The molecular foundations of zygosis

  • Gareth Bloomfield


Zygosis is the generation of new biological individuals by the sexual fusion of gamete cells. Our current understanding of eukaryotic phylogeny indicates that sex is ancestral to all extant eukaryotes. Although sexual development is extremely diverse, common molecular elements have been retained. HAP2-GCS1, a protein that promotes the fusion of gamete cell membranes that is related in structure to certain viral fusogens, is conserved in many eukaryotic lineages, even though gametes vary considerably in form and behaviour between species. Similarly, although zygotes have dramatically different forms and fates in different organisms, diverse eukaryotes share a common developmental programme in which homeodomain-containing transcription factors play a central role. These common mechanistic elements suggest possible common evolutionary histories that, if correct, would have profound implications for our understanding of eukaryogenesis.


Reproduction Syngamy Evolution Homeoproteins Mitochondria Archaea 



  1. 1.
    Herranz G (2012) Origin of the terms embryo, gamete and zygote. Zygote 20:313–320CrossRefPubMedGoogle Scholar
  2. 2.
    Cavalier-Smith T (1995) Cell cycles, diplokaryosis and the archezoan origin of sex. Arch Protistenk 145:189–207CrossRefGoogle Scholar
  3. 3.
    Kondrashov AS (1997) Evolutionary genetics of life cycles. Annu Rev Ecol Syst 28:391–435CrossRefGoogle Scholar
  4. 4.
    Dacks J, Roger AJ (1999) The first sexual lineage and the relevance of facultative sex. J Mol Evol 48:779–783CrossRefPubMedGoogle Scholar
  5. 5.
    Speijer D, Lukeš J, Eliáš M (2015) Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. PNAS 112:8827–8834CrossRefPubMedGoogle Scholar
  6. 6.
    Pixell-Goodrich HLM (1915) Memoirs: on the life-history of the sporozoa of spatangoids, with observation on some allied forms. J Cell Sci s2(61):81–104Google Scholar
  7. 7.
    Dobell C (1914) A commentary on the genetics of the ciliate protozoa. J Gen 4:131–190CrossRefGoogle Scholar
  8. 8.
    Raper JR (1959) Sexual versatility and evolutionary processes in Fungi. Mycologia 51:107–124CrossRefGoogle Scholar
  9. 9.
    Saga Y, Okada H, Yanagisawa K (1983) Macrocyst development in Dictyostelium discoideum. II. Mating-type-specific cell fusion and acquisition of fusion-competence. J Cell Sci 60:157–168PubMedGoogle Scholar
  10. 10.
    Ishida K, Hata T, Urushihara H (2005) Gamete fusion and cytokinesis preceding zygote establishment in the sexual process of Dictyostelium discoideum. Dev Growth Differ 47:25–35CrossRefPubMedGoogle Scholar
  11. 11.
    Bloomfield G, Paschke P, Okamoto M et al (2019) Triparental inheritance in Dictyostelium. Proc Natl Acad Sci USA 116:2187–2192CrossRefPubMedGoogle Scholar
  12. 12.
    Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3:137–144CrossRefPubMedGoogle Scholar
  13. 13.
    Wong JL, Johnson MA (2010) Is HAP2-GCS1 an ancestral gamete fusogen? Trends Cell Biol 20:134–141CrossRefPubMedGoogle Scholar
  14. 14.
    Valansi C, Moi D, Leikina E et al (2017) Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens. J Cell Biol 216:571–581CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pinello JF, Lai AL, Millet JK et al (2017) Structure-function studies link class II viral fusogens with the ancestral gamete fusion protein HAP2. Curr Biol 27:651–660CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fédry J, Liu Y, Péhau-Arnaudet G et al (2017) The ancient gamete fusogen HAP2 is a eukaryotic class II fusion protein. Cell 168:904–915.e10CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hernández JM, Podbilewicz B (2017) The hallmarks of cell–cell fusion. Development 144:4481–4495CrossRefPubMedGoogle Scholar
  18. 18.
    Modis Y (2014) Relating structure to evolution in class II viral membrane fusion proteins. Curr Opin Virol 5:34–41CrossRefPubMedGoogle Scholar
  19. 19.
    Kielian M, Helenius A (1985) pH-induced alterations in the fusogenic spike protein of Semliki Forest virus. J Cell Biol 101:2284–2291CrossRefPubMedGoogle Scholar
  20. 20.
    Lescar J, Roussel A, Wien MW et al (2001) The fusion glycoprotein shell of semliki forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105:137–148CrossRefPubMedGoogle Scholar
  21. 21.
    Feng J, Dong X, Pinello J et al (2018) Fusion surface structure, function, and dynamics of gamete fusogen HAP2. Elife 7:e39772CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fedry J, Forcina J, Legrand P et al (2018) Evolutionary diversification of the HAP2 membrane insertion motifs to drive gamete fusion across eukaryotes. PLoS Biol 16:e2006357CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Baquero E, Fedry J, Legrand P et al (2019) Species-specific functional regions of the green alga gamete fusion protein HAP2 revealed by structural studies. Structure 27:113–124.e4CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2006) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat Cell Biol 8:64–71CrossRefPubMedGoogle Scholar
  25. 25.
    von Besser K, Frank AC, Johnson MA, Preuss D (2006) Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133:4761–4769CrossRefGoogle Scholar
  26. 26.
    Liu Y, Tewari R, Ning J et al (2008) The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev 22:1051–1068CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hirai M, Arai M, Mori T et al (2008) Male fertility of malaria parasites is determined by GCS1, a plant-type reproduction factor. Curr Biol 18:607–613CrossRefPubMedGoogle Scholar
  28. 28.
    Steele RE, Dana CE (2009) Evolutionary history of the HAP2/GCS1 gene and sexual reproduction in metazoans. PLoS One 4:e7680CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ebchuqin E, Yokota N, Yamada L et al (2014) Evidence for participation of GCS1 in fertilization of the starlet sea anemone Nematostella vectensis: implication of a common mechanism of sperm–egg fusion in plants and animals. Biochem Biophys Res Commun 451:522–528CrossRefPubMedGoogle Scholar
  30. 30.
    Cole ES, Cassidy-Hanley D, Pinello JF et al (2014) Function of the male-gamete-specific fusion protein HAP2 in a seven-sexed ciliate. Curr Biol 24:2168–2173CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Okamoto M, Yamada L, Fujisaki Y et al (2016) Two HAP2-GCS1 homologs responsible for gamete interactions in the cellular slime mold with multiple mating types: implication for common mechanisms of sexual reproduction shared by plants and protozoa and for male-female differentiation. Dev Biol 415:6–13CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sprunck S, Rademacher S, Vogler F et al (2012) Egg cell–secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–1097CrossRefPubMedGoogle Scholar
  33. 33.
    Liu Y, Pei J, Grishin N, Snell WJ (2015) The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction. Development 142:962–971CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wong JL, Leydon AR, Johnson MA (2010) HAP2(GCS1)-dependent gamete fusion requires a positively charged carboxy-terminal domain. PLoS Genet 6:e1000882CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mori T, Hirai M, Kuroiwa T, Miyagishima S (2010) The functional domain of GCS1-based gamete fusion resides in the amino terminus in plant and parasite species. PLoS One 5:e15957CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Heiman MG, Walter P (2000) Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating. J Cell Biol 151:719–730CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jin H, Carlile C, Nolan S, Grote E (2004) Prm1 prevents contact-dependent lysis of yeast mating pairs. Eukaryot Cell 3:1664–1673CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Aguilar PS, Engel A, Walter P (2007) The plasma membrane proteins Prm1 and Fig1 ascertain fidelity of membrane fusion during yeast mating. Mol Biol Cell 18:547–556CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Aguilar PS, Baylies MK, Fleissner A et al (2013) Genetic basis of cell-cell fusion mechanisms. Trends Genet 29:427–437CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fu C, Heitman J (2017) PRM1 and KAR5 function in cell–cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex. PLoS Genet 13:e1007113CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Aydin H, Sultana A, Li S et al (2016) Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex. Nature 534:562–565CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ohto U, Ishida H, Krayukhina E et al (2016) Structure of IZUMO1-JUNO reveals sperm-oocyte recognition during mammalian fertilization. Nature 534:566–569CrossRefPubMedGoogle Scholar
  43. 43.
    Herberg S, Gert KR, Schleiffer A, Pauli A (2018) The Ly6/uPAR protein Bouncer is necessary and sufficient for species-specific fertilization. Science 361:1029–1033CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846CrossRefPubMedGoogle Scholar
  45. 45.
    Liu Y, Misamore MJ, Snell WJ (2010) Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in a membrane block to polygamy in Chlamydomonas. Development 137(9):1473–1481CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nakel T, Tekleyohans DG, Mao Y et al (2017) Triparental plants provide direct evidence for polyspermy induced polyploidy. Nat Commun 8:1033CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Grossniklaus U (2017) Polyspermy produces tri-parental seeds in maize. Curr Biol 27:R1300–R1302CrossRefPubMedGoogle Scholar
  48. 48.
    Ferris PJ, Woessner JP, Goodenough UW (1996) A sex recognition glycoprotein is encoded by the plus mating-type gene fus1 of Chlamydomonas reinhardtii. MBoC 7:1235–1248CrossRefPubMedGoogle Scholar
  49. 49.
    Vještica A, Merlini L, Nkosi PJ, Martin SG (2018) Gamete fusion triggers bipartite transcription factor assembly to block re-fertilization. Nature 560:397–400CrossRefPubMedGoogle Scholar
  50. 50.
    Hull CM, Boily M-J, Heitman J (2005) Sex-specific homeodomain proteins Sxi1alpha and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot Cell 4:526–535CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rothschild L (1954) Polyspermy. Q Rev Biol 29:332–342CrossRefPubMedGoogle Scholar
  52. 52.
    Bianchi E, Wright GJ (2016) Sperm meets egg: the genetics of mammalian fertilization. Annu Rev Genet 50:93–111CrossRefPubMedGoogle Scholar
  53. 53.
    Beale KM, Leydon AR, Johnson MA (2012) Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. Curr Biol 22:1090–1094CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Maruyama D, Völz R, Takeuchi H et al (2015) Rapid elimination of the persistent synergid through a cell fusion mechanism. Cell 161:907–918CrossRefPubMedGoogle Scholar
  55. 55.
    Tekleyohans DG, Mao Y, Kägi C et al (2017) Polyspermy barriers: a plant perspective. Curr Opin Plant Biol 35:131–137CrossRefPubMedGoogle Scholar
  56. 56.
    Okada H, Hirota Y, Moriyama R et al (1986) Nuclear fusion in multinucleated giant cells during the sexual development of Dictyostelium discoideum. Dev Biol 118:95–102CrossRefGoogle Scholar
  57. 57.
    Abrams EW, Zhang H, Marlow FL et al (2012) Dynamic assembly of brambleberry mediates nuclear envelope fusion during early development. Cell 150:521–532CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ning J, Otto TD, Pfander C et al (2013) Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates. Genes Dev 27:1198–1215CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Rogers JV, Rose MD (2014) Kar5p is required for multiple functions in both inner and outer nuclear envelope fusion in Saccharomyces cerevisiae. G3 (Bethesda) 5:111–121CrossRefGoogle Scholar
  60. 60.
    Garg SG, Martin WF (2016) Mitochondria, the cell cycle, and the origin of sex via a syncytial eukaryote common ancestor. Genome Biol Evol 8:1950–1970CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Bowman JL, Sakakibara K, Furumizu C, Dierschke T (2016) Evolution in the cycles of life. Annu Rev Genet 50:133–154CrossRefPubMedGoogle Scholar
  62. 62.
    Strathern J, Hicks J, Herskowitz I (1981) Control of cell type in yeast by the mating type locus: the α1–α2 hypothesis. J Mol Biol 147:357–372CrossRefPubMedGoogle Scholar
  63. 63.
    Shepherd JCW, McGinnis W, Carrasco AE et al (1984) Fly and frog homoeo domains show homologies with yeast mating type regulatory proteins. Nature 310:70CrossRefPubMedGoogle Scholar
  64. 64.
    Dranginis AM (1990) Binding of yeast al and α2 as a heterodimer to the operator DNA of a haploid-specific gene. Nature 347:682CrossRefPubMedGoogle Scholar
  65. 65.
    Kelly M, Burke J, Smith M et al (1988) Four mating-type genes control sexual differentiation in the fission yeast. EMBO J 7:1537–1547CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kämper J, Reichmann M, Romeis T et al (1995) Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81:73–83CrossRefPubMedGoogle Scholar
  67. 67.
    Banham AH, Asante-Owusu RN, Gottgens B et al (1995) An N-terminal dimerization domain permits homeodomain proteins to choose compatible partners and initiate sexual development in the mushroom Coprinus cinereus. Plant Cell 7:773–783CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Derelle R, Lopez P, Guyader HL, Manuel M (2007) Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evolut Dev 9:212–219CrossRefGoogle Scholar
  69. 69.
    Joo S, Wang MH, Lui G et al (2018) Common ancestry of heterodimerizing TALE homeobox transcription factors across Metazoa and Archaeplastida. BMC Biol 16:136CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Levine RP, Ebersold WT (1960) The genetics and cytology of Chlamydomonas. Annu Rev Microbiol 14:197–216CrossRefPubMedGoogle Scholar
  71. 71.
    Goodenough UW, Armbrust EV, Campbell AM, Ferris PJ (1995) Molecular genetics of sexuality in Chlamydomonas. Annu Rev Plant Physiol Plant Mol Biol 46:21–44CrossRefGoogle Scholar
  72. 72.
    Lee J-H, Lin H, Joo S, Goodenough U (2008) Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell 133:829–840CrossRefPubMedGoogle Scholar
  73. 73.
    Nishimura Y, Shikanai T, Nakamura S et al (2012) Gsp1 triggers the sexual developmental program including inheritance of chloroplast DNA and mitochondrial DNA in Chlamydomonas reinhardtii. Plant Cell 24:2401–2414CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sakakibara K, Ando S, Yip HK et al (2013) KNOX2 genes regulate the haploid-to-diploid morphological transition in land plants. Science 339:1067–1070CrossRefPubMedGoogle Scholar
  75. 75.
    Horst NA, Katz A, Pereman I et al (2016) A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction. Nat Plants 2:15209CrossRefPubMedGoogle Scholar
  76. 76.
    Coelho SM, Peters AF, Charrier B et al (2007) Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene 406:152–170CrossRefPubMedGoogle Scholar
  77. 77.
    Coelho SM, Godfroy O, Arun A et al (2011) OUROBOROS is a master regulator of the gametophyte to sporophyte life cycle transition in the brown alga Ectocarpus. PNAS 108:11518–11523CrossRefPubMedGoogle Scholar
  78. 78.
    Arun A, Coelho SM, Peters AF et al (2019) Convergent recruitment of TALE homeodomain life cycle regulators to direct sporophyte development in land plants and brown algae. eLife 8:e43101CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Bloomfield G, Skelton J, Ivens A et al (2010) Sex determination in the social amoeba Dictyostelium discoideum. Science 330:1533–1536CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Hedgethorne K, Eustermann S, Yang J-C et al (2017) Homeodomain-like DNA binding proteins control the haploid-to-diploid transition in Dictyostelium. Sci Adv 3:e1602937CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Birky CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125–148CrossRefPubMedGoogle Scholar
  82. 82.
    Breton S, Stewart DT (2015) Atypical mitochondrial inheritance patterns in eukaryotes. Genome 58:423–431CrossRefPubMedGoogle Scholar
  83. 83.
    Sager R, Lane D (1972) Molecular basis of maternal inheritance. PNAS 69:2410–2413CrossRefPubMedGoogle Scholar
  84. 84.
    Boynton JE, Harris EH, Burkhart BD et al (1987) Transmission of mitochondrial and chloroplast genomes in crosses of Chlamydomonas. PNAS 84:2391–2395CrossRefPubMedGoogle Scholar
  85. 85.
    Yan Z, Hull CM, Heitman J et al (2004) SXI1alpha controls uniparental mitochondrial inheritance in Cryptococcus neoformans. Curr Biol 14:R743–R744CrossRefPubMedGoogle Scholar
  86. 86.
    Yan Z, Hull CM, Sun S et al (2007) The mating type-specific homeodomain genes SXI1α and SXI2a coordinately control uniparental mitochondrial inheritance in Cryptococcus neoformans. Curr Genet 51:187–195CrossRefPubMedGoogle Scholar
  87. 87.
    Nunnari J, Marshall WF, Straight A et al (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. MBoC 8:1233–1242CrossRefPubMedGoogle Scholar
  88. 88.
    Mehta K, Ananthanarayanan V (2019) Cortical tethering of mitochondria by the dynein anchor Mcp5 enables uniparental mitochondrial inheritance during fission yeast meiosis. bioRxiv 525196Google Scholar
  89. 89.
    Bloomfield G (2013) Sex in dictyostelia. In: Romeralo M, Baldauf S, Escalante R (eds) Dictyostelids: evolution, genomics and cell biology. Springer, Berlin, pp 129–148CrossRefGoogle Scholar
  90. 90.
    Hurst GD, Werren JH (2001) The role of selfish genetic elements in eukaryotic evolution. Nat Rev Genet 2:597–606CrossRefPubMedGoogle Scholar
  91. 91.
    Cleveland LR (1947) The origin and evolution of meiosis. Science 105:287–289CrossRefPubMedGoogle Scholar
  92. 92.
    Hurst LD, Nurse P (1991) A note on the evolution of meiosis. J Theor Biol 150:561–563CrossRefPubMedGoogle Scholar
  93. 93.
    Kondrashov AS (1994) Gradual origin of amphimixis by natural selection. Lect Math Life Sci 25:27–51Google Scholar
  94. 94.
    Crow JF, Kimura M (1965) Evolution in sexual and asexual populations. Am Nat 99:439–450CrossRefGoogle Scholar
  95. 95.
    Hickey DA (1982) Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101:519–531PubMedPubMedCentralGoogle Scholar
  96. 96.
    Hickey DA (1993) Molecular symbionts and the evolution of sex. J Hered 84:410–414CrossRefPubMedGoogle Scholar
  97. 97.
    Clark T (2018) HAP2/GCS1: mounting evidence of our true biological EVE? PLoS Biol 16:e3000007CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Koonin EV, Dolja VV, Krupovic M (2015) Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479–480:2–25CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Williams TA, Foster PG, Cox CJ, Embley TM (2013) An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504:231–236CrossRefPubMedGoogle Scholar
  100. 100.
    Raymann K, Brochier-Armanet C, Gribaldo S (2015) The two-domain tree of life is linked to a new root for the Archaea. PNAS 112:6670–6675CrossRefPubMedGoogle Scholar
  101. 101.
    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358CrossRefPubMedGoogle Scholar
  102. 102.
    Cunha VD, Gaia M, Gadelle D et al (2017) Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet 13:e1006810CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Spang A, Eme L, Saw JH et al (2018) Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet 14:e1007080CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Cunha VD, Gaia M, Nasir A, Forterre P (2018) Asgard archaea do not close the debate about the universal tree of life topology. PLoS Genet 14:e1007215CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Bergerat A, de Massy B, Gadelle D et al (1997) An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature 386:414CrossRefPubMedGoogle Scholar
  106. 106.
    Goodenough U, Heitman J (2014) Origins of eukaryotic sexual reproduction. Cold Spring Harb Perspect Biol 6:a016154CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Heitman J (2015) Evolution of sexual reproduction: a view from the fungal kingdom supports an evolutionary epoch with sex before sexes. Fungal Biol Rev 29:108–117CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Perrin N (2012) What uses are mating types? The “Developmental Switch” model. Evolution 66:947–956CrossRefPubMedGoogle Scholar
  109. 109.
    Medina EM, Turner JJ, Gordân R et al (2016) Punctuated evolution and transitional hybrid network in an ancestral cell cycle of fungi. Elife 5:e09492CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Templebridge Bio LtdLondonUK

Personalised recommendations