Cellular and Molecular Life Sciences

, Volume 76, Issue 24, pp 5011–5025 | Cite as

PGC-1α induced browning promotes involution and inhibits lactation in mammary glands

  • Elena Piccinin
  • Annalisa Morgano
  • Claudia Peres
  • Annalisa Contursi
  • Justine Bertrand-Michel
  • Maria Arconzo
  • Hervé Guillou
  • Gaetano Villani
  • Antonio MoschettaEmail author
Original Article


The PPARγ coactivator 1α (PGC-1α) is a transcriptional regulator of mitochondrial biogenesis and oxidative metabolism. Recent studies have highlighted a fundamental role of PGC-1α in promoting breast cancer progression and metastasis, but the physiological role of this coactivator in the development of mammary glands is still unknown. First, we show that PGC-1α is highly expressed during puberty and involution, but nearly disappeared in pregnancy and lactation. Then, taking advantage of a newly generated transgenic mouse model with a stable and specific overexpression of PGC-1α in mammary glands, we demonstrate that the re-expression of this coactivator during the lactation stage leads to a precocious regression of the mammary glands. Thus, we propose that PGC-1α action is non-essential during pregnancy and lactation, whereas it is indispensable during involution. The rapid preadipocyte–adipocyte transition, together with an increased rate of apoptosis promotes a premature mammary glands involution that cause lactation defects and pup growth retardation. Overall, we provide new insights in the comprehension of female reproductive cycles and lactation deficiency, thus opening new roads for mothers that cannot breastfeed.


Mammary glands Nuclear receptor Coactivator Development Adipocytes Involution 



Peroxisome proliferator-activated receptor gamma coactivator 1


Uncoupling protein 1


Mitochondrial transcription factor A


Mouse mammary tumor virus



We thank L. Salvatore and G. Di Tullio, for their invaluable help during the study, and J-M. Lobaccaro and J. Hardfeldth, for their help with the manuscript. A. Moschetta is funded by Italian Association for Cancer Research (AIRC, IG 18987), NR-NET FP7 Marie Curie People ITN and EU-JPI FATMAL 2017.

Author contributions

EP contributed to study design, performed experiments, analysed data and wrote the paper; AM contributed to study design, performed experiments and data analysis; CP, AC, JBM, MA and HG performed experiments; GV contributed to paper writing; AM designed the study, supervised the project and paper writing.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Ethics statement

The Ethical Committee of the Consorzio Mario Negri Sud and the University of Bari approved this experimental set-up, which also was certified by the Italian Ministry of Health in accordance with internationally accepted guidelines for animal care.

Supplementary material

18_2019_3160_MOESM1_ESM.tif (5.2 mb)
Supplementary Fig. 1 PGC-1α overexpression affects pups development. (A) hPGC-1α (white bars) and mPGC-1α (black bar) relative mRNA expression in different tissue specimens isolated from transgenic and wild type mice (n = 6) by real-time qPCR. TBP was used as housekeeping gene to normalize data and wild type mice was used as calibrators. Results are expressed as mean ± SEM. (B) Picture of wild-type and mmtvPGC-1α newborns at 21 days after birth. (C) Picture of wild type and mmtvPGC-1α newborns at 19 days after birth fostered by mmtvPGC-1α and wild-type mother, respectively. (TIFF 5283 kb)


  1. 1.
    Watson CJ, Kreuzaler PA (2011) Remodeling mechanisms of the mammary gland during involution. Int J Dev Biol 55:757–762PubMedGoogle Scholar
  2. 2.
    Neville MC (1999) Physiology of lactation. Clin Perinatol 26(251–79):vGoogle Scholar
  3. 3.
    Neville MC, Picciano MF (1997) Regulation of milk lipid secretion and composition. Annu Rev Nutr 17:159–183PubMedGoogle Scholar
  4. 4.
    Allen JC, Keller RP, Archer P, Neville MC (1991) Studies in human lactation: milk composition and daily secretion rates of macronutrients in the first year of lactation. Am J Clin Nutr 54:69–80PubMedGoogle Scholar
  5. 5.
    Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM (2003) Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res 44:1100–1112PubMedGoogle Scholar
  6. 6.
    Watson CJ (2006) Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res 8:203PubMedPubMedCentralGoogle Scholar
  7. 7.
    Morroni M, Giordano A, Zingaretti MC, Boiani R, De MR, Kahn BB, Nisoli E, Tonello C, Pisoschi C, Luchetti MM, Marelli M, Cinti S (2004) Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci USA 101:16801–16806Google Scholar
  8. 8.
    Giordano A, Perugini J, Kristensen DM, Sartini L, Frontini A, Kajimura S, Kristiansen K, Cinti S (2017) Mammary alveolar epithelial cells convert to brown adipocytes in post-lactating mice. J Cell Physiol 232:2923–2928PubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang QA, Song A, Chen W, Schwalie PC, Zhang F, Vishvanath L, Jiang L, Ye R, Shao M, Tao C, Gupta RK, Deplancke B, Scherer PE (2018) Reversible de-differentiation of mature white adipocytes into preadipocyte-like precursors during lactation. Cell Metab 28:282–288PubMedPubMedCentralGoogle Scholar
  10. 10.
    Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90PubMedPubMedCentralGoogle Scholar
  11. 11.
    Scarpulla RC (2002) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576:1–14PubMedGoogle Scholar
  12. 12.
    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801PubMedPubMedCentralGoogle Scholar
  14. 14.
    Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138PubMedGoogle Scholar
  15. 15.
    Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423:550–555PubMedGoogle Scholar
  16. 16.
    Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, Yan Z, Spiegelman BM (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282:30014–30021PubMedGoogle Scholar
  17. 17.
    Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183PubMedGoogle Scholar
  18. 18.
    Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839PubMedGoogle Scholar
  19. 19.
    McGuirk S, Gravel SP, Deblois G, Papadopoli DJ, Faubert B, Wegner A, Hiller K, Avizonis D, Akavia UD, Jones RG, Giguere V, St-Pierre J (2013) PGC-1alpha supports glutamine metabolism in breast cancer. Cancer Metab 1:22PubMedPubMedCentralGoogle Scholar
  20. 20.
    Audet-Walsh E, Papadopoli DJ, Gravel SP, Yee T, Bridon G, Caron M, Bourque G, Giguere V, St-Pierre J (2016) The PGC-1alpha/ERRalpha axis represses one-carbon metabolism and promotes sensitivity to anti-folate therapy in breast cancer. Cell Rep 14:920–931PubMedGoogle Scholar
  21. 21.
    LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, de Carvalho FM, Damascena A, Domingos Chinen LT, Rocha RM, Asara JM, Kalluri R (2014) PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16:992–1003PubMedPubMedCentralGoogle Scholar
  22. 22.
    Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH (1995) Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol 168:47–61PubMedGoogle Scholar
  23. 23.
    Stein T, Salomonis N, Gusterson BA (2007) Mammary gland involution as a multi-step process. J Mammary Gland Biol Neoplasia 12:25–35PubMedGoogle Scholar
  24. 24.
    Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De MR, Cinti S (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:E1244–E1253PubMedGoogle Scholar
  25. 25.
    Wang W, Lv N, Zhang S, Shui G, Qian H, Zhang J, Chen Y, Ye J, Xie Y, Shen Y, Wenk MR, Li P (2012) Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids. Nat Med 18:235–243PubMedGoogle Scholar
  26. 26.
    Zhou Z, Yon TS, Chen Z, Guo K, Ng CP, Ponniah S, Lin SC, Hong W, Li P (2003) Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet 35:49–56PubMedGoogle Scholar
  27. 27.
    Russell TD, Palmer CA, Orlicky DJ, Fischer A, Rudolph MC, Neville MC, McManaman JL (2007) Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. J Lipid Res 48:1463–1475PubMedGoogle Scholar
  28. 28.
    Straub BK, Gyoengyoesi B, Koenig M, Hashani M, Pawella LM, Herpel E, Mueller W, Macher-Goeppinger S, Heid H, Schirmacher P (2013) Adipophilin/perilipin-2 as a lipid droplet-specific marker for metabolically active cells and diseases associated with metabolic dysregulation. Histopathology 62:617–631PubMedGoogle Scholar
  29. 29.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359Google Scholar
  30. 30.
    Ahluwalia IB, Morrow B, Hsia J (2005) Why do women stop breastfeeding? Findings from the pregnancy risk assessment and monitoring system. Pediatrics 116:1408–1412PubMedGoogle Scholar
  31. 31.
    Lewallen LP, Dick MJ, Flowers J, Powell W, Zickefoose KT, Wall YG, Price ZM (2006) Breastfeeding support and early cessation. J Obstet Gynecol Neonatal Nurs 35:166–172PubMedGoogle Scholar
  32. 32.
    Seagroves TN, Hadsell D, McManaman J, Palmer C, Liao D, McNulty W, Welm B, Wagner KU, Neville M, Johnson RS (2003) HIF1alpha is a critical regulator of secretory differentiation and activation, but not vascular expansion, in the mouse mammary gland. Development 130:1713–1724PubMedGoogle Scholar
  33. 33.
    Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L (1997) Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11:179–186PubMedGoogle Scholar
  34. 34.
    Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, Edery M, Brousse N, Babinet C, Binart N, Kelly PA (1997) Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 11:167–178PubMedGoogle Scholar
  35. 35.
    Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344PubMedPubMedCentralGoogle Scholar
  36. 36.
    Wu J, Cohen P, Spiegelman BM (2013) Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 27:234–250PubMedPubMedCentralGoogle Scholar
  37. 37.
    Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 279:C670–C681PubMedGoogle Scholar
  38. 38.
    Cinti S (2009) Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab 297:E977–E986PubMedGoogle Scholar
  39. 39.
    Tsukiyama-Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A, Wu Z, Gingras AC, Katsume A, Elchebly M, Spiegelman BM, Harper ME, Tremblay ML, Sonenberg N (2001) Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat Med 7:1128–1132PubMedGoogle Scholar
  40. 40.
    Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468PubMedPubMedCentralGoogle Scholar
  41. 41.
    Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S (2014) White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol 170:R159–R171PubMedGoogle Scholar
  42. 42.
    Gouon-Evans V, Pollard JW (2002) Unexpected deposition of brown fat in mammary gland during postnatal development. Mol Endocrinol 16:2618–2627PubMedGoogle Scholar
  43. 43.
    Master SR, Hartman JL, D’Cruz CM, Moody SE, Keiper EA, Ha SI, Cox JD, Belka GK, Chodosh LA (2002) Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol Endocrinol 16:1185–1203PubMedGoogle Scholar
  44. 44.
    Jones LP, Buelto D, Tago E, Owusu-Boaitey KE (2011) Abnormal mammary adipose tissue environment of Brca1 mutant mice show a persistent deposition of highly vascularized multilocular adipocytes. J Cancer Sci Ther (Suppl 2):004Google Scholar
  45. 45.
    Klimcakova E, Chenard V, McGuirk S, Germain D, Avizonis D, Muller WJ, St-Pierre J (2012) PGC-1alpha promotes the growth of ErbB2/Neu-induced mammary tumors by regulating nutrient supply. Cancer Res 72:1538–1546PubMedGoogle Scholar
  46. 46.
    Millikan RC, Newman B, Tse CK, Moorman PG, Conway K, Dressler LG, Smith LV, Labbok MH, Geradts J, Bensen JT, Jackson S, Nyante S, Livasy C, Carey L, Earp HS, Perou CM (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109:123–139PubMedGoogle Scholar
  47. 47.
    Phipps AI, Malone KE, Porter PL, Daling JR, Li CI (2008) Reproductive and hormonal risk factors for postmenopausal luminal, HER-2-overexpressing, and triple-negative breast cancer. Cancer 113:1521–1526PubMedPubMedCentralGoogle Scholar
  48. 48.
    Lord SJ, Bernstein L, Johnson KA, Malone KE, McDonald JA, Marchbanks PA, Simon MS, Strom BL, Press MF, Folger SG, Burkman RT, Deapen D, Spirtas R, Ursin G (2008) Breast cancer risk and hormone receptor status in older women by parity, age of first birth, and breastfeeding: a case-control study. Cancer Epidemiol Biomark Prev 17:1723–1730Google Scholar
  49. 49.
    Connelly L, Barham W, Pigg R, Saint-Jean L, Sherrill T, Cheng DS, Chodosh LA, Blackwell TS, Yull FE (2010) Activation of nuclear factor kappa B in mammary epithelium promotes milk loss during mammary development and infection. J Cell Physiol 222:73–81PubMedPubMedCentralGoogle Scholar
  50. 50.
    Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370PubMedGoogle Scholar
  51. 51.
    Mobuchon L, Marthey S, Le GS, Laloe D, Le PF, Leroux C (2015) Food deprivation affects the miRNome in the lactating goat mammary gland. PLoS One 10:e0140111PubMedPubMedCentralGoogle Scholar
  52. 52.
    Han LQ, Li HJ, Wang YY, Zhu HS, Wang LF, Guo YJ, Lu WF, Wang YL, Yang GY (2010) mRNA abundance and expression of SLC27A, ACC, SCD, FADS, LPIN, INSIG, and PPARGC1 gene isoforms in mouse mammary glands during the lactation cycle. Genet Mol Res 9:1250–1257PubMedGoogle Scholar
  53. 53.
    Ivanova MM, Radde BN, Son J, Mehta FF, Chung SH, Klinge CM (2013) Estradiol and tamoxifen regulate NRF-1 and mitochondrial function in mouse mammary gland and uterus. J Mol Endocrinol 51:233–246PubMedPubMedCentralGoogle Scholar
  54. 54.
    Ma L, Qiu H, Chen Z, Li L, Zeng Y, Luo J, Gou D (2018) miR-25 modulates triacylglycerol and lipid accumulation in goat mammary epithelial cells by repressing PGC-1beta. J Anim Sci Biotechnol 9:48PubMedPubMedCentralGoogle Scholar
  55. 55.
    Rodriguez-Cruz M, Tovar AR, Palacios-Gonzalez B, Del PM, Torres N (2006) Synthesis of long-chain polyunsaturated fatty acids in lactating mammary gland: role of Delta5 and Delta6 desaturases, SREBP-1, PPARalpha, and PGC-1. J Lipid Res 47:553–560PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elena Piccinin
    • 1
  • Annalisa Morgano
    • 1
  • Claudia Peres
    • 1
    • 2
  • Annalisa Contursi
    • 3
  • Justine Bertrand-Michel
    • 4
  • Maria Arconzo
    • 2
  • Hervé Guillou
    • 5
  • Gaetano Villani
    • 6
  • Antonio Moschetta
    • 1
    • 7
    Email author
  1. 1.Department of Interdisciplinary Medicine“Aldo Moro” University of BariBariItaly
  2. 2.INBB, National Institute for Biostuctures and BiosystemsRomeItaly
  3. 3.Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT)“G. d’Annunzio” University of ChietiChietiItaly
  4. 4.MetaToul-Lipidomic Facility-MetaboHUB, INSERM UMR1048Institute of Cardiovascular and Metabolic Diseases, Université Paul SabatierToulouseFrance
  5. 5.Toxalim (Research Centre in Food Toxicology), Université de ToulouseUMR1331 INRA, ENVT, INP-Purpan, Université Paul SabatierToulouseFrance
  6. 6.Department of Basic Medical Sciences, Neurosciences and Sense Organs“Aldo Moro” University of BariBariItaly
  7. 7.National Cancer CenterIRCCS Istituto Tumori “Giovanni Paolo II”BariItaly

Personalised recommendations