Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 24, pp 4995–5009 | Cite as

Protein interacting with Amyloid Precursor Protein tail-1 (PAT1) is involved in early endocytosis

  • Aysegul Dilsizoglu Senol
  • Lidia Tagliafierro
  • Lucie Gorisse-Hussonnois
  • Florian Rebeillard
  • Léa Huguet
  • David Geny
  • Vincent Contremoulins
  • Fabian Corlier
  • Marie-Claude Potier
  • Stéphanie Chasseigneaux
  • Michèle Darmon
  • Bernadette AllinquantEmail author
Original Article

Abstract

Protein interacting with Amyloid Precursor Protein (APP) tail 1 (PAT1) also called APPBP2 or Ara 67 has different targets such as APP or androgen receptor and is expressed in several tissues. PAT1 is known to be involved in the subcellular trafficking of its targets. We previously observed in primary neurons that PAT1 is poorly associated with APP at the cell surface. Here we show that PAT1 colocalizes with vesicles close to the cell surface labeled with Rab5, Rab4, EEA1 and Rabaptin-5 but not with Rab11 and Rab7. Moreover, PAT1 expression regulates the number of EEA1 and Rab5 vesicles, and endocytosis/recycling of the transferrin receptor. In addition, low levels of PAT1 decrease the size of transferrin-colocalized EEA1 vesicles with time following transferrin uptake. Finally, overexpression of the APP binding domain to PAT1 is sufficient to compromise endocytosis. Altogether, these data suggest that PAT1 is a new actor in transferrin early endocytosis. Whether this new function of PAT1 may have consequences in pathology remains to be determined.

Keywords

PAT1 Neuron Endocytosis Transferrin uptake Caspase cleaved APP 

Notes

Acknowledgements

We thank Dr. Sanjay W. Pimplikar for mab26 to PAT1 and Dr. Marino Zerial for Rabaptin-5 antibody and Dr. Christophe Lamaze for helpful discussions. This work was supported by Institut National de la Santé et de la Recherche Médicale, France and by Fondation Jérôme Lejeune, France.

Compliance with ethical standards

Conflict of interest

There are no actual or potential conflicts of interests between the authors and this work.

Supplementary material

18_2019_3157_MOESM1_ESM.jpg (1 mb)
Fig. 1S PAT1 is also involved in mature neurons at 15 DIV. (a) Neurons at 15DIV were immunolabeled for PAT1 and EEA1 and for PAT1 and Rab5. Representative image is presented for both double immunolabelings. Enlarged inset is presented on the right. Scale bar: 10 µm; Scale bar of enlarged inset:5 µm. Pearson’s coefficient for soma and dendrites is presented for PAT1/EEA1 (30 cells analyzed) and for PAT1/Rab5 (30 cells analyzed). (b) Number of EEA1 vesicles per cell surface (µm2) are presented for soma and dendrites both in PAT1 siRNAs conditions and in control (Ctrl) in the absence of treatment (30 cells analyzed per condition). (c) Transferrin (Tf) uptake at 30 min in PAT1 siRNAs conditions and in control(Ctrl) in the absence of treatment is expressed in integrated density/cell (30 cells analyzed per condition). *p < 0.05; ***p < 0.001 (JPEG 1074 kb)
18_2019_3157_MOESM2_ESM.tif (4.2 mb)
Fig. 2S Colocalization of Transferrin uptake in EEA1 vesicles with time. (a) Mean volume of EEA1 vesicles in PAT1 siRNAs and Control (Ctrl) in the absence of treatment (50 cells analyzed in each condition). (b) Number of colocalized Transferrin/EEA1 vesicles in PAT1 siRNAs and Control (Ctrl) in the absence of treatment. Quantification is presented in vesicle number per cell volume (µm3) at different time points of transferrin uptake (30 cells analyzed in each condition). (c) Size of colocalizing EEA1/Transferrin with time. Representative images of EEA1/Transferrin are presented at 5, 10, 20 min after transferrin uptake in PAT1siRNAs and Control (Ctrl) conditions. Scale bar: 10 µm; Scale bar of enlarged inset:5 µm. Quantification of colocalized EEA1/Transferrin vesicle size at 10 and 20 min for PAT1 siRNAs and control (Ctrl) is expressed in  % (30 cells per condition). *p < 0.05; **p < 0.001 (TIFF 4311 kb)

References

  1. 1.
    Zheng P, Eastman J, Vande Pol S, Pimplikar SW (1998) PAT1, a microtubule-interacting protein, recognizes the basolateral sorting signal of amyloid precursor protein. Proc Natl Acad Sci USA 95:14745–14750PubMedGoogle Scholar
  2. 2.
    Zhang Y, Yang Y, Yeh S, Chang C (2004) ARA67/PAT1 functions as a repressor to suppress androgen receptor transactivation. Mol Cell Biol 24:1044–1057PubMedPubMedCentralGoogle Scholar
  3. 3.
    Benboudjema L, Mulvey M, Gao Y, Pimplikar SW, Mohr I (2003) Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides. J Virol 77:9192–9203PubMedPubMedCentralGoogle Scholar
  4. 4.
    Hirasawa A, Saito-Ohara F, Inoue J, Aoki D, Susumu N, Yokoyama T, Nozawa S, Inazawa J, Imoto I (2003) Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clin Cancer Res 9:1995–2004PubMedGoogle Scholar
  5. 5.
    Saito-Ohara F, Imoto I, Inoue J, Hosoi H, Nakagawara A, Sugimoto T, Inazawa J (2003) PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res 63:1876–1883PubMedGoogle Scholar
  6. 6.
    Ehrbrecht A, Muller U, Wolter M, Hoischen A, Koch A, Radlwimmer B, Actor B, Mincheva A, Pietsch T, Lichter P, Reifenberger G, Weber RG (2006) Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 208:554–563PubMedGoogle Scholar
  7. 7.
    Gao Y, Pimplikar SW (2001) The gamma -secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc Natl Acad Sci USA 98:14979–14984PubMedGoogle Scholar
  8. 8.
    Hsu CL, Chen YL, Ting HJ, Lin WJ, Yang Z, Zhang Y, Wang L, Wu CT, Chang HC, Yeh S, Pimplikar SW, Chang C (2005) Androgen Receptor (AR) NH2-and CooH-Terminal interactions result in the differential influences on the AR-mediated transactivation and cell growth. Mol Endocrinol 19:350–361PubMedGoogle Scholar
  9. 9.
    Dilsizoglu Senol A, Tagliafierro L, Huguet L, Gorisse-Hussonnois L, Chasseigneaux S, Allinquant B (2015) PAT1 inversely regulates the surface amyloid precursor protein level in mouse primary neurons. BMC Neurosci 16:10PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kuan YH, Gruebl T, Soba P, Eggert S, Nesic I, Back S, Kirsch J, Beyreuther K, Kins S (2006) PAT1a modulates intracellular transport and processing of amyloid precursor protein (APP), APLP1, and APLP2. J Biol Chem 281:40114–40123PubMedGoogle Scholar
  11. 11.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMedPubMedCentralGoogle Scholar
  12. 12.
    Selkoe DJ, Wolfe MS (2007) Presenilin: running with scissors in the membrane. Cell 131:215–221PubMedGoogle Scholar
  13. 13.
    Haass C, Koo EH, Capell A, Teplow DB, Selkoe DJ (1995) Polarized sorting of beta-amyloid precursor protein and its proteolytic products in MDCK cells is regulated by two independent signals. J Cell Biol 128:537–547PubMedGoogle Scholar
  14. 14.
    Lai A, Sisodia SS, Trowbridge IS (1995) Characterization of sorting signals in the beta-amyloid precursor protein cytoplasmic domain. J Biol Chem 270:3565–3573PubMedGoogle Scholar
  15. 15.
    McClelland A, Kükn LC, Ruddle FH (1984) The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell 30:267–274Google Scholar
  16. 16.
    Briand S, Facchinetti P, Clamagirand C, Madeira A, Pommet JM, Pimplikar SW, Allinquant B (2011) PAT1 induces cell death signal and SET mislocalization into the cytoplasm by increasing APP/APLP2 at the cell surface. Neurobiol Aging 32:1099–1113PubMedGoogle Scholar
  17. 17.
    Chasseigneaux S, Dinc L, Rose C, Chabret C, Coulpier F, Topilko P, Mauger G, Allinquant B (2011) Secreted amyloid precursor protein beta and secreted amyloid precursor protein alpha induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS One 6:e16301PubMedPubMedCentralGoogle Scholar
  18. 18.
    Bertrand E, Brouillet E, Caillé I, Bouillot C, Cole GM, Prochiantz A, Allinquant B (2001) A short cytoplasmic domain of the amyloid precursor protein induces apoptosis in vitro and in vivo. Mol Cell Neurosci 18:503–511PubMedGoogle Scholar
  19. 19.
    Madeira A, Pommet JM, Prochiantz A, Allinquant B (2005) SET protein (TAF1beta, I2PP2A) is involved in neuronal apoptosis induced by an amyloid precursor protein cytoplasmic subdomain. Faseb J 19:1905–1907PubMedGoogle Scholar
  20. 20.
    Serra J (1982) Image analysis and mathematical morphology, vol 1. Academic Press, London, pp 1–610Google Scholar
  21. 21.
    Mu FT, Callaghan JM, Steele-Mortimer O, Stenmark H, Parton RG, Campbell PL, McCluskey J, Yeo JP, Tock EP, Toh BH (1995) EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine “fingers” and contains a calmodulin-binding IQ motif. J Biol Chem 270:13503–13511PubMedGoogle Scholar
  22. 22.
    Stenmark H, Aasland R, Toh BH, d’Arrigo A (1996) Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem 271:24048–24054PubMedGoogle Scholar
  23. 23.
    Simonsen A, Lippé R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394:494–498PubMedGoogle Scholar
  24. 24.
    Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525PubMedGoogle Scholar
  25. 25.
    Vandinger-Ness A, Zerial M (2014) Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 6:a022616.  https://doi.org/10.1101/cshperspect.a022616 CrossRefGoogle Scholar
  26. 26.
    Stenmark H, Parton RG, Steele-Mortimer O, Lutcke A, Gruenberg J, Zerial M (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 13:1287–1296PubMedPubMedCentralGoogle Scholar
  27. 27.
    Lakadamyali M, Rust MJ, Zhuang X (2006) Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124:997–1009PubMedPubMedCentralGoogle Scholar
  28. 28.
    Leonard D, Hayakawa A, Lawe D, Lambright D, Belive KD, Stanley C, Lifshitz LM, Fogarty KE, Corvera S (2008) Sorting of EGF and transferrin at the plasma membrane and by cargo-specific signaling to EEA1-enriched endosomes. J Cell Sci 121:3445–3458PubMedPubMedCentralGoogle Scholar
  29. 29.
    Seo SB, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D (2001) Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 104:119–130PubMedGoogle Scholar
  30. 30.
    Compagnone NA, Zhang P, Vigne JL, Mellon SH (2000) Novel role for the nuclear phosphoprotein SET in transcriptional activation of P450c17 and initiation of neurosteroidogenesis. Mol Endocrinol 14:875–888PubMedGoogle Scholar
  31. 31.
    Li M, Makkinje A, Damuni Z (1996) The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem 271:11059–11062PubMedGoogle Scholar
  32. 32.
    Facchinetti P, Dorard E, Contremoulins V, Gaillard MC, Deglon N, Sazdovitch V, Guihenneuc-Jouyaux C, Brouillet E, Duyckaerts C, Allinquant B (2014) SET translocation is associated with increase in caspase cleaved amyloid precursor protein in CA1 of Alzheimer and Down syndrome patients. Neurobiol Aging 35:958–968PubMedGoogle Scholar
  33. 33.
    Mayle KM, Le AM, Kamei DT (2012) The intracellular trafficking pathway of transferrin. Biochem Biophys Acta 1820:264–281PubMedGoogle Scholar
  34. 34.
    Stenmark H, Vitale G, Ullrich O, Zerial M (1995) Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83:423–432PubMedGoogle Scholar
  35. 35.
    Vitale G, Rybin V, Christoforidis S, Thornqvist P, McCaffrey M, Stenmark H, Zerial M (1998) Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J 17:1941–1951PubMedPubMedCentralGoogle Scholar
  36. 36.
    Pagano A, Crottet P, Prescianotto-Baschong C, Spies M (2004) In vitro formation of recycling vesicles from endosomes requires adaptor protein-1/clathrin and is regulated by rab4 and the connector rabaptin-5. Mol Biol Cell 15:4990–5000PubMedPubMedCentralGoogle Scholar
  37. 37.
    Grady EF, Gamp PD, Jones E, Baluk P, McDonald DM, Payan DG, Bunnett NW (1996) Endocytosis and recycling of neurokinin 1 receptors in enteric neurons. Neuroscience 79:1239–1254Google Scholar
  38. 38.
    Shen A, Nieves-Citron M, Deng Y, Shi Q, Chowdhury D, Qi J, Hell JW, Navedo MF, Xiang YK (2018) Functionally distinct and selectively phosphorylated GPCR subpopulations co-exist in a single cell. Nat Commun 9:1050.  https://doi.org/10.1038/s41467-018-03459-7 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu K, Lei R, Li Q, Wang XX, Wu Q, An P, Zhang J, Zhu M, Xu Z, Hong Y, Wang F, Shen Y, Li H, Li H (2016) Transferrin receptor controls AMPA receptor trafficking efficiency and synaptic plasticity. Sci Rep 6:21019PubMedPubMedCentralGoogle Scholar
  40. 40.
    Zeigerer A, Gilleron J, Bogorad RL, Marsico G, Nonaka H, Seifert S, Epstein-Barash H, Kuchimanchi S, Peng CG, Ruda VM, del Conte-Zerial P, Hengstler JG, Kalaidzikis Y, Koteliansky V, Zerial M (2012) Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485:465–470PubMedGoogle Scholar
  41. 41.
    Kroenke CD, Ziemnicka-Kotula D, Xu J, Kotula L, Palmer AG 3rd (1997) Solution conformations of a peptide containing the cytoplasmic domain sequence of the beta amyloid precursor protein. Biochemistry 36:8145–8152PubMedGoogle Scholar
  42. 42.
    Ayala-Grosso C, Ng G, Roy S, Robertson GS (2002) Caspase-cleaved amyloid precursor protein in Alzheimer’s disease. Brain Pathol 12:430–441PubMedGoogle Scholar
  43. 43.
    Banwait S, Galvan V, Zhang J, Gorostiza OF, Ataie M, Huang W, Crippen D, Koo EH, Bredesen DE (2008) C-terminal cleavage of the amyloid-beta protein precursor at Asp664: a switch associated with Alzheimer’s disease. J Alzheimers Dis 13:1–16PubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhao M, Su J, Head E, Cotman CW (2003) Accumulation of caspase cleaved amyloid precursor protein represents an early neurodegenerative event in aging and in Alzheimer’s disease. Neurobiol Dis 14:391–403PubMedGoogle Scholar
  45. 45.
    Dorard E, Gorisse-Hussonnois L, Guihenneuc-Jouyaux C, Albac C, Potier MC, Allinquant B (2016) Increases of SET level and translocation are correlated with tau hyperphosphorylation at ser202/thr205 in CA1 of Ts65Dn mice. Neurobiol Aging 46:43–48PubMedGoogle Scholar
  46. 46.
    Cataldo AM, Barnett JL, Pieroni C, Nixon RA (1997) Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J Neurosci 17:6142–6151PubMedPubMedCentralGoogle Scholar
  47. 47.
    Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157:277–286PubMedPubMedCentralGoogle Scholar
  48. 48.
    Cataldo AM, Mathews PM, Boiteau AB, Hassinger LC, Peterhoff CM, Jiang Y, Mullaney K, Neve RL, Gruenberg J, Nixon RA (2008) Down syndrome fibroblast model of Alzheimer-related endosome pathology: accelerated endocytosis promotes late endocytic defects. Am J Pathol 173:370–384PubMedPubMedCentralGoogle Scholar
  49. 49.
    Xu W, Fang F, Ding J, Wu C (2018) Dysregulation of Rab5-mediated endocytic pathways in Alzheimer’s disease. Traffic 19:253–262PubMedPubMedCentralGoogle Scholar
  50. 50.
    Cossec JC, Lavaur J, Berman DE, Rivals I, Hoischen A, Stora S, Ripoll C, Mircher C, Gratteau Y, OlivoMarin JC, de Chaumont F, Lecourtois M, Antonarakis SE, Veltman JA, Delabar JM, Duyckaerts C, di Paolo G, Potier MC (2012) Trisomy for synaptojanin1 in down syndrome is functionally linked to the enlargement of early endosomes. Hum Mol Genet 21:3156–3172PubMedPubMedCentralGoogle Scholar
  51. 51.
    Kim S, Sato Y, Mohan PS, Peterhoff C, Pensalfini A, Rigoglioso A, Jiang Y, Nixon RA (2016) Evidence that the rab5 effector APPL1 mediates APP-ßCTF-induced dysfunction of endosomes in down syndrome and Alzheimer’s disease. Mol Psychiatry 21:707–716PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aysegul Dilsizoglu Senol
    • 1
  • Lidia Tagliafierro
    • 1
    • 2
  • Lucie Gorisse-Hussonnois
    • 1
  • Florian Rebeillard
    • 1
  • Léa Huguet
    • 1
  • David Geny
    • 1
  • Vincent Contremoulins
    • 3
  • Fabian Corlier
    • 4
  • Marie-Claude Potier
    • 4
  • Stéphanie Chasseigneaux
    • 1
    • 5
  • Michèle Darmon
    • 1
  • Bernadette Allinquant
    • 1
    Email author
  1. 1.Faculté de MédecineUMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris CitéParisFrance
  2. 2.Department of NeurologyDuke University Medical CenterDurhamUSA
  3. 3.ImagoSeine, Institut Jacques MonodUMR 7592, CNRS and Université Paris DiderotParisFrance
  4. 4.Institut du Cerveau et la Moelle épinière, ICMINSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127ParisFrance
  5. 5.INSERM U1144, Université Paris Descartes and Université Paris Diderot UMR-S 1144ParisFrance

Personalised recommendations