Cellular and Molecular Life Sciences

, Volume 76, Issue 24, pp 4945–4959 | Cite as

Regulation of AMPK activity by type 10 adenylyl cyclase: contribution to the mitochondrial biology, cellular redox and energy homeostasis

  • Vignesh Jayarajan
  • Avinash Appukuttan
  • Muhammad Aslam
  • Peter Reusch
  • Vera Regitz-Zagrosek
  • Yury LadilovEmail author
Original Article


The downregulation of AMP-activated protein kinase (AMPK) activity contributes to numerous pathologies. Recent reports suggest that the elevation of cellular cAMP promotes AMPK activity. However, the source of the cAMP pool that controls AMPK activity remains unknown. Mammalian cells possess two cAMP sources: membrane-bound adenylyl cyclase (tmAC) and intracellularly localized, type 10 soluble adenylyl cyclase (sAC). Due to the localization of sAC and AMPK in similar intracellular compartments, we hypothesized that sAC may control AMPK activity. In this study, sAC expression and activity were manipulated in H9C2 cells, adult rat cardiomyocytes or endothelial cells. sAC knockdown depleted the cellular cAMP content and decreased AMPK activity in an EPAC-dependent manner. Functionally, sAC knockdown reduced cellular ATP content, increased mitochondrial ROS formation and led to mitochondrial depolarization. Furthermore, sAC downregulation led to EPAC-dependent mitophagy disturbance, indicated by an increased mitochondrial mass and unaffected mitochondrial biogenesis. Consistently, sAC overexpression or stimulation with bicarbonate significantly increased AMPK activity and cellular ATP content. In contrast, tmAC inhibition or stimulation produced no effect on AMPK activity. Therefore, the sAC–EPAC axis may regulate basal and induced AMPK activity and support mitophagy, cellular energy and redox homeostasis. The study argues for sAC as a potential target in treating pathologies associated with AMPK downregulation.





Acetyl-CoA carboxylase


Adenosine monophosphate


Adenosine diphosphate


AMP-activated protein kinase


Adenosine triphosphate


3′-5′-Cyclic adenosine monophosphate


Cyan fluorescence protein


Dynamin-like protein 1


Exchange protein activated by cAMP


Föster resonance energy transfer


Green fluorescence protein


Liver kinase B1


Mitochondrial fission factor




Peroxisome proliferator-activated receptor‑γ co-activator 1α


Protein kinase A


Reactive oxygen species


Soluble adenylyl cyclase


Mitochondrial transcription factor A


Transmembrane adenylyl cyclase


unc-51 like autophagy activating kinase 1


Yellow fluorescence protein



We would like to express our gratitude to N. Haritonow, A. Kuehne, V. Riese, S. Pozdniakova and E. Dworatzek for their assistance with the theoretical and technical components of this research. This study was supported by the European Union (Radox Grant FP7-PEOPLE-2012-ITN) to VRZ, by DZHK (German Centre for Cardiovascular Research) partner site Berlin (Grant 81Z2100201) to VRZ and by Margarete-Ammon foundation to VRZ. Parts of the study were part of V. Jayarajan’s thesis project submitted in fulfillment of the requirements for the degree of Doctor of Philosophy at the Freie Universität Berlin (Germany).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

18_2019_3152_MOESM1_ESM.pdf (495 kb)
Supplementary material 1 (PDF 496 kb)


  1. 1.
    Jeon S-M (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48(7):e245–e245. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135. CrossRefPubMedGoogle Scholar
  3. 3.
    Fryer LG, Parbu-Patel A, Carling D (2002) The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277(28):25226–25232. CrossRefPubMedGoogle Scholar
  4. 4.
    Hawley SA, Gadalla AE, Olsen GS, Hardie DG (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51(8):2420CrossRefGoogle Scholar
  5. 5.
    Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288.; Accessed 29 Mar 2019CrossRefGoogle Scholar
  6. 6.
    Dagon Y, Hur E, Zheng B, Wellenstein K, Cantley LC, Kahn BB (2012) p70S6 kinase phosphorylates AMPK on serine 491 to mediate Leptin’s effect on food intake. Cell Metab 16(1):104–112. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG (2014) Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem J 459(2):275–287. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sinha RA, Singh BK, Zhou J, Wu Y, Farah BL, Ohba K, Lesmana R, Gooding J, Bay B-H, Yen PM (2015) Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy 11(8):1341–1357. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Coughlan KA, Valentine RJ, Sudit BS, Allen K, Dagon Y, Kahn BB, Ruderman NB, Saha AK (2016) PKD1 inhibits AMPKα2 through phosphorylation of serine 491 and impairs insulin signaling in skeletal muscle cells. J Biol Chem 291(11):5664–5675. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    M-l Chen, Yi L, Jin X, X-y Liang, Zhou Y, Zhang T, Xie Q, Zhou X, Chang H, Y-j Fu, J-d Zhu, Q-y Zhang, M-t Mi (2013) Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy 9(12):2033–2045. CrossRefGoogle Scholar
  11. 11.
    Park S-J, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Omar B, Zmuda-Trzebiatowska E, Manganiello V, Göransson O, Degerman E (2009) Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell Signal 21(5):760–766. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ferretti AC, Tonucci FM, Hidalgo F, Almada E, Larocca MC, Favre C (2016) AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget 7(14):17815–17828. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hurley RL, Barre LK, Wood SD, Anderson KA, Kemp BE, Means AR, Witters LA (2006) Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J Biol Chem 281(48):36662–36672. CrossRefPubMedGoogle Scholar
  15. 15.
    Kimball SR, Siegfried BA, Jefferson LS (2004) Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. J Biol Chem 279(52):54103–54109. CrossRefPubMedGoogle Scholar
  16. 16.
    Damm E, Buech TRH, Gudermann T, Breit A (2012) Melanocortin-induced PKA activation inhibits AMPK activity via ERK-1/2 and LKB-1 in hypothalamic GT1-7 cells. Mol Endocrinol (Baltimore, Md) 26(4):643–654. CrossRefGoogle Scholar
  17. 17.
    Agarwal SR, Clancy CE, Harvey RD (2016) Mechanisms restricting diffusion of intracellular cAMP. Sci Rep 6:19577. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA, Levin LR, Buck J (2002) Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J 17(1):82–84. CrossRefPubMedGoogle Scholar
  19. 19.
    Rahman N, Ramos-Espiritu L, Milner TA, Buck J, Levin LR (2016) Soluble adenylyl cyclase is essential for proper lysosomal acidification. J Gen Physiol 148(4):325–339. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kumar S, Kostin S, Flacke J-P, Reusch HP, Ladilov Y (2009) Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J Biol Chem 284(22):14760–14768. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Klarenbeek J, Goedhart J, van Batenburg A, Groenewald D, Jalink K (2015) Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity. PLoS One 10(4):e0122513–e0122513. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pozdniakova S, Guitart-Mampel M, Garrabou G, Di Benedetto G, Ladilov Y, Regitz-Zagrosek V (2018) 17beta-Estradiol reduces mitochondrial cAMP content and cytochrome oxidase activity in a phosphodiesterase 2-dependent manner. Br J Pharmacol 175(20):3876–3890. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytom A 61(2):162–169. CrossRefGoogle Scholar
  24. 24.
    Appukuttan A, Kasseckert SA, Micoogullari M, Flacke J-P, Kumar S, Woste A, Abdallah Y, Pott L, Reusch HP, Ladilov Y (2012) Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. Cardiovasc Res 93(2):340–349. CrossRefPubMedGoogle Scholar
  25. 25.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Investig 108(8):1167–1174. CrossRefPubMedGoogle Scholar
  26. 26.
    Djouder N, Tuerk RD, Suter M, Salvioni P, Thali RF, Scholz R, Vaahtomeri K, Auchli Y, Rechsteiner H, Brunisholz RA, Viollet B, Mäkelä TP, Wallimann T, Neumann D, Krek W (2010) PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J 29(2):469–481. CrossRefPubMedGoogle Scholar
  27. 27.
    Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289(5479):625–628. CrossRefPubMedGoogle Scholar
  28. 28.
    Steegborn C (2014) Structure, mechanism, and regulation of soluble adenylyl cyclases—similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta Mol Basis Dis 1842(12, Part B):2535–2547. CrossRefGoogle Scholar
  29. 29.
    Pozdniakova S, Ladilov Y (2018) Functional significance of the Adcy10-dependent intracellular cAMP compartments. J Cardiovasc Dev Dis 5(2):29. CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of “soluble” adenylyl cyclase: synergism between calcium and bicarbonate. J Biol Chem 278(18):15922–15926. CrossRefPubMedGoogle Scholar
  31. 31.
    Zippin JH, Chen Y, Straub SG, Hess KC, Diaz A, Lee D, Tso P, Holz GG, Sharp GWG, Levin LR, Buck J (2013) CO2/HCO3(-)- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. J Biol Chem 288(46):33283–33291. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zippin JH, Farrell J, Huron D, Kamenetsky M, Hess KC, Fischman DA, Levin LR, Buck J (2004) Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain. J Cell Biol 164(4):527–534. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Valsecchi F, Konrad C, D’Aurelio M, Ramos-Espiritu LS, Stepanova A, Burstein SR, Galkin A, Magranè J, Starkov A, Buck J, Levin LR, Manfredi G (2017) Distinct intracellular sAC-cAMP domains regulate ER Ca(2+) signaling and OXPHOS function. J Cell Sci 130(21):3713–3727. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9(3):265–276. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Laurent A-C, Bisserier M, Lucas A, Tortosa F, Roumieux M, De Régibus A, Swiader A, Sainte-Marie Y, Heymes C, Vindis C, Lezoualc’h F (2015) Exchange protein directly activated by cAMP 1 promotes autophagy during cardiomyocyte hypertrophy. Cardiovasc Res 105(1):55–64. CrossRefPubMedGoogle Scholar
  36. 36.
    Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3(6):403–416. CrossRefPubMedGoogle Scholar
  37. 37.
    Myers RW, Guan H-P, Ehrhart J, Petrov A, Prahalada S, Tozzo E, Yang X, Kurtz MM, Trujillo M, Gonzalez Trotter D, Feng D, Xu S, Eiermann G, Holahan MA, Rubins D, Conarello S, Niu X, Souza SC, Miller C, Liu J, Lu K, Feng W, Li Y, Painter RE, Milligan JA, He H, Liu F, Ogawa A, Wisniewski D, Rohm RJ, Wang L, Bunzel M, Qian Y, Zhu W, Wang H, Bennet B, LaFranco Scheuch L, Fernandez GE, Li C, Klimas M, Zhou G, van Heek M, Biftu T, Weber A, Kelley DE, Thornberry N, Erion MD, Kemp DM, Sebhat IK (2017) Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357(6350):507–511. CrossRefPubMedGoogle Scholar
  38. 38.
    Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jaitovich A, Angulo M, Lecuona E, Dada LA, Welch LC, Cheng Y, Gusarova G, Ceco E, Liu C, Shigemura M, Barreiro E, Patterson C, Nader GA, Sznajder JI (2015) High CO2 levels cause skeletal muscle atrophy via AMP-activated kinase (AMPK), FoxO3a protein, and muscle-specific Ring finger protein 1 (MuRF1). J Biol Chem 290(14):9183–9194. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chen J, Lecuona E, Briva A, Welch LC, Sznajder JI (2008) Carbonic anhydrase II and alveolar fluid reabsorption during hypercapnia. Am J Respir Cell Mol Biol 38(1):32–37. CrossRefPubMedGoogle Scholar
  41. 41.
    De Rasmo D, Signorile A, Santeramo A, Larizza M, Lattanzio P, Capitanio G, Papa S (2015) Intramitochondrial adenylyl cyclase controls the turnover of nuclear-encoded subunits and activity of mammalian complex I of the respiratory chain. Biochim Biophys Acta Mol Cell Res 1853(1):183–191. CrossRefGoogle Scholar
  42. 42.
    Toyama EQ, Herzig S, Courchet J, Lewis TL Jr, Losón OC, Hellberg K, Young NP, Chen H, Polleux F, Chan DC, Shaw RJ (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science (New York, NY) 351(6270):275–281. CrossRefGoogle Scholar
  43. 43.
    Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (New York, NY) 331(6016):456–461. CrossRefGoogle Scholar
  44. 44.
    Chang CR, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282(30):21583–21587. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8(10):939–944. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dagda RK, Gusdon AM, Pien I, Strack S, Green S, Li C, Van Houten B, Cherra SJ 3rd, Chu CT (2011) Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson’s disease. Cell Death Differ 18(12):1914–1923. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Akabane S, Uno M, Tani N, Shimazaki S, Ebara N, Kato H, Kosako H, Oka T (2016) PKA regulates PINK1 stability and parkin recruitment to damaged mitochondria through phosphorylation of MIC60. Mol Cell 62(3):371–384. CrossRefPubMedGoogle Scholar
  48. 48.
    Twig G, Elorza A, Molina AJA, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wang H, Robichaux WG, Wang Z, Mei FC, Cai M, Du G, Chen J, Cheng X (2016) Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury. Sci Rep 6:36552. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chagtoo M, George N, Pathak N, Tiwari S, Godbole MM, Ladilov Y (2018) Inhibition of intracellular type 10 adenylyl cyclase protects cortical neurons against reperfusion-induced mitochondrial injury and apoptosis. Mol Neurobiol 55(3):2471–2482. CrossRefPubMedGoogle Scholar
  51. 51.
    Rinaldi L, Pozdniakova S, Jayarajan V, Troidl C, Abdallah Y, Aslam M, Ladilov Y (2019) Protective role of soluble adenylyl cyclase against reperfusion-induced injury of cardiac cells. Biochim Biophys Acta Mol Basis Dis 1865(1):252–260. CrossRefPubMedGoogle Scholar
  52. 52.
    Flacke J-P, Flacke H, Appukuttan A, Palisaar R-J, Noldus J, Robinson BD, Reusch HP, Zippin JH, Ladilov Y (2013) Type 10 soluble adenylyl cyclase is overexpressed in prostate carcinoma and controls proliferation of prostate cancer cells. J Biol Chem 288(5):3126–3135. CrossRefPubMedGoogle Scholar
  53. 53.
    Schirmer I, Bualeong T, Budde H, Cimiotti D, Appukuttan A, Klein N, Steinwascher P, Reusch P, Mügge A, Meyer R, Ladilov Y, Jaquet K (2018) Soluble adenylyl cyclase: a novel player in cardiac hypertrophy induced by isoprenaline or pressure overload. PLoS One 13(2):e0192322–e0192322. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang Z, Liu D, Varin A, Nicolas V, Courilleau D, Mateo P, Caubere C, Rouet P, Gomez AM, Vandecasteele G, Fischmeister R, Brenner C (2016) A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death. Cell Death Dis 7:e2198. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Charité, Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular ResearchBerlinGermany
  2. 2.DZHK (German Center for Cardiovascular Research)BerlinGermany
  3. 3.Department of Clinical PharmacologyRuhr-University BochumBochumGermany
  4. 4.Internal Medicine I/Cardiology and AngiologyUniversity Hospital of Giessen and MarburgGiessenGermany
  5. 5.Experimental CardiologyJustus Liebig University GiessenGiessenGermany

Personalised recommendations