mouse seminiferous tubule cross-sections. Methods Mol Biol 558:263–277.  https://doi.org/10.1007/978-1-60761-103-5_16 CrossRefPubMedGoogle Scholar
  21. 21.
    Chan AL, La HM, Legrand JMD, Makela JA, Eichenlaub M, De Seram M, Ramialison M, Hobbs RM (2017) Germline stem cell activity is sustained by SALL4-dependent silencing of distinct tumor suppressor genes. Stem Cell Rep 9:956–971.  https://doi.org/10.1016/j.stemcr.2017.08.001 CrossRefGoogle Scholar
  22. 22.
    Lord T, Oatley JM (2017) A revised Asingle model to explain stem cell dynamics in the mouse male germline. Reproduction 154:R55–R64.  https://doi.org/10.1530/REP-17-0034 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 91:11298–11302CrossRefPubMedGoogle Scholar
  24. 24.
    Nakagawa T, Nabeshima Y, Yoshida S (2007) Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12:195–206.  https://doi.org/10.1016/j.devcel.2007.01.002 CrossRefPubMedGoogle Scholar
  25. 25.
    Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA 91:11303–11307CrossRefPubMedGoogle Scholar
  26. 26.
    Brinster RL (2002) Germline stem cell transplantation and transgenesis. Science 296:2174–2176.  https://doi.org/10.1126/science.1071607 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL (2006) Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci USA 103:9524–9529.  https://doi.org/10.1073/pnas.0603332103 CrossRefPubMedGoogle Scholar
  28. 28.
    Oatley MJ, Kaucher AV, Racicot KE, Oatley JM (2011) Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod 85:347–356.  https://doi.org/10.1095/biolreprod.111.091330 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Garbuzov A, Pech MF, Hasegawa K, Sukhwani M, Zhang RJ, Orwig KE, Artandi SE (2018) Purification of GFRalpha1+ and GFRalpha1− spermatogonial stem cells reveals a niche-dependent mechanism for fate determination. Stem Cell Rep 10:553–567.  https://doi.org/10.1016/j.stemcr.2017.12.009 CrossRefGoogle Scholar
  30. 30.
    La HM, Makela JA, Chan AL, Rossello FJ, Nefzger CM, Legrand JMD, De Seram M, Polo JM, Hobbs RM (2018) Identification of dynamic undifferentiated cell states within the male germline. Nat Commun 9:2819.  https://doi.org/10.1038/s41467-018-04827-z CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shinohara T, Orwig KE, Avarbock MR, Brinster RL (2002) Germ line stem cell competition in postnatal mouse testes. Biol Reprod 66:1491–1497CrossRefPubMedGoogle Scholar
  32. 32.
    Shinohara T, Orwig KE, Avarbock MR, Brinster RL (2001) Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci USA 98:6186–6191.  https://doi.org/10.1073/pnas.111158198 CrossRefPubMedGoogle Scholar
  33. 33.
    Nagano M, Avarbock MR, Brinster RL (1999) Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biol Reprod 60:1429–1436CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nakagawa T, Sharma M, Nabeshima Y, Braun RE, Yoshida S (2010) Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328:62–67.  https://doi.org/10.1126/science.1182868 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 97:1607–1611CrossRefPubMedGoogle Scholar
  36. 36.
    Carrieri C, Comazzetto S, Grover A, Morgan M, Buness A, Nerlov C, O’Carroll D (2017) A transit-amplifying population underpins the efficient regenerative capacity of the testis. J Exp Med 214:1631–1641.  https://doi.org/10.1084/jem.20161371 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Vasiliauskaite L, Berrens RV, Ivanova I, Carrieri C, Reik W, Enright AJ, O’Carroll D (2018) Defective germline reprogramming rewires the spermatogonial transcriptome. Nat Struct Mol Biol 25:394–404.  https://doi.org/10.1038/s41594-018-0058-0 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wells JM, Watt FM (2018) Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature 557:322–328.  https://doi.org/10.1038/s41586-018-0073-7 CrossRefPubMedGoogle Scholar
  39. 39.
    Snippert HJ, Clevers H (2011) Tracking adult stem cells. EMBO Rep 12:113–122.  https://doi.org/10.1038/embor.2010.216 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ryu BY, Orwig KE, Oatley JM, Avarbock MR, Brinster RL (2006) Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 24:1505–1511.  https://doi.org/10.1634/stemcells.2005-0580 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zohni K, Zhang X, Tan SL, Chan P, Nagano MC (2012) The efficiency of male fertility restoration is dependent on the recovery kinetics of spermatogonial stem cells after cytotoxic treatment with busulfan in mice. Hum Reprod 27:44–53.  https://doi.org/10.1093/humrep/der357 CrossRefPubMedGoogle Scholar
  42. 42.
    Sakai M, Masaki K, Aiba S, Tone M, Takashima S (2018) Expression dynamics of self-renewal factors for spermatogonial stem cells in the mouse testis. J Reprod Dev 64:267–275.  https://doi.org/10.1262/jrd.2018-015 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hsu YC (2015) Theory and practice of lineage tracing. Stem Cells 33:3197–3204.  https://doi.org/10.1002/stem.2123 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Simons BD, Clevers H (2011) Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145:851–862.  https://doi.org/10.1016/j.cell.2011.05.033 CrossRefPubMedGoogle Scholar
  45. 45.
    Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244:305–318.  https://doi.org/10.1006/dbio.2002.0597 CrossRefPubMedGoogle Scholar
  46. 46.
    Komai Y, Tanaka T, Tokuyama Y, Yanai H, Ohe S, Omachi T, Atsumi N, Yoshida N, Kumano K, Hisha H, Matsuda T, Ueno H (2014) Bmi1 expression in long-term germ stem cells. Sci Rep 4:6175.  https://doi.org/10.1038/srep06175 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Takase HM, Nusse R (2016) Paracrine Wnt/beta-catenin signaling mediates proliferation of undifferentiated spermatogonia in the adult mouse testis. Proc Natl Acad Sci USA 113:E1489–E1497.  https://doi.org/10.1073/pnas.1601461113 CrossRefPubMedGoogle Scholar
  48. 48.
    Sun F, Xu Q, Zhao D, Degui Chen C (2015) Id4 marks spermatogonial stem cells in the mouse testis. Sci Rep 5:17594.  https://doi.org/10.1038/srep17594 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sada A, Suzuki A, Suzuki H, Saga Y (2009) The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science 325:1394–1398.  https://doi.org/10.1126/science.1172645 CrossRefPubMedGoogle Scholar
  50. 50.
    Klein AM, Simons BD (2011) Universal patterns of stem cell fate in cycling adult tissues. Development 138:3103–3111.  https://doi.org/10.1242/dev.060103 CrossRefPubMedGoogle Scholar
  51. 51.
    Klein AM, Nakagawa T, Ichikawa R, Yoshida S, Simons BD (2010) Mouse germ line stem cells undergo rapid and stochastic turnover. Cell Stem Cell 7:214–224.  https://doi.org/10.1016/j.stem.2010.05.017 CrossRefPubMedGoogle Scholar
  52. 52.
    Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430CrossRefPubMedGoogle Scholar
  53. 53.
    Ikami K, Tokue M, Sugimoto R, Noda C, Kobayashi S, Hara K, Yoshida S (2015) Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis. Development 142:1582–1592.  https://doi.org/10.1242/dev.118695 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kaucher AV, Oatley MJ, Oatley JM (2012) NEUROG3 is a critical downstream effector for STAT3-regulated differentiation of mammalian stem and progenitor spermatogonia. Biol Reprod 86(164):1–11.  https://doi.org/10.1095/biolreprod.111.097386 CrossRefGoogle Scholar
  55. 55.
    Yoshida S, Takakura A, Ohbo K, Abe K, Wakabayashi J, Yamamoto M, Suda T, Nabeshima Y (2004) Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev Biol 269:447–458.  https://doi.org/10.1016/j.ydbio.2004.01.036 CrossRefPubMedGoogle Scholar
  56. 56.
    Iwamori T, Iwamori N, Ma L, Edson MA, Greenbaum MP, Matzuk MM (2010) TEX14 interacts with CEP55 to block cell abscission. Mol Cell Biol 30:2280–2292.  https://doi.org/10.1128/MCB.01392-09 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Niedenberger BA, Cook K, Baena V, Serra ND, Velte EK, Agno JE, Litwa KA, Terasaki M, Hermann BP, Matzuk MM, Geyer CB (2018) Dynamic cytoplasmic projections connect mammalian spermatogonia in vivo. Development.  https://doi.org/10.1242/dev.161323 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chan F, Oatley MJ, Kaucher AV, Yang QE, Bieberich CJ, Shashikant CS, Oatley JM (2014) Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev 28:1351–1362.  https://doi.org/10.1101/gad.240465.114 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    La HM, Chan AL, Legrand JMD, Rossello FJ, Gangemi CG, Papa A, Cheng Q, Morand EF, Hobbs RM (2018) GILZ-dependent modulation of mTORC1 regulates spermatogonial maintenance. Development.  https://doi.org/10.1242/dev.165324 CrossRefPubMedGoogle Scholar
  60. 60.
    Sharma M, Srivastava A, Fairfield HE, Bergstrom D, Flynn WF, Braun RE (2019) Identification of EOMES-expressing spermatogonial stem cells and their regulation by PLZF. Elife.  https://doi.org/10.7554/elife.43352 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Stine RR, Matunis EL (2013) Stem cell competition: finding balance in the niche. Trends Cell Biol 23:357–364.  https://doi.org/10.1016/j.tcb.2013.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Brinster RL (2007) Male germline stem cells: from mice to men. Science 316:404–405.  https://doi.org/10.1126/science.1137741 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Qian Y, Liu S, Guan Y, Pan H, Guan X, Qiu Z, Li L, Gao N, Zhao Y, Li X, Lu Y, Liu M, Li D (2013) Lgr4-mediated Wnt/beta-catenin signaling in peritubular myoid cells is essential for spermatogenesis. Development 140:1751–1761.  https://doi.org/10.1242/dev.093641 CrossRefPubMedGoogle Scholar
  64. 64.
    Maekawa M, Kamimura K, Nagano T (1996) Peritubular myoid cells in the testis: their structure and function. Arch Histol Cytol 59:1–13CrossRefPubMedGoogle Scholar
  65. 65.
    Chen LY, Willis WD, Eddy EM (2016) Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. Proc Natl Acad Sci USA 113:1829–1834.  https://doi.org/10.1073/pnas.1517994113 CrossRefPubMedGoogle Scholar
  66. 66.
    DeFalco T, Potter SJ, Williams AV, Waller B, Kan MJ, Capel B (2015) Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 12:1107–1119.  https://doi.org/10.1016/j.celrep.2015.07.015 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Oatley JM, Oatley MJ, Avarbock MR, Tobias JW, Brinster RL (2009) Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 136:1191–1199.  https://doi.org/10.1242/dev.032243 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Yoshida S, Sukeno M, Nabeshima Y (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726.  https://doi.org/10.1126/science.1144885 CrossRefPubMedGoogle Scholar
  69. 69.
    Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–1493CrossRefPubMedGoogle Scholar
  70. 70.
    Chiarini-Garcia H, Hornick JR, Griswold MD, Russell LD (2001) Distribution of type A spermatogonia in the mouse is not random. Biol Reprod 65:1179–1185CrossRefPubMedGoogle Scholar
  71. 71.
    Bhang DH, Kim BJ, Kim BG, Schadler K, Baek KH, Kim YH, Hsiao W, Ding BS, Rafii S, Weiss MJ, Chou ST, Kolon TF, Ginsberg JP, Ryu BY, Ryeom S (2018) Testicular endothelial cells are a critical population in the germline stem cell niche. Nat Commun 9:4379.  https://doi.org/10.1038/s41467-018-06881-z CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kitadate Y, Jorg DJ, Tokue M, Maruyama A, Ichikawa R, Tsuchiya S, Segi-Nishida E, Nakagawa T, Uchida A, Kimura-Yoshida C, Mizuno S, Sugiyama F, Azami T, Ema M, Noda C, Kobayashi S, Matsuo I, Kanai Y, Nagasawa T, Sugimoto Y, Takahashi S, Simons BD, Yoshida S (2019) Competition for mitogens regulates spermatogenic stem cell homeostasis in an open niche. Cell Stem Cell 24(79–92):e6.  https://doi.org/10.1016/j.stem.2018.11.013 CrossRefGoogle Scholar
  73. 73.
    Sharma M, Braun RE (2018) Cyclical expression of GDNF is required for spermatogonial stem cell homeostasis. Development.  https://doi.org/10.1242/dev.151555 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Oatley JM, Avarbock MR, Brinster RL (2007) Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem 282:25842–25851.  https://doi.org/10.1074/jbc.M703474200 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann MC, Dym M (2008) Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells 26:266–278.  https://doi.org/10.1634/stemcells.2007-0436 CrossRefPubMedGoogle Scholar
  76. 76.
    Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69:612–616.  https://doi.org/10.1095/biolreprod.103.017012 CrossRefPubMedGoogle Scholar
  77. 77.
    Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 101:16489–16494.  https://doi.org/10.1073/pnas.0407063101 CrossRefPubMedGoogle Scholar
  78. 78.
    Hobbs RM, Seandel M, Falciatori I, Rafii S, Pandolfi PP (2010) Plzf regulates germline progenitor self-renewal by opposing mTORC1. Cell 142:468–479.  https://doi.org/10.1016/j.cell.2010.06.041 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ishii K, Kanatsu-Shinohara M, Toyokuni S, Shinohara T (2012) FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development 139:1734–1743.  https://doi.org/10.1242/dev.076539 CrossRefPubMedGoogle Scholar
  80. 80.
    Takashima S, Kanatsu-Shinohara M, Tanaka T, Morimoto H, Inoue K, Ogonuki N, Jijiwa M, Takahashi M, Ogura A, Shinohara T (2015) Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal. Stem Cell Rep 4:489–502.  https://doi.org/10.1016/j.stemcr.2015.01.010 CrossRefGoogle Scholar
  81. 81.
    Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, Shinohara T (2005) Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod 72:985–991.  https://doi.org/10.1095/biolreprod.104.036400 CrossRefPubMedGoogle Scholar
  82. 82.
    Kanatsu-Shinohara M, Inoue K, Takashima S, Takehashi M, Ogonuki N, Morimoto H, Nagasawa T, Ogura A, Shinohara T (2012) Reconstitution of mouse spermatogonial stem cell niches in culture. Cell Stem Cell 11:567–578.  https://doi.org/10.1016/j.stem.2012.06.011 CrossRefPubMedGoogle Scholar
  83. 83.
    Seandel M, James D, Shmelkov SV, Falciatori I, Kim J, Chavala S, Scherr DS, Zhang F, Torres R, Gale NW, Yancopoulos GD, Murphy A, Valenzuela DM, Hobbs RM, Pandolfi PP, Rafii S (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449:346–350.  https://doi.org/10.1038/nature06129 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Lee J, Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Toyokuni S, Kimura T, Nakano T, Ogura A, Shinohara T (2007) Akt mediates self-renewal division of mouse spermatogonial stem cells. Development 134:1853–1859.  https://doi.org/10.1242/dev.003004 CrossRefPubMedGoogle Scholar
  85. 85.
    Lee J, Kanatsu-Shinohara M, Morimoto H, Kazuki Y, Takashima S, Oshimura M, Toyokuni S, Shinohara T (2009) Genetic reconstruction of mouse spermatogonial stem cell self-renewal in vitro by Ras-cyclin D2 activation. Cell Stem Cell 5:76–86.  https://doi.org/10.1016/j.stem.2009.04.020 CrossRefPubMedGoogle Scholar
  86. 86.
    Goertz MJ, Wu Z, Gallardo TD, Hamra FK, Castrillon DH (2011) Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Investig 121:3456–3466.  https://doi.org/10.1172/JCI57984 CrossRefPubMedGoogle Scholar
  87. 87.
    Hasegawa K, Namekawa SH, Saga Y (2013) MEK/ERK signaling directly and indirectly contributes to the cyclical self-renewal of spermatogonial stem cells. Stem Cells 31:2517–2527.  https://doi.org/10.1002/stem.1486 CrossRefPubMedGoogle Scholar
  88. 88.
    Masaki K, Sakai M, Kuroki S, Jo JI, Hoshina K, Fujimori Y, Oka K, Amano T, Yamanaka T, Tachibana M, Tabata Y, Shiozawa T, Ishizuka O, Hochi S, Takashima S (2018) FGF2 has distinct molecular functions from GDNF in the mouse germline niche. Stem Cell Rep 10:1782–1792.  https://doi.org/10.1016/j.stemcr.2018.03.016 CrossRefGoogle Scholar
  89. 89.
    Yeh JR, Zhang X, Nagano MC (2012) Indirect effects of Wnt3a/beta-catenin signalling support mouse spermatogonial stem cells in vitro. PLoS One 7:e40002.  https://doi.org/10.1371/journal.pone.0040002 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Tokue M, Ikami K, Mizuno S, Takagi C, Miyagi A, Takada R, Noda C, Kitadate Y, Hara K, Mizuguchi H, Sato T, Taketo MM, Sugiyama F, Ogawa T, Kobayashi S, Ueno N, Takahashi S, Takada S, Yoshida S (2017) SHISA6 confers resistance to differentiation-promoting Wnt/beta-catenin signaling in mouse spermatogenic stem cells. Stem Cell Rep 8:561–575.  https://doi.org/10.1016/j.stemcr.2017.01.006 CrossRefGoogle Scholar
  91. 91.
    Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, Orwig KE, Wolgemuth DJ, Pandolfi PP (2004) Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36:653–659.  https://doi.org/10.1038/ng1367 CrossRefPubMedGoogle Scholar
  92. 92.
    Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE (2004) Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36:647–652.  https://doi.org/10.1038/ng1366 CrossRefPubMedGoogle Scholar
  93. 93.
    Hobbs RM, Fagoonee S, Papa A, Webster K, Altruda F, Nishinakamura R, Chai L, Pandolfi PP (2012) Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell 10:284–298.  https://doi.org/10.1016/j.stem.2012.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594.  https://doi.org/10.1242/jcs.051011 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L, Ng HH, Lufkin T, Robson P, Lim B (2006) Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 8:1114–1123.  https://doi.org/10.1038/ncb1481 CrossRefPubMedGoogle Scholar
  96. 96.
    Maezawa S, Hasegawa K, Yukawa M, Sakashita A, Alavattam KG, Andreassen PR, Vidal M, Koseki H, Barski A, Namekawa SH (2017) Polycomb directs timely activation of germline genes in spermatogenesis. Genes Dev 31:1693–1703.  https://doi.org/10.1101/gad.302000.117 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Lovelace DL, Gao Z, Mutoji K, Song YC, Ruan J, Hermann BP (2016) The regulatory repertoire of PLZF and SALL4 in undifferentiated spermatogonia. Development 143:1893–1906.  https://doi.org/10.1242/dev.132761 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Zhou Z, Shirakawa T, Ohbo K, Sada A, Wu Q, Hasegawa K, Saba R, Saga Y (2015) RNA binding protein Nanos2 organizes post-transcriptional buffering system to retain primitive state of mouse spermatogonial stem cells. Dev Cell 34:96–107.  https://doi.org/10.1016/j.devcel.2015.05.014 CrossRefPubMedGoogle Scholar
  99. 99.
    Legrand JMD, Hobbs RM (2018) RNA processing in the male germline: mechanisms and implications for fertility. Semin Cell Dev Biol 79:80–91.  https://doi.org/10.1016/j.semcdb.2017.10.006 CrossRefPubMedGoogle Scholar
  100. 100.
    Hobbs RM, La HM, Makela JA, Kobayashi T, Noda T, Pandolfi PP (2015) Distinct germline progenitor subsets defined through Tsc2–mTORC1 signaling. EMBO Rep 16:467–480.  https://doi.org/10.15252/embr.201439379 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y, Zheng P (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205:2397–2408.  https://doi.org/10.1084/jem.20081297 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, Haug JS, Rupp D, Porter-Westpfahl KS, Wiedemann LM, Wu H, Li L (2006) PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441:518–522.  https://doi.org/10.1038/nature04747 CrossRefPubMedGoogle Scholar
  103. 103.
    Lee JY, Nakada D, Yilmaz OH, Tothova Z, Joseph NM, Lim MS, Gilliland DG, Morrison SJ (2010) mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 7:593–605.  https://doi.org/10.1016/j.stem.2010.09.015 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Gan B, Sahin E, Jiang S, Sanchez-Aguilera A, Scott KL, Chin L, Williams DA, Kwiatkowski DJ, DePinho RA (2008) mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc Natl Acad Sci USA 105:19384–19389.  https://doi.org/10.1073/pnas.0810584105 CrossRefPubMedGoogle Scholar
  105. 105.
    Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, Brunson C, Mastey N, Liu L, Tsai CR, Goodell MA, Rando TA (2014) mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 510:393–396.  https://doi.org/10.1038/nature13255 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Wang C, Wang Z, Xiong Z, Dai H, Zou Z, Jia C, Bai X, Chen Z (2016) mTORC1 activation promotes spermatogonial differentiation and causes subfertility in mice. Biol Reprod 95:97.  https://doi.org/10.1095/biolreprod.116.140947 CrossRefPubMedGoogle Scholar
  107. 107.
    Busada JT, Niedenberger BA, Velte EK, Keiper BD, Geyer CB (2015) Mammalian target of rapamycin complex 1 (mTORC1) Is required for mouse spermatogonial differentiation in vivo. Dev Biol 407:90–102.  https://doi.org/10.1016/j.ydbio.2015.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Serra ND, Velte EK, Niedenberger BA, Kirsanov O, Geyer CB (2017) Cell-autonomous requirement for mammalian target of rapamycin (Mtor) in spermatogonial proliferation and differentiation in the mousedagger. Biol Reprod 96:816–828.  https://doi.org/10.1093/biolre/iox022 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Serra N, Velte EK, Niedenberger BA, Kirsanov O, Geyer CB (2018) The mTORC1 component RPTOR is required for maintenance of the foundational spermatogonial stem cell pool in mice. Biol Reprod.  https://doi.org/10.1093/biolre/ioy198 CrossRefGoogle Scholar
  110. 110.
    Hammoud SS, Low DH, Yi C, Carrell DT, Guccione E, Cairns BR (2014) Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 15:239–253.  https://doi.org/10.1016/j.stem.2014.04.006 CrossRefPubMedGoogle Scholar
  111. 111.
    McSwiggin HM, O’Doherty AM (2018) Epigenetic reprogramming during spermatogenesis and male factor infertility. Reproduction 156:R9–R21.  https://doi.org/10.1530/REP-18-0009 CrossRefPubMedGoogle Scholar
  112. 112.
    Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093.  https://doi.org/10.1126/science.1063443 CrossRefPubMedGoogle Scholar
  113. 113.
    Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140.  https://doi.org/10.1038/nrg2295 CrossRefPubMedGoogle Scholar
  114. 114.
    Lehmann R (2012) Germline stem cells: origin and destiny. Cell Stem Cell 10:729–739.  https://doi.org/10.1016/j.stem.2012.05.016 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, Guo Y, Takei Y, Yun J, Cai L, Kim R, Carrell DT, Goriely A, Hotaling JM, Cairns BR (2018) The adult human testis transcriptional cell atlas. Cell Res 28:1141–1157.  https://doi.org/10.1038/s41422-018-0099-2 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Guo J, Grow EJ, Yi C, Mlcochova H, Maher GJ, Lindskog C, Murphy PJ, Wike CL, Carrell DT, Goriely A, Hotaling JM, Cairns BR (2017) Chromatin and single-cell RNA-seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development. Cell Stem Cell 21(533–546):e6.  https://doi.org/10.1016/j.stem.2017.09.003 CrossRefGoogle Scholar
  117. 117.
    Hata K, Okano M, Lei H, Li E (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993PubMedGoogle Scholar
  118. 118.
    Chedin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci USA 99:16916–16921.  https://doi.org/10.1073/pnas.262443999 CrossRefPubMedGoogle Scholar
  119. 119.
    Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99.  https://doi.org/10.1038/nature02886 CrossRefPubMedGoogle Scholar
  120. 120.
    Liao HF, Chen WS, Chen YH, Kao TH, Tseng YT, Lee CY, Chiu YC, Lee PL, Lin QJ, Ching YH, Hata K, Cheng WT, Tsai MH, Sasaki H, Ho HN, Wu SC, Huang YH, Yen P, Lin SP (2014) DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development 141:2402–2413.  https://doi.org/10.1242/dev.105130 CrossRefPubMedGoogle Scholar
  121. 121.
    Hata K, Kusumi M, Yokomine T, Li E, Sasaki H (2006) Meiotic and epigenetic aberrations in Dnmt3L-deficient male germ cells. Mol Reprod Dev 73:116–122.  https://doi.org/10.1002/mrd.20387 CrossRefPubMedGoogle Scholar
  122. 122.
    Shirakawa T, Yaman-Deveci R, Tomizawa S, Kamizato Y, Nakajima K, Sone H, Sato Y, Sharif J, Yamashita A, Takada-Horisawa Y, Yoshida S, Ura K, Muto M, Koseki H, Suda T, Ohbo K (2013) An epigenetic switch is crucial for spermatogonia to exit the undifferentiated state toward a Kit-positive identity. Development 140:3565–3576.  https://doi.org/10.1242/dev.094045 CrossRefPubMedGoogle Scholar
  123. 123.
    Yadav RP, Kotaja N (2014) Small RNAs in spermatogenesis. Mol Cell Endocrinol 382:498–508.  https://doi.org/10.1016/j.mce.2013.04.015 CrossRefPubMedGoogle Scholar
  124. 124.
    Liu Y, Giannopoulou EG, Wen D, Falciatori I, Elemento O, Allis CD, Rafii S, Seandel M (2016) Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells. Nat Commun 7:11275.  https://doi.org/10.1038/ncomms11275 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Pellegrino J, Castrillon DH, David G (2012) Chromatin associated Sin3A is essential for male germ cell lineage in the mouse. Dev Biol 369:349–355.  https://doi.org/10.1016/j.ydbio.2012.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Hammoud SS, Low DH, Yi C, Lee CL, Oatley JM, Payne CJ, Carrell DT, Guccione E, Cairns BR (2015) Transcription and imprinting dynamics in developing postnatal male germline stem cells. Genes Dev 29:2312–2324.  https://doi.org/10.1101/gad.261925.115 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Maezawa S, Yukawa M, Alavattam KG, Barski A, Namekawa SH (2018) Dynamic reorganization of open chromatin underlies diverse transcriptomes during spermatogenesis. Nucleic Acids Res 46:593–608.  https://doi.org/10.1093/nar/gkx1052 CrossRefPubMedGoogle Scholar
  128. 128.
    Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202.  https://doi.org/10.1038/35106079 CrossRefPubMedGoogle Scholar
  129. 129.
    Lahn BT, Tang ZL, Zhou J, Barndt RJ, Parvinen M, Allis CD, Page DC (2002) Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci USA 99:8707–8712.  https://doi.org/10.1073/pnas.082248899 CrossRefPubMedGoogle Scholar
  130. 130.
    Gallagher SJ, Kofman AE, Huszar JM, Dannenberg JH, DePinho RA, Braun RE, Payne CJ (2013) Distinct requirements for Sin3a in perinatal male gonocytes and differentiating spermatogonia. Dev Biol 373:83–94.  https://doi.org/10.1016/j.ydbio.2012.10.009 CrossRefPubMedGoogle Scholar
  131. 131.
    Tomizawa SI, Kobayashi Y, Shirakawa T, Watanabe K, Mizoguchi K, Hoshi I, Nakajima K, Nakabayashi J, Singh S, Dahl A, Alexopoulou D, Seki M, Suzuki Y, Royo H, Peters A, Anastassiadis K, Stewart AF, Ohbo K (2018) Kmt2b conveys monovalent and bivalent H3K4me3 in mouse spermatogonial stem cells at germline and embryonic promoters. Development.  https://doi.org/10.1242/dev.169102 CrossRefPubMedGoogle Scholar
  132. 132.
    Lambrot R, Lafleur C, Kimmins S (2015) The histone demethylase KDM1A is essential for the maintenance and differentiation of spermatogonial stem cells and progenitors. FASEB J 29:4402–4416.  https://doi.org/10.1096/fj.14-267328 CrossRefPubMedGoogle Scholar
  133. 133.
    Glaser S, Lubitz S, Loveland KL, Ohbo K, Robb L, Schwenk F, Seibler J, Roellig D, Kranz A, Anastassiadis K, Stewart AF (2009) The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenet Chromatin 2:5.  https://doi.org/10.1186/1756-8935-2-5 CrossRefGoogle Scholar
  134. 134.
    Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349.  https://doi.org/10.1038/nature09784 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Mu W, Starmer J, Fedoriw AM, Yee D, Magnuson T (2014) Repression of the soma-specific transcriptome by Polycomb-repressive complex 2 promotes male germ cell development. Genes Dev 28:2056–2069.  https://doi.org/10.1101/gad.246124.114 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Jin C, Zhang Y, Wang ZP, Wang XX, Sun TC, Li XY, Tang JX, Cheng JM, Li J, Chen SR, Deng SL, Liu YX (2017) EZH2 deletion promotes spermatogonial differentiation and apoptosis. Reproduction 154:615–625.  https://doi.org/10.1530/REP-17-0302 CrossRefPubMedGoogle Scholar
  137. 137.
    Iwamori N, Iwamori T, Matzuk MM (2013) H3K27 demethylase, JMJD3, regulates fragmentation of spermatogonial cysts. PLoS One 8:e72689.  https://doi.org/10.1371/journal.pone.0072689 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Kuroki S, Akiyoshi M, Tokura M, Miyachi H, Nakai Y, Kimura H, Shinkai Y, Tachibana M (2013) JMJD1C, a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice. Biol Reprod 89:93.  https://doi.org/10.1095/biolreprod.113.108597 CrossRefPubMedGoogle Scholar
  139. 139.
    Kotaja N (2014) MicroRNAs and spermatogenesis. Fertil Steril 101:1552–1562.  https://doi.org/10.1016/j.fertnstert.2014.04.025 CrossRefPubMedGoogle Scholar
  140. 140.
    Quan G, Li J (2018) Circular RNAs: biogenesis, expression and their potential roles in reproduction. J Ovarian Res 11:9.  https://doi.org/10.1186/s13048-018-0381-4 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Rojas-Rios P, Simonelig M (2018) piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development.  https://doi.org/10.1242/dev.161786 CrossRefPubMedGoogle Scholar
  142. 142.
    Gan H, Lin X, Zhang Z, Zhang W, Liao S, Wang L, Han C (2011) piRNA profiling during specific stages of mouse spermatogenesis. RNA 17:1191–1203.  https://doi.org/10.1261/rna.2648411 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Lee TL, Xiao A, Rennert OM (2012) Identification of novel long noncoding RNA transcripts in male germ cells. Methods Mol Biol 825:105–114.  https://doi.org/10.1007/978-1-61779-436-0_9 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Luk AC, Chan WY, Rennert OM, Lee TL (2014) Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies. Reproduction 147:R131–R141.  https://doi.org/10.1530/REP-13-0594 CrossRefPubMedGoogle Scholar
  145. 145.
    Lin X, Han M, Cheng L, Chen J, Zhang Z, Shen T, Wang M, Wen B, Ni T, Han C (2016) Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. RNA Biol 13:1011–1024.  https://doi.org/10.1080/15476286.2016.1218588 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Niu Z, Goodyear SM, Rao S, Wu X, Tobias JW, Avarbock MR, Brinster RL (2011) MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 108:12740–12745.  https://doi.org/10.1073/pnas.1109987108 CrossRefPubMedGoogle Scholar
  147. 147.
    Buscaglia LE, Li Y (2011) Apoptosis and the target genes of microRNA-21. Chin J Cancer 30:371–380CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Yang QE, Racicot KE, Kaucher AV, Oatley MJ, Oatley JM (2013) MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells. Development 140:280–290.  https://doi.org/10.1242/dev.087403 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Chen J, Cai T, Zheng C, Lin X, Wang G, Liao S, Wang X, Gan H, Zhang D, Hu X, Wang S, Li Z, Feng Y, Yang F, Han C (2017) MicroRNA-202 maintains spermatogonial stem cells by inhibiting cell cycle regulators and RNA binding proteins. Nucleic Acids Res 45:4142–4157.  https://doi.org/10.1093/nar/gkw1287 CrossRefPubMedGoogle Scholar
  150. 150.
    Filipponi D, Hobbs RM, Ottolenghi S, Rossi P, Jannini EA, Pandolfi PP, Dolci S (2007) Repression of kit expression by Plzf in germ cells. Mol Cell Biol 27:6770–6781.  https://doi.org/10.1128/MCB.00479-07 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Tu J, Zhang P, Shui Luk AC, Liao J, Chan WY, Qi H, Hoi-Hung AC, Lee TL (2018) MicroRNA-26b promotes transition from Kit(-) to Kit(+) mouse spermatogonia. Exp Cell Res 373:71–79.  https://doi.org/10.1016/j.yexcr.2018.09.018 CrossRefPubMedGoogle Scholar
  152. 152.
    Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103.  https://doi.org/10.1016/j.cell.2007.01.043 CrossRefPubMedGoogle Scholar
  153. 153.
    Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324.  https://doi.org/10.1126/science.1129333 CrossRefPubMedGoogle Scholar
  154. 154.
    Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20:2214–2222.  https://doi.org/10.1101/gad.1454806 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Bestor TH, de Rooij DG, Hannon GJ (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514.  https://doi.org/10.1016/j.devcel.2007.03.001 CrossRefPubMedGoogle Scholar
  156. 156.
    De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A, Funaya C, Antony C, Moreira PN, Enright AJ, O’Carroll D (2011) The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480:259–263.  https://doi.org/10.1038/nature10547 CrossRefPubMedGoogle Scholar
  157. 157.
    Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, Lin H, Matsuda Y, Nakano T (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131:839–849.  https://doi.org/10.1242/dev.00973 CrossRefPubMedGoogle Scholar
  158. 158.
    Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830CrossRefPubMedGoogle Scholar
  159. 159.
    Zhang P, Kang JY, Gou LT, Wang J, Xue Y, Skogerboe G, Dai P, Huang DW, Chen R, Fu XD, Liu MF, He S (2015) MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res 25:193–207.  https://doi.org/10.1038/cr.2015.4 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Gou LT, Dai P, Yang JH, Xue Y, Hu YP, Zhou Y, Kang JY, Wang X, Li H, Hua MM, Zhao S, Hu SD, Wu LG, Shi HJ, Li Y, Fu XD, Qu LH, Wang ED, Liu MF (2014) Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res 24:680–700.  https://doi.org/10.1038/cr.2014.41 CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Wen K, Yang L, Xiong T, Di C, Ma D, Wu M, Xue Z, Zhang X, Long L, Zhang W, Zhang J, Bi X, Dai J, Zhang Q, Lu ZJ, Gao G (2016) Critical roles of long noncoding RNAs in Drosophila spermatogenesis. Genome Res 26:1233–1244.  https://doi.org/10.1101/gr.199547.115 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Akhade VS, Dighe SN, Kataruka S, Rao MR (2016) Mechanism of Wnt signaling induced down regulation of mrhl long non-coding RNA in mouse spermatogonial cells. Nucleic Acids Res 44:387–401.  https://doi.org/10.1093/nar/gkv1023 CrossRefPubMedGoogle Scholar
  163. 163.
    Arun G, Akhade VS, Donakonda S, Rao MR (2012) mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells. Mol Cell Biol 32:3140–3152.  https://doi.org/10.1128/MCB.00006-12 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Legrand JMD, Chan AL, La HM, Rossello FJ, Anko ML, Fuller-Pace FV, Hobbs RM (2019) DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nat Commun 10:2278.  https://doi.org/10.1038/s41467-019-09972-7 CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Anguera MC, Ma W, Clift D, Namekawa S, Kelleher RJ 3rd, Lee JT (2011) Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genet 7:e1002248.  https://doi.org/10.1371/journal.pgen.1002248 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Ni MJ, Hu ZH, Liu Q, Liu MF, Lu MH, Zhang JS, Zhang L, Zhang YL (2011) Identification and characterization of a novel non-coding RNA involved in sperm maturation. PLoS One 6:e26053.  https://doi.org/10.1371/journal.pone.0026053 CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Endo T, Freinkman E, de Rooij DG, Page DC (2017) Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis. Proc Natl Acad Sci USA 114:E10132–E10141.  https://doi.org/10.1073/pnas.1710837114 CrossRefPubMedGoogle Scholar
  168. 168.
    Schrans-Stassen BH, van de Kant HJ, de Rooij DG, van Pelt AM (1999) Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology 140:5894–5900.  https://doi.org/10.1210/endo.140.12.7172 CrossRefPubMedGoogle Scholar
  169. 169.
    Yomogida K, Ohtani H, Harigae H, Ito E, Nishimune Y, Engel JD, Yamamoto M (1994) Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development 120:1759–1766PubMedGoogle Scholar
  170. 170.
    Sugimoto R, Nabeshima Y, Yoshida S (2012) Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium. Mech Dev 128:610–624.  https://doi.org/10.1016/j.mod.2011.12.003 CrossRefPubMedGoogle Scholar
  171. 171.
    van Pelt AM, de Rooij DG (1990) Synchronization of the seminiferous epithelium after vitamin A replacement in vitamin A-deficient mice. Biol Reprod 43:363–367CrossRefPubMedGoogle Scholar
  172. 172.
    Gely-Pernot A, Raverdeau M, Celebi C, Dennefeld C, Feret B, Klopfenstein M, Yoshida S, Ghyselinck NB, Mark M (2012) Spermatogonia differentiation requires retinoic acid receptor gamma. Endocrinology 153:438–449.  https://doi.org/10.1210/en.2011-1102 CrossRefPubMedGoogle Scholar
  173. 173.
    Ghyselinck NB, Vernet N, Dennefeld C, Giese N, Nau H, Chambon P, Viville S, Mark M (2006) Retinoids and spermatogenesis: lessons from mutant mice lacking the plasma retinol binding protein. Dev Dyn 235:1608–1622.  https://doi.org/10.1002/dvdy.20795 CrossRefPubMedGoogle Scholar
  174. 174.
    Hogarth CA, Evans E, Onken J, Kent T, Mitchell D, Petkovich M, Griswold MD (2015) CYP26 enzymes are necessary within the postnatal seminiferous epithelium for normal murine spermatogenesis. Biol Reprod 93:19.  https://doi.org/10.1095/biolreprod.115.129718 CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Lord T, Oatley MJ, Oatley JM (2018) Testicular architecture is critical for mediation of retinoic acid responsiveness by undifferentiated spermatogonial subtypes in the mouse. Stem Cell Rep 10:538–552.  https://doi.org/10.1016/j.stemcr.2018.01.003 CrossRefGoogle Scholar
  176. 176.
    Ballow D, Meistrich ML, Matzuk M, Rajkovic A (2006) Sohlh1 is essential for spermatogonial differentiation. Dev Biol 294:161–167.  https://doi.org/10.1016/j.ydbio.2006.02.027 CrossRefPubMedGoogle Scholar
  177. 177.
    Suzuki H, Ahn HW, Chu T, Bowden W, Gassei K, Orwig K, Rajkovic A (2012) SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol 361:301–312.  https://doi.org/10.1016/j.ydbio.2011.10.027 CrossRefPubMedGoogle Scholar
  178. 178.
    Busada JT, Chappell VA, Niedenberger BA, Kaye EP, Keiper BD, Hogarth CA, Geyer CB (2015) Retinoic acid regulates Kit translation during spermatogonial differentiation in the mouse. Dev Biol 397:140–149.  https://doi.org/10.1016/j.ydbio.2014.10.020 CrossRefPubMedGoogle Scholar
  179. 179.
    Gely-Pernot A, Raverdeau M, Teletin M, Vernet N, Feret B, Klopfenstein M, Dennefeld C, Davidson I, Benoit G, Mark M, Ghyselinck NB (2015) Retinoic acid receptors control spermatogonia cell-fate and induce expression of the SALL4A transcription factor. PLoS Genet 11:e1005501.  https://doi.org/10.1371/journal.pgen.1005501 CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt AM, Page DC (2008) Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci USA 105:14976–14980.  https://doi.org/10.1073/pnas.0807297105 CrossRefPubMedGoogle Scholar
  181. 181.
    Zhou Q, Nie R, Li Y, Friel P, Mitchell D, Hess RA, Small C, Griswold MD (2008) Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: an in vivo study in vitamin A-sufficient postnatal murine testes. Biol Reprod 79:35–42.  https://doi.org/10.1095/biolreprod.107.066795 CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Zhou Q, Li Y, Nie R, Friel P, Mitchell D, Evanoff RM, Pouchnik D, Banasik B, McCarrey JR, Small C, Griswold MD (2008) Expression of stimulated by retinoic acid gene 8 (Stra8) and maturation of murine gonocytes and spermatogonia induced by retinoic acid in vitro. Biol Reprod 78:537–545.  https://doi.org/10.1095/biolreprod.107.064337 CrossRefPubMedGoogle Scholar
  183. 183.
    Matson CK, Murphy MW, Griswold MD, Yoshida S, Bardwell VJ, Zarkower D (2010) The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells. Dev Cell 19:612–624.  https://doi.org/10.1016/j.devcel.2010.09.010 CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Endo T, Romer KA, Anderson EL, Baltus AE, de Rooij DG, Page DC (2015) Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proc Natl Acad Sci USA 112:E2347–E2356.  https://doi.org/10.1073/pnas.1505683112 CrossRefPubMedGoogle Scholar
  185. 185.
    Bucci LR, Meistrich ML (1987) Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutat Res 176:259–268CrossRefPubMedGoogle Scholar
  186. 186.
    Ogawa T, Dobrinski I, Avarbock MR, Brinster RL (2000) Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med 6:29–34.  https://doi.org/10.1038/71496 CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Zhang T, Oatley J, Bardwell VJ, Zarkower D (2016) DMRT1 is required for mouse spermatogonial stem cell maintenance and replenishment. PLoS Genet 12:e1006293.  https://doi.org/10.1371/journal.pgen.1006293 CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    van Keulen CJ, de Rooij DG (1975) Spermatogenetic clones developing from repopulating stem cells surviving a high dose of an alkylating agent. Cell Tissue Kinet 8:543–551PubMedGoogle Scholar
  189. 189.
    Nagano MC (2003) Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol Reprod 69:701–707.  https://doi.org/10.1095/biolreprod.103.016352 CrossRefPubMedGoogle Scholar
  190. 190.
    Shinohara T, Orwig KE, Avarbock MR, Brinster RL (2000) Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci USA 97:8346–8351CrossRefPubMedGoogle Scholar
  191. 191.
    Shinohara T, Avarbock MR, Brinster RL (2000) Functional analysis of spermatogonial stem cells in Steel and cryptorchid infertile mouse models. Dev Biol 220:401–411.  https://doi.org/10.1006/dbio.2000.9655 CrossRefPubMedGoogle Scholar
  192. 192.
    Whetton AD, Graham GJ (1999) Homing and mobilization in the stem cell niche. Trends Cell Biol 9:233–238CrossRefPubMedGoogle Scholar
  193. 193.
    Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106:1901–1910.  https://doi.org/10.1182/blood-2005-04-1417 CrossRefPubMedGoogle Scholar
  194. 194.
    Shinohara T, Avarbock MR, Brinster RL (1999) beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 96:5504–5509CrossRefPubMedGoogle Scholar
  195. 195.
    Kanatsu-Shinohara M, Takehashi M, Takashima S, Lee J, Morimoto H, Chuma S, Raducanu A, Nakatsuji N, Fassler R, Shinohara T (2008) Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin. Cell Stem Cell 3:533–542.  https://doi.org/10.1016/j.stem.2008.08.002 CrossRefPubMedGoogle Scholar
  196. 196.
    Takashima S, Kanatsu-Shinohara M, Tanaka T, Takehashi M, Morimoto H, Shinohara T (2011) Rac mediates mouse spermatogonial stem cell homing to germline niches by regulating transmigration through the blood-testis barrier. Cell Stem Cell 9:463–475.  https://doi.org/10.1016/j.stem.2011.08.011 CrossRefPubMedGoogle Scholar
  197. 197.
    Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA (2005) Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 11:886–891.  https://doi.org/10.1038/nm1274 CrossRefPubMedGoogle Scholar
  198. 198.
    Hermann BP, Sukhwani M, Hansel MC, Orwig KE (2010) Spermatogonial stem cells in higher primates: are there differences from those in rodents? Reproduction 139:479–493.  https://doi.org/10.1530/REP-09-0255 CrossRefPubMedGoogle Scholar
  199. 199.
    Clermont Y (1969) Two classes of spermatogonial stem cells in the monkey (Cercopithecus aethiops). Am J Anat 126:57–71.  https://doi.org/10.1002/aja.1001260106 CrossRefPubMedGoogle Scholar
  200. 200.
    Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 52:198–236.  https://doi.org/10.1152/physrev.1972.52.1.198 CrossRefPubMedGoogle Scholar
  201. 201.
    Clermont Y, Leblond CP (1959) Differentiation and renewal of spermatogonia in the monkey, Macacus rhesus. Am J Anat 104:237–273.  https://doi.org/10.1002/aja.1001040204 CrossRefPubMedGoogle Scholar
  202. 202.
    van Alphen MM, de Rooij DG (1986) Depletion of the seminiferous epithelium of the rhesus monkey, Macaca mulatta, after X-irradiation. Br J Cancer Suppl 7:102–104PubMedPubMedCentralGoogle Scholar
  203. 203.
    Nagano M, Patrizio P, Brinster RL (2002) Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril 78:1225–1233CrossRefPubMedGoogle Scholar
  204. 204.
    Hermann BP, Sukhwani M, Simorangkir DR, Chu T, Plant TM, Orwig KE (2009) Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Hum Reprod 24:1704–1716.  https://doi.org/10.1093/humrep/dep073 CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Maki CB, Pacchiarotti J, Ramos T, Pascual M, Pham J, Kinjo J, Anorve S, Izadyar F (2009) Phenotypic and molecular characterization of spermatogonial stem cells in adult primate testes. Hum Reprod 24:1480–1491.  https://doi.org/10.1093/humrep/dep033 CrossRefPubMedGoogle Scholar
  206. 206.
    Muller T, Eildermann K, Dhir R, Schlatt S, Behr R (2008) Glycan stem-cell markers are specifically expressed by spermatogonia in the adult non-human primate testis. Hum Reprod 23:2292–2298.  https://doi.org/10.1093/humrep/den253 CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Hermann BP, Sukhwani M, Lin CC, Sheng Y, Tomko J, Rodriguez M, Shuttleworth JJ, McFarland D, Hobbs RM, Pandolfi PP, Schatten GP, Orwig KE (2007) Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cells 25:2330–2338.  https://doi.org/10.1634/stemcells.2007-0143 CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Eildermann K, Aeckerle N, Debowski K, Godmann M, Christiansen H, Heistermann M, Schweyer S, Bergmann M, Kliesch S, Gromoll J, Ehmcke J, Schlatt S, Behr R (2012) Developmental expression of the pluripotency factor sal-like protein 4 in the monkey, human and mouse testis: restriction to premeiotic germ cells. Cells Tissues Organs 196:206–220.  https://doi.org/10.1159/000335031 CrossRefPubMedGoogle Scholar
  209. 209.
    Valli H, Sukhwani M, Dovey SL, Peters KA, Donohue J, Castro CA, Chu T, Marshall GR, Orwig KE (2014) Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril 102(566–580):e7.  https://doi.org/10.1016/j.fertnstert.2014.04.036 CrossRefGoogle Scholar
  210. 210.
    Izadyar F, Wong J, Maki C, Pacchiarotti J, Ramos T, Howerton K, Yuen C, Greilach S, Zhao HH, Chow M, Chow YC, Rao J, Barritt J, Bar-Chama N, Copperman A (2011) Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod 26:1296–1306.  https://doi.org/10.1093/humrep/der026 CrossRefPubMedGoogle Scholar
  211. 211.
    Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386.  https://doi.org/10.1038/nbt.2859 CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, Guo Y, Takei Y, Yun J, Cai L, Kim R, Carrell DT, Goriely A, Hotaling JM, Cairns BR (2018) The adult human testis transcriptional cell atlas. Cell Res.  https://doi.org/10.1038/s41422-018-0099-2 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Australian Regenerative Medicine InstituteMonash UniversityMelbourneAustralia
  2. 2.Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental BiologyMonash UniversityMelbourneAustralia

Personalised recommendations