Advertisement

Vps13b is required for acrosome biogenesis through functions in Golgi dynamic and membrane trafficking

  • Romain Da CostaEmail author
  • Morgane Bordessoules
  • Magali Guilleman
  • Virginie Carmignac
  • Vincent Lhussiez
  • Hortense Courot
  • Amandine Bataille
  • Amandine Chlémaire
  • Céline Bruno
  • Patricia Fauque
  • Christel Thauvin
  • Laurence Faivre
  • Laurence Duplomb
Original Article
  • 381 Downloads

Abstract

The sperm acrosome is a lysosome-related organelle that develops using membrane trafficking from the Golgi apparatus as well as the endolysosomal compartment. How vesicular trafficking is regulated in spermatids to form the acrosome remains to be elucidated. VPS13B, a RAB6-interactor, was recently shown involved in endomembrane trafficking. Here, we report the generation of the first Vps13b-knockout mouse model and show that male mutant mice are infertile due to oligoasthenoteratozoospermia. This phenotype was explained by a failure of Vps13b deficient spermatids to form an acrosome. In wild-type spermatids, immunostaining of Vps13b and Rab6 revealed that they transiently locate to the acrosomal inner membrane. Spermatids lacking Vps13b did not present with the Golgi structure that characterizes wild-type spermatids and showed abnormal targeting of PNA- and Rab6-positive Golgi-derived vesicles to Eea1- and Lamp2-positive structures. Altogether, our results uncover a function of Vps13b in the regulation of the vesicular transport between Golgi apparatus, acrosome, and endolysosome.

Keywords

Male infertility Globozoospermia Oligospermia Spermatogenesis Spermiogenesis Acrosomogenesis Endosome Lysosome Vesicular transport 

Notes

Acknowledgements

This work from the FHU TRANSLAD is supported by the Conseil Régional de Bourgogne through the plan d’actions régional pour l’innovation (PARI) and the European Union through the PO FEDER-FSE Bourgogne 2014/2020 programs. The mouse mutant line was established at the Mouse Clinical Institute (Institut Clinique de la Souris, MCI/ICS) in the Genetic Engineering and Model Validation Department with funds from Fondation Maladies Rares. The UMR1231 CellImaP/DimaCell core facility that is supported by the Regional Council of Bourgogne-Franche Comté and the FEDER. We also thank Christine Arnould and Elodie Noirot from the Dimacell Imaging Facility (Agrosup Dijon, INRA, INSERM, University of Bourgogne Franche-Comté, F-21000 Dijon, France) for their support with confocal microscopy. The authors gratefully acknowledge the animal facility of Centre des Sciences du Goût et de l’Alimentation (INRA, Dijon, France) for animal care taking. Finally, we thank Gaëtan Jego for his comments on the manuscript.

Author contributions

Conceptualization, RC and LD; Funding acquisition, CT and LF; Resources, PF, CT, and LF; Investigation, RC, MB, MG, VC, VL, HC, AB, and AC; Validation, RC and MB; Formal analysis, RC; Writing—original draft, RC; Writing—review and editing, RC, LD, CB, PF, CT, and LF; Supervision, RC and LD.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

18_2019_3192_MOESM1_ESM.pdf (912 kb)
Supplementary material 1 (PDF 912 kb) Supplemental Figure 1. (A) Electron micrographs of a Vps13b+/+ (left panel) and a Vps13b∆Ex3/∆Ex3 (right panel) flagellum cross-section showing that the cytoskeletal structure of the flagellum is not affected by the lack of Vps13b. (B) Electron micrographs of a Vps13b+/+ (left panel) and a Vps13b∆Ex3/∆Ex3 (right panel) late spermatid cross-section at the developing middle piece showing that mitochondrial organization around the flagellum is not affected in mutant spermatids. (C) Hematoxylin/Eosin-stained testicular sections showing multinucleated giant late spermatids in Vps13b∆Ex3/∆Ex3 sections (right panel) but not Vps13b+/+sections (left panel). Those giant spermatids were sometimes highly vacuolated (arrow). Scale bar, 50 µm. (D) Electron micrographs of multinucleated early (left panel) and late (right panel) spermatids in a Vps13b∆Ex3/∆Ex3 ultra-thin section. The late spermatid presents once again with large vacuoles. (E) Electron micrographs showing unusually large syncytial pores (dashed squares) in the mutant testicular syncytium
18_2019_3192_MOESM2_ESM.pdf (656 kb)
Supplementary material 2 (PDF 656 kb) Supplemental Figure 2. Transcriptional activity related to acrosomogenesis is not severely affected in Vps13b∆Ex3/∆Ex3 mice. (A) Transcript levels of acrosomal genes Acrbp, Acrosin, Dpy19l2, Sp56, Spaca1, Spaca7, Zpbp1 and Zpbp2. (B) Transcript levels of factors required for proper acrosome biogenesis: Brdt, Cul4b, Dazap1, Ddx4, Hrb, Rfx2, Spata16, Tdrd6 and Vps54. As per Welch two sample t-test, no significant differences were measured between mutant and wild-type levels. Values are presented as the mean ± SD (N=3). (D) Ddx4 immunostaining on mutant and wild-type testicular sections. Scale bar, 10 µm. (E) Electron micrograph of a CB in a mutant spermatid. The CB is enlarged in the right panel
18_2019_3192_MOESM3_ESM.pdf (567 kb)
Supplementary material 3 (PDF 566 kb) Supplemental Figure 3. Acrosomal protein Spaca1 is not targeted to the anterior nuclear membrane in mutant spermatids. Spaca1 immunostaining on wild-type (A) and mutant (B) isolated spermatids. While Spaca1 displayed an inner acrosomal membrane localization throughout cap, acrosome and maturation phase, it appeared dispersed and in forms of vesicles within mutant spermatids. Spaca1 staining sometimes overlapped with PNA-positive vesicles thereby confirming the acrosomal content of those vesicles
18_2019_3192_MOESM4_ESM.pdf (377 kb)
Supplementary material 4 (PDF 377 kb) Supplemental Figure 4. Confirmation of the localization of PNA-positive vesicles to the endosome of cap phase Vps13b∆Ex3/∆Ex3 spermatids by confocal microscopy. Upper panels, wild-type spermatids. Lower panels, mutant spermatids. Scale bar, 10 µm
18_2019_3192_MOESM5_ESM.pdf (351 kb)
Supplementary material 5 (PDF 351 kb) Supplemental Figure 5. Confirmation of the targeting of an acrosomal protein (Spaca1) to the lysosome of cap phase Vps13b∆Ex3/∆Ex3 spermatids by confocal microscopy. Upper panels, wild-type spermatids. Lower panels, mutant spermatids. Scale bar, 10 µm
18_2019_3192_MOESM6_ESM.pdf (948 kb)
Supplementary material 6 (PDF 947 kb) Supplemental Figure 6. Impaired actin remodeling in Vps13b∆Ex3/∆Ex3 spermatids. (A) Images of testicular sections stained with F-actin, PNA and DAPI. In wild-type Sertoli cells, actin filaments organized at the ectoplasmic specialization over the spermatid acrosomal region in early acrosome phase (stage 9). Actin filaments remained associated with the spermatid head until the last stage of maturation phase (stage 16). Then, they dissociated from mature spermatids to reassemble over the acrosome of newly formed acrosome phase spermatids. This cyclic dynamic of actin filaments was not observed in mutant spermatids. Instead, they associated with the plasma membrane of early spermatids. Scale bar, 50 µm. Panel (B) provides a close-up image on early mutant spermatids. (C) Electron micrographs showing actin filaments associated with the plasma membrane of an early mutant spermatid (left panel) but not late mutant spermatid (right spermatid). (D) Electron micrograph of a perinuclear ring in a Vps13b+/+ early spermatid at the edge of the NDL. (E) Electron micrographs of an extremity of the NDL in a Vps13b∆Ex3/∆Ex3 early spermatid. Dashed squares highlight the NDL extremities and are enlarged in the right panels of (D) and (E). Cytoskeletal filaments constituting the perinuclear ring are missing at the NDL of Vps13b∆Ex3/∆Ex3 spermatids
18_2019_3192_MOESM7_ESM.pdf (711 kb)
Supplementary material 7 (PDF 710 kb) Supplemental Figure 7. Post-acrosome differentiation events still occur in Vps13b∆Ex3/∆Ex3 spermatids. (A) Spata6 staining of wild-type and mutant seminiferous tubules displaying spermatids in maturation phase. Though nuclear condensation was incomplete and acrosome was lacking, Vps13b∆Ex3/∆Ex3 spermatids displayed a perinuclear localization of Spata6 as in wild-type spermatids. This result suggests that expression and transport of middle piece proteins, unlike that of acrosomal proteins, are not entirely impaired in absence of Vps13b function. (B) β-Tubulin staining on wild-type and mutant testicular sections counterstained with PNA and DAPI. Both genotypes displayed microtubule polymerization during acrosome phase (stage9-12) and disassembly during maturation phase (stage 13-16). Microtubules in mutant spermatids failed to form the manchette structure seen in wild-type spermatids likely because of the lack of acrosomal components that allow their anchoring around the nucleus and not directly because of Vps13b function loss. In spite of the impaired actin remodeling seen in Supplemental Figure S4, Vps13b∆Ex3/∆Ex3 spermatids do not display impaired polymerization of microtubules during manchette formation. Scale bar, 10 µm
18_2019_3192_MOESM8_ESM.pdf (552 kb)
Supplementary material 8 (PDF 551 kb) Supplemental Figure 8. Loss of Vps13b detection in Vps13b∆Ex3/∆Ex3 spermatids. Using antibody Vps13baa64−412 to stain Vps13b∆Ex3/∆Ex3 isolated spermatids did not reveal any perinuclear staining but a faint background staining of the cell body remained. Using antibody Vps13baa103−121, no signal was detectable in Vps13b∆Ex3/∆Ex3 spermatids. This result suggests that, at least, Chorein domain-containing isoforms of Vps13b are lost in Vps13b∆Ex3/∆Ex3 spermatids
18_2019_3192_MOESM9_ESM.pdf (584 kb)
Supplementary material 9 (PDF 583 kb) Supplemental Figure 9. Vps13b and its interactor Rab6 locate to the acrosome. Representative images of wild-type spermatids in Golgi, cap, acrosome and maturation phases stained against Vps13b (A, antibody Vps13baa64−412) or Rab6 (B) and counterstained with PNA-FITC and DAPI. In contrast with Figure 8, stainings were performed on testis cryosections. Images of Rab6 staining on mutant spermatids are presented in the left panel of B. Results showed that Vps13b expression was increased in early spermatids compared to spermatogonia and spermatocytes and that the protein essentially localized to the pre-acrosome in Golgi phase and to the acrosomal inner membrane in cap and acrosome phase. Rab6 located to the Golgi apparatus of all spermatogenic cells. In addition, Rab6 followed the sequential acrosomal localization displayed by Vps13b in wild-type spermatids but not in mutants. In mutant testis sections, Rab6 was not detectable at displaced PNA-positive vesicles. It was only localized to the Golgi apparatus. This difference in staining may be due to differences in fixation and blocking which may prevent accessibility of the Rab6 epitopes at proacrosomal vesicles. Scale bars, 10 µm
18_2019_3192_MOESM10_ESM.xlsx (12 kb)
Supplementary material 10 (XLSX 11 kb)

Supplementary material 11 (MP4 1945 kb) Supplemental Movie 1. Recording of spermatozoa extracted from a Vps13b+/+ epididymis

Supplementary material 12 (MP4 2912 kb) Supplemental Movie 2. Recording of spermatozoa extracted from a Vps13b∆Ex3/∆Ex3 epididymis

References

  1. 1.
    Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N (2011) Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci USA 108:4892–4896.  https://doi.org/10.1073/pnas.1018202108 CrossRefPubMedGoogle Scholar
  2. 2.
    Kornbluth S, Fissore R (2015) Vertebrate Reproduction. Cold Spring Harb Perspect Biol 7:a006064.  https://doi.org/10.1101/cshperspect.a006064 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Foster JA, Gerton GL (2016) The acrosomal matrix. Adv Anat Embryol Cell Biol 220:15–33.  https://doi.org/10.1007/978-3-319-30567-7_2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yan W (2009) Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol Cell Endocrinol 306:24–32.  https://doi.org/10.1016/j.mce.2009.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dam AH, Feenstra I, Westphal JR, Ramos L, van Golde RJ, Kremer JA (2007) Globozoospermia revisited. Hum Reprod Update 13:63–75.  https://doi.org/10.1093/humupd/dml047 CrossRefPubMedGoogle Scholar
  6. 6.
    Tang XM, Lalli MF, Clermont Y (1982) A cytochemical study of the Golgi apparatus of the spermatid during spermiogenesis in the rat. Am J Anat 163:283–294.  https://doi.org/10.1002/aja.1001630402 CrossRefPubMedGoogle Scholar
  7. 7.
    Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, Yanagida K, Sato A, Toshimori K, Noda T (2002) Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci USA 99:11211–11216.  https://doi.org/10.1073/pnas.162027899 CrossRefPubMedGoogle Scholar
  8. 8.
    Han F, Liu C, Zhang L, Chen M, Zhou Y, Qin Y, Wang Y, Duo S, Cui X, Bao S, Gao F (2017) Globozoospermia and lack of acrosome formation in GM130-deficient mice. Cell Death Dis 8:e2532.  https://doi.org/10.1038/cddis.2016.414 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Moreno RD, Ramalho-Santos J, Sutovsky P, Chan EK, Schatten G (2000) Vesicular traffic and golgi apparatus dynamics during mammalian spermatogenesis: implications for acrosome architecture. Biol Reprod 63:89–98CrossRefPubMedGoogle Scholar
  10. 10.
    Ramalho-Santos J, Moreno RD, Wessel GM, Chan EK, Schatten G (2001) Membrane trafficking machinery components associated with the mammalian acrosome during spermiogenesis. Exp Cell Res 267:45–60.  https://doi.org/10.1006/excr.2000.5119 CrossRefPubMedGoogle Scholar
  11. 11.
    Yang WX, Sperry AO (2003) C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69:1719–1729.  https://doi.org/10.1095/biolreprod.102.014878 CrossRefPubMedGoogle Scholar
  12. 12.
    Berruti G, Paiardi C (2011) Acrosome biogenesis: revisiting old questions to yield new insights. Spermatogenesis 1:95–98.  https://doi.org/10.4161/spmg.1.2.16820 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Berruti G (2016) Towards defining an ‘origin’—the case for the mammalian acrosome. Semin Cell Dev Biol 59:46–53.  https://doi.org/10.1016/j.semcdb.2016.01.013 CrossRefPubMedGoogle Scholar
  14. 14.
    Tanii I, Toshimori K, Araki S, Oura C (1992) Extra-Golgi pathway of an acrosomal antigen during spermiogenesis in the rat. Cell Tissue Res 270:451–457CrossRefPubMedGoogle Scholar
  15. 15.
    West AP, Willison KR (1996) Brefeldin A and mannose 6-phosphate regulation of acrosomic related vesicular trafficking. Eur J Cell Biol 70:315–321PubMedGoogle Scholar
  16. 16.
    Li S, Qiao Y, Di Q, Le X, Zhang L, Zhang X, Zhang C, Cheng J, Zong S, Koide SS, Miao S, Wang L (2009) Interaction of SH3P13 and DYDC1 protein: a germ cell component that regulates acrosome biogenesis during spermiogenesis. Eur J Cell Biol 88:509–520.  https://doi.org/10.1016/j.ejcb.2009.05.001 CrossRefPubMedGoogle Scholar
  17. 17.
    Paiardi C, Pasini ME, Gioria M, Berruti G (2011) Failure of acrosome formation and globozoospermia in the wobbler mouse, a Vps54 spontaneous recessive mutant. Spermatogenesis 1:52–62.  https://doi.org/10.4161/spmg.1.1.14698 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schmitt-John T, Drepper C, Mussmann A, Hahn P, Kuhlmann M, Thiel C, Hafner M, Lengeling A, Heimann P, Jones JM, Meisler MH, Jockusch H (2005) Mutation of Vps54 causes motor neuron disease and defective spermiogenesis in the wobbler mouse. Nat Genet 37:1213–1215.  https://doi.org/10.1038/ng1661 CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu GD, Salazar G, Zlatic SA, Fiza B, Doucette MM, Heilman CJ, Levey AI, Faundez V, L’Hernault SW (2009) SPE-39 family proteins interact with the HOPS complex and function in lysosomal delivery. Mol Biol Cell 20:1223–1240.  https://doi.org/10.1091/mbc.E08-07-0728 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Berruti G, Paiardi C (2015) USP8/UBPy-regulated sorting and the development of sperm acrosome: the recruitment of MET. Reproduction 149:633–644.  https://doi.org/10.1530/REP-14-0671 CrossRefPubMedGoogle Scholar
  21. 21.
    Berruti G, Ripolone M, Ceriani M (2010) USP8, a regulator of endosomal sorting, is involved in mouse acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Biol Reprod 82:930–939.  https://doi.org/10.1095/biolreprod.109.081679 CrossRefPubMedGoogle Scholar
  22. 22.
    Wang H, Wan H, Li X, Liu W, Chen Q, Wang Y, Yang L, Tang H, Zhang X, Duan E, Zhao X, Gao F, Li W (2014) Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res 24:852–869.  https://doi.org/10.1038/cr.2014.70 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kolehmainen J, Black GC, Saarinen A, Chandler K, Clayton-Smith J, Traskelin AL, Perveen R, Kivitie-Kallio S, Norio R, Warburg M, Fryns JP, de la Chapelle A, Lehesjoki AE (2003) Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am J Hum Genet 72:1359–1369CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Seifert W, Holder-Espinasse M, Kuhnisch J, Kahrizi K, Tzschach A, Garshasbi M, Najmabadi H, Kuss AW, Kress W, Laureys G, Loeys B, Brilstra E, Mancini GMS, Dollfus H, Dahan K, Apse K, Hennies HC, Horn D (2009) Expanded mutational spectrum in cohen syndrome, tissue expression, and transcript variants of COH1. Hum Mutat 30:E404–E420.  https://doi.org/10.1002/humu.20886 CrossRefPubMedGoogle Scholar
  25. 25.
    Bugiani M, Gyftodimou Y, Tsimpouka P, Lamantea E, Katzaki E, d’Adamo P, Nakou S, Georgoudi N, Grigoriadou M, Tsina E, Kabolis N, Milani D, Pandelia E, Kokotas H, Gasparini P, Giannoulia-Karantana A, Renieri A, Zeviani M, Petersen MB (2008) Cohen syndrome resulting from a novel large intragenic COH1 deletion segregating in an isolated Greek island population. Am J Med Genet A 146A:2221–2226.  https://doi.org/10.1002/ajmg.a.32239 CrossRefPubMedGoogle Scholar
  26. 26.
    Seifert W, Holder-Espinasse M, Spranger S, Hoeltzenbein M, Rossier E, Dollfus H, Lacombe D, Verloes A, Chrzanowska KH, Maegawa GHB, Chitayat D, Kotzot D, Huhle D, Meinecke P, Albrecht B, Mathijssen I, Leheup B, Raile K, Hennies HC, Horn D (2006) Mutational spectrum of COH1 and clinical heterogeneity in Cohen syndrome. J Med Genet.  https://doi.org/10.1136/jmg.2005.039867 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mochida GH, Rajab A, Eyaid W, Lu A, Al-Nouri D, Kosaki K, Noruzinia M, Sarda P, Ishihara J, Bodell A, Apse K, Walsh CA (2004) Broader geographical spectrum of Cohen syndrome due to COH1 mutations. J Med Genet.  https://doi.org/10.1136/jmg.2003.014779 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hennies HC, Rauch A, Seifert W, Schumi C, Moser E, Al-Taji E, Tariverdian G, Chrzanowska KH, Krajewska-Walasek M, Rajab A, Giugliani R, Neumann TE, Eckl KM, Karbasiyan M, Reis A, Horn D (2004) Allelic heterogeneity in the COH1 gene explains clinical variability in Cohen syndrome. Am J Hum Genet 75:138–145.  https://doi.org/10.1086/422219 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Falk MJ, Feiler HS, Neilson DE, Maxwell K, Lee JV, Segall SK, Robin NH, Wilhelmsen KC, Traskelin AL, Kolehmainen J, Lehesjoki AE, Wiznitzer M, Warman ML (2004) Cohen syndrome in the Ohio Amish. Am J Med Genet A 128A:23–28.  https://doi.org/10.1002/ajmg.a.30033 CrossRefPubMedGoogle Scholar
  30. 30.
    El Chehadeh S, Aral B, Gigot N, Thauvin-Robinet C, Donzel A, Delrue MA, Lacombe D, David A, Burglen L, Philip N, Moncla A, Cormier-Daire V, Rio M, Edery P, Verloes A, Bonneau D, Afenjar A, Jacquette A, Heron D, Sarda P, Pinson L, Doray B, Vigneron J, Leheup B, Frances-Guidet AM, Dienne G, Holder M, Masurel-Paulet A, Huet F, Teyssier JR, Faivre L (2010) Search for the best indicators for the presence of a VPS13B gene mutation and confirmation of diagnostic criteria in a series of 34 patients genotyped for suspected Cohen syndrome. J Med Genet 47:549–553.  https://doi.org/10.1136/jmg.2009.075028 CrossRefPubMedGoogle Scholar
  31. 31.
    Seifert W, Kuhnisch J, Maritzen T, Horn D, Haucke V, Hennies HC (2011) Cohen syndrome-associated protein, COH1, is a novel, giant Golgi matrix protein required for Golgi integrity. J Biol Chem 286:37665–37675.  https://doi.org/10.1074/jbc.M111.267971 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Seifert W, Kuhnisch J, Maritzen T, Lommatzsch S, Hennies HC, Bachmann S, Horn D, Haucke V (2015) Cohen syndrome-associated protein COH1 physically and functionally interacts with the small GTPase RAB6 at the Golgi complex and directs neurite outgrowth. J Biol Chem 290:3349–3358.  https://doi.org/10.1074/jbc.M114.608174 CrossRefPubMedGoogle Scholar
  33. 33.
    Fridmann-Sirkis Y, Siniossoglou S, Pelham HR (2004) TMF is a golgin that binds Rab6 and influences Golgi morphology. BMC Cell Biol 5:18.  https://doi.org/10.1186/1471-2121-5-18 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fukuda M, Kanno E, Ishibashi K, Itoh T (2008) Large scale screening for novel Rab effectors reveals unexpected broad Rab binding specificity. Mol Cell Proteomics 7:1031–1042.  https://doi.org/10.1074/mcp.M700569-MCP200 CrossRefPubMedGoogle Scholar
  35. 35.
    Liewen H, Meinhold-Heerlein I, Oliveira V, Schwarzenbacher R, Luo G, Wadle A, Jung M, Pfreundschuh M, Stenner-Liewen F (2005) Characterization of the human GARP (Golgi associated retrograde protein) complex. Exp Cell Res 306:24–34.  https://doi.org/10.1016/j.yexcr.2005.01.022 CrossRefPubMedGoogle Scholar
  36. 36.
    Bonifacino JS, Hierro A (2011) Transport according to GARP: receiving retrograde cargo at the trans-Golgi network. Trends Cell Biol 21:159–167.  https://doi.org/10.1016/j.tcb.2010.11.003 CrossRefPubMedGoogle Scholar
  37. 37.
    Elkis Y, Bel S, Rahimi R, Lerer-Goldstein T, Levin-Zaidman S, Babushkin T, Shpungin S, Nir U (2015) TMF/ARA160 governs the dynamic spatial orientation of the Golgi apparatus during sperm development. PLoS One 10:e0145277.  https://doi.org/10.1371/journal.pone.0145277 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lerer-Goldshtein T, Bel S, Shpungin S, Pery E, Motro B, Goldstein RS, Bar-Sheshet SI, Breitbart H, Nir U (2010) TMF/ARA160: a key regulator of sperm development. Dev Biol 348:12–21.  https://doi.org/10.1016/j.ydbio.2010.07.033 CrossRefPubMedGoogle Scholar
  39. 39.
    Fari K, Takacs S, Ungar D, Sinka R (2016) The role of acroblast formation during Drosophila spermatogenesis. Biol Open 5:1102–1110.  https://doi.org/10.1242/bio.018275 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Duplomb L, Duvet S, Picot D, Jego G, El Chehadeh-Djebbar S, Marle N, Gigot N, Aral B, Carmignac V, Thevenon J, Lopez E, Riviere JB, Klein A, Philippe C, Droin N, Blair E, Girodon F, Donadieu J, Bellanne-Chantelot C, Delva L, Michalski JC, Solary E, Faivre L, Foulquier F, Thauvin-Robinet C (2014) Cohen syndrome is associated with major glycosylation defects. Hum Mol Genet 23:2391–2399.  https://doi.org/10.1093/hmg/ddt630 CrossRefPubMedGoogle Scholar
  41. 41.
    Nagata O, Nakamura M, Sakimoto H, Urata Y, Sasaki N, Shiokawa N, Sano A (2018) Mouse model of chorea-acanthocytosis exhibits male infertility caused by impaired sperm motility as a result of ultrastructural morphological abnormalities in the mitochondrial sheath in the sperm midpiece. Biochem Biophys Res Commun 503:915–920.  https://doi.org/10.1016/j.bbrc.2018.06.096 CrossRefPubMedGoogle Scholar
  42. 42.
    Gioria M, Pasini ME, Berruti G (2017) Dynamic of contribution of UBPy-sorted cargo to acrosome biogenesis: effects of its derailment in a mouse model of globozoospermia, the infertile Vps54 (L967Q) mutant. Cell Tissue Res 369:413–427.  https://doi.org/10.1007/s00441-017-2592-1 CrossRefPubMedGoogle Scholar
  43. 43.
    Doran J, Walters C, Kyle V, Wooding P, Hammett-Burke R, Colledge WH (2016) Mfsd14a (Hiat1) gene disruption causes globozoospermia and infertility in male mice. Reproduction 152:91–99.  https://doi.org/10.1530/REP-15-0557 CrossRefPubMedGoogle Scholar
  44. 44.
    Funaki T, Kon S, Tanabe K, Natsume W, Sato S, Shimizu T, Yoshida N, Wong WF, Ogura A, Ogawa T, Inoue K, Ogonuki N, Miki H, Mochida K, Endoh K, Yomogida K, Fukumoto M, Horai R, Iwakura Y, Ito C, Toshimori K, Watanabe T, Satake M (2013) The Arf GAP SMAP2 is necessary for organized vesicle budding from the trans-Golgi network and subsequent acrosome formation in spermiogenesis. Mol Biol Cell 24:2633–2644.  https://doi.org/10.1091/mbc.E13-05-0234 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fujihara Y, Satouh Y, Inoue N, Isotani A, Ikawa M, Okabe M (2012) SPACA1-deficient male mice are infertile with abnormally shaped sperm heads reminiscent of globozoospermia. Development 139:3583–3589.  https://doi.org/10.1242/dev.081778 CrossRefPubMedGoogle Scholar
  46. 46.
    Pierre V, Martinez G, Coutton C, Delaroche J, Yassine S, Novella C, Pernet-Gallay K, Hennebicq S, Ray PF, Arnoult C (2012) Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Development 139:2955–2965.  https://doi.org/10.1242/dev.077982 CrossRefPubMedGoogle Scholar
  47. 47.
    Haraguchi CM, Mabuchi T, Hirata S, Shoda T, Hoshi K, Akasaki K, Yokota S (2005) Chromatoid bodies: aggresome-like characteristics and degradation sites for organelles of spermiogenic cells. J Histochem Cytochem 53:455–465.  https://doi.org/10.1369/jhc.4A6520.2005 CrossRefPubMedGoogle Scholar
  48. 48.
    Meikar O, Da Ros M, Korhonen H, Kotaja N (2011) Chromatoid body and small RNAs in male germ cells. Reproduction 142:195–209.  https://doi.org/10.1530/REP-11-0057 CrossRefPubMedGoogle Scholar
  49. 49.
    Kotaja N, Sassone-Corsi P (2007) The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol 8:85–90.  https://doi.org/10.1038/nrm2081 CrossRefPubMedGoogle Scholar
  50. 50.
    Li YC, Hu XQ, Zhang KY, Guo J, Hu ZY, Tao SX, Xiao LJ, Wang QZ, Han CS, Liu YX (2006) Afaf, a novel vesicle membrane protein, is related to acrosome formation in murine testis. FEBS Lett 580:4266–4273.  https://doi.org/10.1016/j.febslet.2006.06.010 CrossRefPubMedGoogle Scholar
  51. 51.
    Sun X, Kovacs T, Hu YJ, Yang WX (2011) The role of actin and myosin during spermatogenesis. Mol Biol Rep 38:3993–4001.  https://doi.org/10.1007/s11033-010-0517-0 CrossRefPubMedGoogle Scholar
  52. 52.
    Kierszenbaum AL, Rivkin E, Tres LL (2003) Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell 14:4628–4640.  https://doi.org/10.1091/mbc.e03-04-0226 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lindsay AJ, Jollivet F, Horgan CP, Khan AR, Raposo G, McCaffrey MW, Goud B (2013) Identification and characterization of multiple novel Rab-myosin Va interactions. Mol Biol Cell 24:3420–3434.  https://doi.org/10.1091/mbc.E13-05-0236 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Miserey-Lenkei S, Bousquet H, Pylypenko O, Bardin S, Dimitrov A, Bressanelli G, Bonifay R, Fraisier V, Guillou C, Bougeret C, Houdusse A, Echard A, Goud B (2017) Coupling fission and exit of RAB6 vesicles at Golgi hotspots through kinesin-myosin interactions. Nat Commun 8:1254.  https://doi.org/10.1038/s41467-017-01266-0 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Patwardhan A, Bardin S, Miserey-Lenkei S, Larue L, Goud B, Raposo G, Delevoye C (2017) Routing of the RAB6 secretory pathway towards the lysosome related organelle of melanocytes. Nat Commun 8:15835.  https://doi.org/10.1038/ncomms15835 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Yamane J, Kubo A, Nakayama K, Yuba-Kubo A, Katsuno T, Tsukita S (2007) Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic. Exp Cell Res 313:3472–3485.  https://doi.org/10.1016/j.yexcr.2007.07.010 CrossRefPubMedGoogle Scholar
  57. 57.
    Kierszenbaum AL, Rivkin E, Tres LL, Yoder BK, Haycraft CJ, Bornens M, Rios RM (2011) GMAP210 and IFT88 are present in the spermatid golgi apparatus and participate in the development of the acrosome-acroplaxome complex, head-tail coupling apparatus and tail. Dev Dyn 240:723–736.  https://doi.org/10.1002/dvdy.22563 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kierszenbaum AL, Rivkin E, Tres LL (2003) The actin-based motor myosin Va is a component of the acroplaxome, an acrosome-nuclear envelope junctional plate, and of manchette-associated vesicles. Cytogenet Genome Res 103:337–344.  https://doi.org/10.1159/000076822 CrossRefPubMedGoogle Scholar
  59. 59.
    Siniossoglou S (2005) Affinity purification of Ypt6 effectors and identification of TMF/ARA160 as a Rab6 interactor. Methods Enzymol 403:599–607.  https://doi.org/10.1016/S0076-6879(05)03052-1 CrossRefPubMedGoogle Scholar
  60. 60.
    Miller VJ, Sharma P, Kudlyk TA, Frost L, Rofe AP, Watson IJ, Duden R, Lowe M, Lupashin VV, Ungar D (2013) Molecular insights into vesicle tethering at the golgi by the conserved oligomeric golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J Biol Chem 288:4229–4240.  https://doi.org/10.1074/jbc.M112.426767 CrossRefPubMedGoogle Scholar
  61. 61.
    Makaraci P, Kim K (2018) trans-Golgi network-bound cargo traffic. Eur J Cell Biol 97:137–149.  https://doi.org/10.1016/j.ejcb.2018.01.003 CrossRefPubMedGoogle Scholar
  62. 62.
    Hirata T, Fujita M, Nakamura S, Gotoh K, Motooka D, Murakami Y, Maeda Y, Kinoshita T (2015) Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport. Mol Biol Cell 26:3071–3084.  https://doi.org/10.1091/mbc.E14-11-1568 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Moreno RD, Palomino J, Schatten G (2006) Assembly of spermatid acrosome depends on microtubule organization during mammalian spermiogenesis. Dev Biol 293:218–227.  https://doi.org/10.1016/j.ydbio.2006.02.001 CrossRefPubMedGoogle Scholar
  64. 64.
    Su W, Mruk DD, Cheng CY (2013) Regulation of actin dynamics and protein trafficking during spermatogenesis–insights into a complex process. Crit Rev Biochem Mol Biol 48:153–172.  https://doi.org/10.3109/10409238.2012.758084 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Rogat AD, Miller KG (2002) A role for myosin VI in actin dynamics at sites of membrane remodeling during Drosophila spermatogenesis. J Cell Sci 115:4855–4865CrossRefPubMedGoogle Scholar
  66. 66.
    Row PE, Liu H, Hayes S, Welchman R, Charalabous P, Hofmann K, Clague MJ, Sanderson CM, Urbe S (2007) The MIT domain of UBPY constitutes a CHMP binding and endosomal localization signal required for efficient epidermal growth factor receptor degradation. J Biol Chem 282:30929–30937.  https://doi.org/10.1074/jbc.M704009200 CrossRefPubMedGoogle Scholar
  67. 67.
    Wanschers B, van de Vorstenbosch R, Wijers M, Wieringa B, King SM, Fransen J (2008) Rab6 family proteins interact with the dynein light chain protein DYNLRB1. Cell Motil Cytoskelet 65:183–196.  https://doi.org/10.1002/cm.20254 CrossRefGoogle Scholar
  68. 68.
    Kaufmann M, Bilbilis K, Kail M, Barnekow A (2005) Dynein light chain 2A–A link between the small GTPase Rab6 and the motor protein dynein. Eur J Cell Biol 84:73Google Scholar
  69. 69.
    Short B, Preisinger C, Schaletzky J, Kopajtich R, Barr FA (2002) The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol 12:1792–1795CrossRefPubMedGoogle Scholar
  70. 70.
    Kierszenbaum AL, Tres LL, Rivkin E, Kang-Decker N, van Deursen JM (2004) The acroplaxome is the docking site of Golgi-derived myosin Va/Rab27a/b-containing proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. Biol Reprod 70:1400–1410.  https://doi.org/10.1095/biolreprod.103.025346 CrossRefPubMedGoogle Scholar
  71. 71.
    Kierszenbaum AL, Tres LL (2004) The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol 67:271–284CrossRefPubMedGoogle Scholar
  72. 72.
    Lee PL, Ohlson MB, Pfeffer SR (2015) The Rab6-regulated KIF1C kinesin motor domain contributes to Golgi organization. Elife.  https://doi.org/10.7554/eLife.06029 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Shearman JR, Wilton AN (2011) A canine model of Cohen syndrome: trapped Neutrophil Syndrome. BMC Genom 12:258.  https://doi.org/10.1186/1471-2164-12-258 CrossRefGoogle Scholar
  74. 74.
    Birling MC, Dierich A, Jacquot S, Herault Y, Pavlovic G (2012) Highly-efficient, fluorescent, locus directed cre and FlpO deleter mice on a pure C57BL/6N genetic background. Genesis 50:482–489.  https://doi.org/10.1002/dvg.20826 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Romain Da Costa
    • 1
    • 2
    Email author
  • Morgane Bordessoules
    • 1
    • 2
  • Magali Guilleman
    • 3
  • Virginie Carmignac
    • 1
    • 4
  • Vincent Lhussiez
    • 1
  • Hortense Courot
    • 1
  • Amandine Bataille
    • 5
  • Amandine Chlémaire
    • 5
  • Céline Bruno
    • 1
    • 3
  • Patricia Fauque
    • 1
    • 3
  • Christel Thauvin
    • 1
    • 2
    • 6
  • Laurence Faivre
    • 1
    • 2
    • 7
  • Laurence Duplomb
    • 1
    • 2
  1. 1.Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche ComtéDijon CedexFrance
  2. 2.FHU TRANSLAD, CHU DijonDijonFrance
  3. 3.Laboratoire de Biologie de la Reproduction, Hôpital François MitterrandUniversité de BourgogneDijonFrance
  4. 4.Centre de Référence Maladies Génétique à Expression Cutanée MAGEC-Mosaique, CHU DijonDijonFrance
  5. 5.Plateforme d’Imagerie Cellulaire CellImaP/DimaCell, Inserm LNC UMR1231DijonFrance
  6. 6.Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU DijonDijonFrance
  7. 7.Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU DijonDijonFrance

Personalised recommendations