Advertisement

Mechanisms of neurodegeneration in a preclinical autosomal dominant retinitis pigmentosa knock-in model with a RhoD190N mutation

  • Javier Sancho-Pelluz
  • Xuan Cui
  • Winston Lee
  • Yi-Ting Tsai
  • Wen-Hsuan Wu
  • Sally Justus
  • Ilyas Washington
  • Chun-Wei Hsu
  • Karen Sophia Park
  • Susanne Koch
  • Gabriel Velez
  • Alexander G. Bassuk
  • Vinit B. Mahajan
  • Chyuan-Sheng Lin
  • Stephen H. TsangEmail author
Original Article

Abstract

D190N, a missense mutation in rhodopsin, causes photoreceptor degeneration in patients with autosomal dominant retinitis pigmentosa (adRP). Two competing hypotheses have been developed to explain why D190N rod photoreceptors degenerate: (a) defective rhodopsin trafficking prevents proteins from correctly exiting the endoplasmic reticulum, leading to their accumulation, with deleterious effects or (b) elevated mutant rhodopsin expression and unabated signaling causes excitotoxicity. A knock-in D190N mouse model was engineered to delineate the mechanism of pathogenesis. Wild type (wt) and mutant rhodopsin appeared correctly localized in rod outer segments of D190N heterozygotes. Moreover, the rhodopsin glycosylation state in the mutants appeared similar to that in wt mice. Thus, it seems plausible that the injurious effect of the heterozygous mutation is not related to mistrafficking of the protein, but rather from constitutive rhodopsin activity and a greater propensity for chromophore isomerization even in the absence of light.

Keywords

D190N GPCR Rhodopsin Mouse model Retinitis pigmentosa Retina Excitotoxicity 

Notes

Acknowledgements

We greatly appreciate the assistance of the members of the Bernard & Shirlee Brown Glaucoma laboratory, especially to Chun-Wei Hsu for technical support. SHT is a Burroughs-Wellcome Program in Biomedical Sciences Fellow, and is also supported by the Charles E. Culpeper-Partnership for Cures 07-CS3, Crowley Research Fund, Schneeweiss Stem Cell Fund, New York State N09G-302, Foundation Fighting Blindness [TA-NMT-0116-0692-COLU] (Owings Mills, MD), TS080017 from US Department of Defense, NIH Grants [P30EY019007, R01EY018213, R01EY024698, R01EY026682, R21AG050437], Research to Prevent Blindness (New York, NY), and Joel Hoffmann Scholarship. CSL is the Homer McK. Rees Scholar. JSP is a BEST2016 awardee (BEST/2016/030, Conselleria de Educación, Investigación, Cultura y Deporte; Generalitat Valenciana) and his research is supported by a Prometeo Grant (PROMETEO/2016/094; Conselleria de Educación, Investigación, Cultura y Deporte; Generalitat Valenciana) and by internal funds from Universidad Católica de Valencia San Vicente Mártir (2018-128-001). VBM is supported by NIH Grants K08EY020530, R01EY016822, The Doris Duke Charitable Foundation Grant #2013103, and Research to Prevent Blindness (New York, NY); GV is supported by NIH Grants [F30EYE027986 and T32GM007337].

Author contributions

JSP and XC ran most of the experiments: the histology, immunostainings, electron microscopy, ERGs, and glycosilation; WL helped with glycosylation experiments; YT, WS, SK, and CH ran part of the ERG recordings and the western blotting; IW assisted and advised with the experiments; GV, AGB, and VBM created the modeling for D190N rhodopsin and prepared Fig. 1; CSL created the animal model; SHT planned and supervised the experiments; JSP, SJ, and KSP wrote the main document; all authors reviewed the manuscript.

Supplementary material

18_2019_3090_MOESM1_ESM.docx (466 kb)
Supplementary material 1 (DOCX 466 kb)

References

  1. 1.
    Boughman JA, Conneally PM, Nance WE (1980) Population genetic studies of retinitis pigmentosa. Am J Hum Genet 32:223–235Google Scholar
  2. 2.
    Berson EL (1993) Retinitis pigmentosa: the friedenwald lecture. Invest Opthal Vis Sci 34:1655–1676Google Scholar
  3. 3.
    Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809CrossRefGoogle Scholar
  4. 4.
    Rivolta C, Sharon D, De Angelis MM, Dryja TP (2002) Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum Mol Genet 11:1219–1227CrossRefGoogle Scholar
  5. 5.
    Wilson JH, Wensel TG (2003) The nature of dominant mutations of rhodopsin and implications for gene therapy. Mol Neurobiol 28:149–158CrossRefGoogle Scholar
  6. 6.
    Dryja TP, Hahn LB, Cowley GS, McGee TL, Berson EL (1991) Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA 88:9370–9374CrossRefGoogle Scholar
  7. 7.
    Filipek S, Stenkamp RE, Teller DC, Palczewski K (2003) G protein-coupled receptor rhodopsin: a prospectus. Annu Rev Physiol 65:851–879CrossRefGoogle Scholar
  8. 8.
    Jager S, Palczewski K, Hofmann KP (1996) Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin. Biochemistry 35:2901–2908CrossRefGoogle Scholar
  9. 9.
    Palczewski K (2006) G protein-coupled receptor rhodopsin. Annu Rev Biochem 75:743–767CrossRefGoogle Scholar
  10. 10.
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745CrossRefGoogle Scholar
  11. 11.
    Smith SO (2010) Structure and activation of the visual pigment rhodopsin. Annu Rev Biophys 39:309–328CrossRefGoogle Scholar
  12. 12.
    Burns ME, Arshavsky VY (2005) Beyond counting photons: trials and trends in vertebrate visual transduction. Neuron 48:387–401CrossRefGoogle Scholar
  13. 13.
    Tsui I, Chou CL, Palmer N, Lin CS, Tsang SH (2008) Phenotype-genotype correlations in autosomal dominant retinitis pigmentosa caused by RHO, D190N. Curr Eye Res 33:1014–1022CrossRefGoogle Scholar
  14. 14.
    Park SP, Lee W, Bae EJ, Greenstein V, Sin BH, Chang S, Tsang SH (2014) Early structural anomalies observed by high-resolution imaging in two related cases of autosomal-dominant retinitis pigmentosa. Ophthalmic Surg Lasers Imaging Retina 45:469–473CrossRefGoogle Scholar
  15. 15.
    Tsai YT, Wu WH, Lee TT, Wu WP, Xu CL, Park KS, Cui X, Justus S, Lin CS, Jauregui R, Su PY, Tsang SH (2018) Clustered regularly interspaced short palindromic repeats-based genome surgery for the treatment of autosomal dominant retinitis pigmentosa. Ophthalmology 125:1421–1430CrossRefGoogle Scholar
  16. 16.
    Kaushal S, Khorana HG (1994) Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry 33:6121–6128CrossRefGoogle Scholar
  17. 17.
    Janz JM, Fay JF, Farrens DL (2003) Stability of dark state rhodopsin is mediated by a conserved ion pair in intradiscal loop E-2. J Biol Chem 278:16982–16991CrossRefGoogle Scholar
  18. 18.
    Yan EC, Kazmi MA, Ganim Z, Hou JM, Pan D, Chang BS, Sakmar TP, Mathies RA (2003) Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Proc Natl Acad Sci USA 100:9262–9267CrossRefGoogle Scholar
  19. 19.
    Liu MY, Liu J, Mehrotra D, Liu Y, Guo Y, Baldera-Aguayo PA, Mooney VL, Nour AM, Yan EC (2013) Thermal stability of rhodopsin and progression of retinitis pigmentosa: comparison of S186W and D190N rhodopsin mutants. J Biol Chem 288:17698–17712CrossRefGoogle Scholar
  20. 20.
    Sancho-Pelluz J, Tosi J, Hsu CW, Lee F, Wolpert K, Tabacaru MR, Greenberg JP, Tsang SH, Lin CS (2012) Mice with a D190N mutation in the gene encoding rhodopsin: a model for human autosomal-dominant retinitis pigmentosa. Mol Med 18:549–555CrossRefGoogle Scholar
  21. 21.
    Sakami S, Maeda T, Bereta G, Okano K, Golczak M, Sumaroka A, Roman AJ, Cideciyan AV, Jacobson SG, Palczewski K (2011) Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J Biol Chem 286:10551–10567CrossRefGoogle Scholar
  22. 22.
    Zencak D, Schouwey K, Chen D, Ekström P, Tanger E, Bremner R, van Lohuizen M, Arsenijevic Y (2013) Retinal degeneration depends on Bmi1 function and reactivation of cell cycle proteins. Proc Natl Acad Sci USA 110:593–601CrossRefGoogle Scholar
  23. 23.
    Fain GL, Lisman JE (1993) Photoreceptor degeneration in vitamin A deprivation and retinitis pigmentosa: the equivalent light hypothesis. Exp Eye Res 57:335–340CrossRefGoogle Scholar
  24. 24.
    Fain GL, Lisman JE (1999) Light, Ca2+, and photoreceptor death: new evidence for the equivalent-light hypothesis from arrestin knockout mice. Invest Ophthalmol Vis Sci 40:2770–2772Google Scholar
  25. 25.
    Lisman J, Fain G (1995) Support for the equivalent light hypothesis for RP. Nat Med 1:1254–1255CrossRefGoogle Scholar
  26. 26.
    Baylor DA, Nunn BJ, Schnapf JL (1984) The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J Physiol 357:575–607CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Javier Sancho-Pelluz
    • 1
    • 2
    • 3
  • Xuan Cui
    • 2
    • 3
    • 4
  • Winston Lee
    • 3
  • Yi-Ting Tsai
    • 2
    • 3
    • 5
  • Wen-Hsuan Wu
    • 2
    • 3
    • 5
  • Sally Justus
    • 2
    • 3
    • 6
  • Ilyas Washington
    • 3
  • Chun-Wei Hsu
    • 2
    • 3
  • Karen Sophia Park
    • 2
    • 3
  • Susanne Koch
    • 2
    • 3
    • 5
  • Gabriel Velez
    • 7
    • 8
    • 9
  • Alexander G. Bassuk
    • 10
  • Vinit B. Mahajan
    • 7
    • 8
  • Chyuan-Sheng Lin
    • 11
  • Stephen H. Tsang
    • 2
    • 3
    • 5
    • 11
    Email author
  1. 1.Neurobiología y Neurofisiología, Facultad de Medicina y OdontologíaUniversidad Católica de Valencia San Vicente MártirValenciaSpain
  2. 2.Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell BiologyColumbia UniversityNew YorkUSA
  3. 3.Edward S. Harkness Eye Institute, Columbia University Medical CenterNew York Presbyterian HospitalNew YorkUSA
  4. 4.Tianjin Medical University Eye Hospital, The College of OptometryTianjin Medical University Eye InstituteTianjinChina
  5. 5.Institute of Human Nutrition and Herbert Irving Comprehensive Cancer CenterColumbia UniversityNew YorkUSA
  6. 6.Harvard Medical SchoolBostonUSA
  7. 7.Omics LaboratoryStanford UniversityPalo AltoUSA
  8. 8.Department of Ophthalmology, Byers Eye InstituteStanford UniversityPalo AltoUSA
  9. 9.Medical Scientist Training ProgramUniversity of IowaIowa CityUSA
  10. 10.Department of PediatricsUniversity of IowaIowa CityUSA
  11. 11.Department of Pathology and Cell Biology, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations