Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 13, pp 2511–2523 | Cite as

The role of ASXL1 in hematopoiesis and myeloid malignancies

  • Shuhei Asada
  • Takeshi Fujino
  • Susumu Goyama
  • Toshio KitamuraEmail author
Review

Abstract

Recent high-throughput genome-wide sequencing studies have identified recurrent somatic mutations in myeloid neoplasms. An epigenetic regulator, Additional sex combs-like 1 (ASXL1), is one of the most frequently mutated genes in all subtypes of myeloid malignancies. ASXL1 mutations are also frequently detected in clonal hematopoiesis, which is associated with an increased risk of mortality. Therefore, it is important to understand how ASXL1 mutations contribute to clonal expansion and myeloid transformation in hematopoietic cells. Studies using ASXL1-depleted human hematopoietic cells and Asxl1 knockout mice have shown that deletion of wild-type ASXL1 protein leads to impaired hematopoiesis and accelerates myeloid malignancies via loss of interaction with polycomb repressive complex 2 proteins. On the other hand, ASXL1 mutations in myeloid neoplasms typically occur near the last exon and result in the expression of C-terminally truncated mutant ASXL1 protein. Biological studies and biochemical analyses of this variant have shed light on its dominant-negative and gain-of-function features in myeloid transformation via a variety of epigenetic changes. Based on these results, it would be possible to establish novel promising therapeutic strategies for myeloid malignancies harboring ASXL1 mutations by blocking interactions between ASXL1 and associating epigenetic regulators. Here, we summarize the clinical implications of ASXL1 mutations, the role of wild-type ASXL1 in normal hematopoiesis, and oncogenic functions of mutant ASXL1 in myeloid neoplasms.

Keywords

ASXL1 BAP1 HOX Acute myeloid leukemia AML Myelodysplastic syndrome MDS MPN CMML 

Notes

Acknowledgements

This work was supported by a Grant-in-Aid Scientific Research B from the Ministry of Education, Culture, Sports, Science and Technology of Japan (15H04855, TK), a Grant from the Tokyo Biochemical Research Foundation (TK), and a Grant from the Uehara Memorial Foundation (TK).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al (2011) Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 364(26):2496CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cancer Genome Atlas Research N, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059CrossRefGoogle Scholar
  3. 3.
    Makishima H, Yoshizato T, Yoshida K, Sekeres MA, Radivoyevitch T, Suzuki H et al (2017) Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet 49(2):204CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC et al (2013) Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 369(25):2391CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J et al (2011) Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol 29(18):2499CrossRefPubMedGoogle Scholar
  6. 6.
    Boultwood J, Perry J, Pellagatti A, Fernandez-Mercado M, Fernandez-Santamaria C, Calasanz MJ et al (2010) Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia 24(5):1062CrossRefPubMedGoogle Scholar
  7. 7.
    Rocquain J, Carbuccia N, Trouplin V, Raynaud S, Murati A, Nezri M et al (2010) Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer 10:401CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schnittger S, Eder C, Jeromin S, Alpermann T, Fasan A, Grossmann V et al (2013) ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 27(1):82CrossRefPubMedGoogle Scholar
  9. 9.
    Metzeler KH, Becker H, Maharry K, Radmacher MD, Kohlschmidt J, Mrozek K et al (2011) ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN favorable genetic category. Blood 118(26):6920CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adelaide J, Rey J et al (2009) Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 23(11):2183CrossRefGoogle Scholar
  11. 11.
    Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C et al (2010) Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 70(2):447CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tefferi A (2010) Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 24(6):1128CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stein BL, Williams DM, O’Keefe C, Rogers O, Ingersoll RG, Spivak JL et al (2011) Disruption of the ASXL1 gene is frequent in primary, post-essential thrombocytosis and post-polycythemia vera myelofibrosis, but not essential thrombocytosis or polycythemia vera: analysis of molecular genetics and clinical phenotypes. Haematologica 96(10):1462CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Abdel-Wahab O, Pardanani A, Patel J, Wadleigh M, Lasho T, Heguy A et al (2011) Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia 25(7):1200CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Elliott MA, Pardanani A, Hanson CA, Lasho TL, Finke CM, Belachew AA et al (2015) ASXL1 mutations are frequent and prognostically detrimental in CSF3R-mutated chronic neutrophilic leukemia. Am J Hematol 90(7):653CrossRefPubMedGoogle Scholar
  16. 16.
    Makishima H, Jankowska AM, McDevitt MA, O’Keefe C, Dujardin S, Cazzolli H et al (2011) CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia. Blood 117(21):e198CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M et al (2013) Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol 31(19):2428CrossRefPubMedGoogle Scholar
  18. 18.
    Gelsi-Boyer V, Trouplin V, Roquain J, Adelaide J, Carbuccia N, Esterni B et al (2010) ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol 151(4):365CrossRefPubMedGoogle Scholar
  19. 19.
    Patnaik MM, Padron E, LaBorde RR, Lasho TL, Finke CM, Hanson CA et al (2013) Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia 27(7):1504CrossRefPubMedGoogle Scholar
  20. 20.
    Gelsi-Boyer V, Brecqueville M, Devillier R, Murati A, Mozziconacci MJ, Birnbaum D (2012) Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol 5:12CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371(26):2488CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126(1):9CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371(26):2477CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH et al (2012) ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22(2):180CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Abdel-Wahab O, Gao J, Adli M, Dey A, Trimarchi T, Chung YR et al (2013) Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J Exp Med 210(12):2641CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang J, Li Z, He Y, Pan F, Chen S, Rhodes S et al (2014) Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice. Blood 123(4):541CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Inoue D, Matsumoto M, Nagase R, Saika M, Fujino T, Nakayama KI et al (2016) Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp Hematol 44(3):172CrossRefPubMedGoogle Scholar
  28. 28.
    Inoue D, Kitaura J, Togami K, Nishimura K, Enomoto Y, Uchida T et al (2013) Myelodysplastic syndromes are induced by histone methylation-altering ASXL1 mutations. J Clin Investig 123(11):4627CrossRefPubMedGoogle Scholar
  29. 29.
    Nagase R, Inoue D, Pastore A, Fujino T, Hou HA, Yamasaki N et al (2018) Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation. J Exp Med 215(6):1729CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Asada S, Goyama S, Inoue D, Shikata S, Takeda R, Fukushima T et al (2018) Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nat Commun 9(1):2733CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Inoue D, Fujino T, Sheridan P, Zhang YZ, Nagase R, Horikawa S et al (2018) A novel ASXL1–OGT axis plays roles in H3K4 methylation and tumor suppression in myeloid malignancies. Leukemia 32(6):1327CrossRefPubMedGoogle Scholar
  32. 32.
    Saika M, Inoue D, Nagase R, Sato N, Tsuchiya A, Yabushita T et al (2018) ASXL1 and SETBP1 mutations promote leukaemogenesis by repressing TGFbeta pathway genes through histone deacetylation. Sci Rep 8(1):15873CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yang H, Kurtenbach S, Guo Y, Lohse I, Durante MA, Li J et al (2018) Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood 131(3):328CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Katoh M, Katoh M (2003) Identification and characterization of ASXL2 gene in silico. Int J Oncol 23(3):845PubMedGoogle Scholar
  35. 35.
    Katoh M, Katoh M (2004) Identification and characterization of ASXL3 gene in silico. Int J Oncol 24(6):1617PubMedGoogle Scholar
  36. 36.
    Sinclair DA, Milne TA, Hodgson JW, Shellard J, Salinas CA, Kyba M et al (1998) The Additional sex combs gene of Drosophila encodes a chromatin protein that binds to shared and unique polycomb group sites on polytene chromosomes. Development 125(7):1207PubMedGoogle Scholar
  37. 37.
    Milne TA, Sinclair DA, Brock HW (1999) The Additional sex combs gene of Drosophila is required for activation and repression of homeotic loci, and interacts specifically with polycomb and super sex combs. Mol Gen Genet 261(4–5):753CrossRefPubMedGoogle Scholar
  38. 38.
    Beuchle D, Struhl G, Muller J (2001) Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128(6):993PubMedGoogle Scholar
  39. 39.
    Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20(6):845CrossRefPubMedGoogle Scholar
  40. 40.
    Klymenko T, Muller J (2004) The histone methyltransferases trithorax and Ash1 prevent transcriptional silencing by polycomb group proteins. EMBO Rep 5(4):373CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G (2017) Genome regulation by polycomb and trithorax: 70 years and counting. Cell 171(1):34CrossRefPubMedGoogle Scholar
  42. 42.
    Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S et al (2010) Histone H2A deubiquitinase activity of the polycomb repressive complex PR–DUB. Nature 465(7295):243CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fisher CL, Randazzo F, Humphries RK, Brock HW (2006) Characterization of Asxl1, a murine homolog of additional sex combs, and analysis of the Asx-like gene family. Gene 369:109CrossRefPubMedGoogle Scholar
  44. 44.
    Fisher CL, Berger J, Randazzo F, Brock HW (2003) A human homolog of additional sex combs, ADDITIONAL SEX COMBS-LIKE 1, maps to chromosome 20q11. Gene 306:115CrossRefPubMedGoogle Scholar
  45. 45.
    Sanchez-Pulido L, Kong L, Ponting CP (2012) A common ancestry for BAP1 and Uch37 regulators. Bioinformatics 28(15):1953CrossRefPubMedGoogle Scholar
  46. 46.
    Sanchez R, Zhou MM (2011) The PHD finger: a versatile epigenome reader. Trends Biochem Sci 36(7):364PubMedPubMedCentralGoogle Scholar
  47. 47.
    Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25(1):15CrossRefPubMedGoogle Scholar
  48. 48.
    Hoischen A, van Bon BW, Rodriguez-Santiago B, Gilissen C, Vissers LE, de Vries P et al (2011) De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet 43(8):729CrossRefPubMedGoogle Scholar
  49. 49.
    Bainbridge MN, Hu H, Muzny DM, Musante L, Lupski JR, Graham BH et al (2013) De novo truncating mutations in ASXL3 are associated with a novel clinical phenotype with similarities to Bohring-Opitz syndrome. Genome Med 5(2):11CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Shashi V, Pena LD, Kim K, Burton B, Hempel M, Schoch K et al (2016) De novo truncating variants in ASXL2 are associated with a unique and recognizable clinical phenotype. Am J Hum Genet 99(4):991CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Izawa T, Rohatgi N, Fukunaga T, Wang QT, Silva MJ, Gardner MJ et al (2015) ASXL2 regulates glucose, lipid, and skeletal homeostasis. Cell Rep 11(10):1625CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Micol JB, Duployez N, Boissel N, Petit A, Geffroy S, Nibourel O et al (2014) Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8; 21)/RUNX1-RUNX1T1 chromosomal translocations. Blood 124(9):1445CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Li J, He F, Zhang P, Chen S, Shi H, Sun Y et al (2017) Loss of Asxl2 leads to myeloid malignancies in mice. Nat Commun 8:15456CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Micol JB, Pastore A, Inoue D, Duployez N, Kim E, Lee SC et al (2017) ASXL2 is essential for haematopoiesis and acts as a haploinsufficient tumour suppressor in leukemia. Nat Commun 8:15429CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Madan V, Han L, Hattori N, Teoh WW, Mayakonda A, Sun QY et al (2018) ASXL2 regulates hematopoiesis in mice and its deficiency promotes myeloid expansion. Haematologica 103(12):1980CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Duployez N, Micol JB, Boissel N, Petit A, Geffroy S, Bucci M et al (2016) Unlike ASXL1 and ASXL2 mutations, ASXL3 mutations are rare events in acute myeloid leukemia with t(8; 21). Leuk Lymphoma 57(1):199CrossRefPubMedGoogle Scholar
  57. 57.
    Sugimoto Y, Muramatsu H, Makishima H, Prince C, Jankowska AM, Yoshida N et al (2010) Spectrum of molecular defects in juvenile myelomonocytic leukaemia includes ASXL1 mutations. Br J Haematol 150(1):83PubMedGoogle Scholar
  58. 58.
    Perez B, Kosmider O, Cassinat B, Renneville A, Lachenaud J, Kaltenbach S et al (2010) Genetic typing of CBL, ASXL1, RUNX1, TET2 and JAK2 in juvenile myelomonocytic leukaemia reveals a genetic profile distinct from chronic myelomonocytic leukaemia. Br J Haematol 151(5):460CrossRefPubMedGoogle Scholar
  59. 59.
    Menezes J, Acquadro F, Wiseman M, Gomez-Lopez G, Salgado RN, Talavera-Casanas JG et al (2014) Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia 28(4):823CrossRefPubMedGoogle Scholar
  60. 60.
    Jawhar M, Schwaab J, Schnittger S, Meggendorfer M, Pfirrmann M, Sotlar K et al (2016) Additional mutations in SRSF2, ASXL1 and/or RUNX1 identify a high-risk group of patients with KIT D816V(+) advanced systemic mastocytosis. Leukemia 30(1):136CrossRefPubMedGoogle Scholar
  61. 61.
    Pardanani AD, Lasho TL, Finke C, Zblewski DL, Abdelrahman RA, Wassie EA et al (2016) ASXL1 and CBL mutations are independently predictive of inferior survival in advanced systemic mastocytosis. Br J Haematol 175(3):534CrossRefPubMedGoogle Scholar
  62. 62.
    Damaj G, Joris M, Chandesris O, Hanssens K, Soucie E, Canioni D et al (2014) ASXL1 but not TET2 mutations adversely impact overall survival of patients suffering systemic mastocytosis with associated clonal hematologic non-mast-cell diseases. PLoS One 9(1):e85362CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Huang J, Ge M, Lu S, Shi J, Li X, Zhang J et al (2015) Mutations of ASXL1 and TET2 in aplastic anemia. Haematologica 100(5):e172CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yoshizato T, Dumitriu B, Hosokawa K, Makishima H, Yoshida K, Townsley D et al (2015) Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med 373(1):35CrossRefPubMedGoogle Scholar
  65. 65.
    Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al (2012) The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481(7380):157CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lin CC, Hou HA, Chou WC, Kuo YY, Liu CY, Chen CY et al (2014) IDH mutations are closely associated with mutations of DNMT3A, ASXL1 and SRSF2 in patients with myelodysplastic syndromes and are stable during disease evolution. Am J Hematol 89(2):137CrossRefPubMedGoogle Scholar
  67. 67.
    Paschka P, Schlenk RF, Gaidzik VI, Herzig JK, Aulitzky T, Bullinger L et al (2015) ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German-Austrian Acute Myeloid Leukemia Study Group. Haematologica 100(3):324CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Thol F, Kade S, Schlarmann C, Loffeld P, Morgan M, Krauter J et al (2012) Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 119(15):3578CrossRefGoogle Scholar
  69. 69.
    Wu SJ, Kuo YY, Hou HA, Li LY, Tseng MH, Huang CF et al (2012) The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood 120(15):3106CrossRefPubMedGoogle Scholar
  70. 70.
    Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P et al (2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122(22):3616CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chou WC, Huang HH, Hou HA, Chen CY, Tang JL, Yao M et al (2010) Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood 116(20):4086CrossRefPubMedGoogle Scholar
  72. 72.
    Micol JB, Abdel-Wahab O (2014) Collaborating constitutive and somatic genetic events in myeloid malignancies: ASXL1 mutations in patients with germline GATA2 mutations. Haematologica 99(2):201CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Inoue D, Kitaura J, Matsui H, Hou HA, Chou WC, Nagamachi A et al (2015) SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia 29(4):847CrossRefPubMedGoogle Scholar
  74. 74.
    Meggendorfer M, Bacher U, Alpermann T, Haferlach C, Kern W, Gambacorti-Passerini C et al (2013) SETBP1 mutations occur in 9% of MDS/MPN and in 4% of MPN cases and are strongly associated with atypical CML, monosomy 7, isochromosome i(17)(q10), ASXL1 and CBL mutations. Leukemia 27(9):1852CrossRefPubMedGoogle Scholar
  75. 75.
    Makishima H (2017) Somatic SETBP1 mutations in myeloid neoplasms. Int J Hematol 105(6):732CrossRefPubMedGoogle Scholar
  76. 76.
    Makishima H, Yoshida K, Nguyen N, Przychodzen B, Sanada M, Okuno Y et al (2013) Somatic SETBP1 mutations in myeloid malignancies. Nat Genet 45(8):942CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Pratcorona M, Abbas S, Sanders MA, Koenders JE, Kavelaars FG, Erpelinck-Verschueren CA et al (2012) Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica 97(3):388CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Carbuccia N, Trouplin V, Gelsi-Boyer V, Murati A, Rocquain J, Adelaide J et al (2010) Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemia 24(2):469CrossRefPubMedGoogle Scholar
  79. 79.
    Lin CC, Hou HA, Chou WC, Kuo YY, Wu SJ, Liu CY et al (2014) SF3B1 mutations in patients with myelodysplastic syndromes: the mutation is stable during disease evolution. Am J Hematol 89(8):E109CrossRefPubMedGoogle Scholar
  80. 80.
    Metzeler KH, Herold T, Rothenberg-Thurley M, Amler S, Sauerland MC, Gorlich D et al (2016) Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood 128(5):686CrossRefPubMedGoogle Scholar
  81. 81.
    Molenaar RJ, Thota S, Nagata Y, Patel B, Clemente M, Przychodzen B et al (2015) Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia 29(11):2134CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Krauth MT, Eder C, Alpermann T, Bacher U, Nadarajah N, Kern W et al (2014) High number of additional genetic lesions in acute myeloid leukemia with t(8; 21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia 28(7):1449CrossRefPubMedGoogle Scholar
  83. 83.
    Lin Y, Zheng Y, Wang ZC, Wang SY (2016) Prognostic significance of ASXL1 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis. Hematology 21(8):454CrossRefPubMedGoogle Scholar
  84. 84.
    Bejar R, Lord A, Stevenson K, Bar-Natan M, Perez-Ladaga A, Zaneveld J et al (2014) TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 124(17):2705CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E et al (2014) Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia 28(1):78CrossRefPubMedGoogle Scholar
  86. 86.
    Sallman DA, Komrokji R, Cluzeau T, Vaupel C, Al Ali NH, Lancet J et al (2017) ASXL1 frameshift mutations drive inferior outcomes in CMML without negative impact in MDS. Blood Cancer J 7(12):633CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Cui Y, Tong H, Du X, Li B, Gale RP, Qin T et al (2015) Impact of TET2, SRSF2, ASXL1 and SETBP1 mutations on survival of patients with chronic myelomonocytic leukemia. Exp Hematol Oncol 4:14CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Cui Y, Tong H, Du X, Li B, Gale RP, Qin T et al (2016) TET2 mutations were predictive of inferior prognosis in the presence of ASXL1 mutations in patients with chronic myelomonocytic leukemia. Stem Cell Investig 3:50CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Patnaik MM, Lasho TL, Vijayvargiya P, Finke CM, Hanson CA, Ketterling RP et al (2016) Prognostic interaction between ASXL1 and TET2 mutations in chronic myelomonocytic leukemia. Blood Cancer J 6:e385CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Duchmann M, Yalniz FF, Sanna A, Sallman D, Coombs CC, Renneville A et al (2018) Prognostic role of gene mutations in chronic myelomonocytic leukemia patients treated with hypomethylating agents. EBioMedicine 31:174CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377(2):111CrossRefPubMedGoogle Scholar
  92. 92.
    Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R et al (2017) Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355(6327):842CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Rauch PJ, Silver AJ, Gopakumar J, McConkey M, Sinha E, Fefer M et al (2018) Loss-of-function mutations in Dnmt3a and Tet2 lead to accelerated atherosclerosis and convergent macrophage phenotypes in mice. Blood 132(Suppl 1):745Google Scholar
  94. 94.
    Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A, Jonsson P et al (2017) Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21(3):374CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Hsu JI, Dayaram T, Tovy A, De Braekeleer E, Jeong M, Wang F et al (2018) PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23(5):700CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Kahn JD, Miller PG, Silver AJ, Sellar RS, Bhatt S, Gibson C et al (2018) PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132(11):1095CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Fisher CL, Pineault N, Brookes C, Helgason CD, Ohta H, Bodner C et al (2010) Loss-of-function additional sex combs like 1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. Blood 115(1):38CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Zhang P, He F, Bai J, Yamamoto S, Chen S, Zhang L et al (2018) Chromatin regulator Asxl1 loss and Nf1 halpoinsufficiency cooperate to accelerate myeloid malignancy. J Clin Investig 128(12):5383CrossRefPubMedGoogle Scholar
  99. 99.
    Zhang P, Chen Z, Li R, Guo Y, Shi H, Bai J et al (2018) Loss of ASXL1 in the bone marrow niche dysregulates hematopoietic stem and progenitor cell fates. Cell Discov 4:4CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Shi H, Yamamoto S, Sheng M, Bai J, Zhang P, Chen R et al (2016) ASXL1 plays an important role in erythropoiesis. Sci Rep 6:28789CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Tyagi S, Chabes AL, Wysocka J, Herr W (2007) E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol Cell 27(1):107CrossRefPubMedGoogle Scholar
  102. 102.
    Zhou P, Wang Z, Yuan X, Zhou C, Liu L, Wan X et al (2013) Mixed lineage leukemia 5 (MLL5) protein regulates cell cycle progression and E2F1-responsive gene expression via association with host cell factor-1 (HCF-1). J Biol Chem 288(24):17532CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J, Murphy N et al (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32(5):645CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Youn HS, Kim TY, Park UH, Moon ST, An SJ, Lee YK et al (2017) Asxl1 deficiency in embryonic fibroblasts leads to cellular senescence via impairment of the AKT-E2F pathway and Ezh2 inactivation. Sci Rep 7(1):5198CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Li Z, Zhang P, Yan A, Guo Z, Ban Y, Li J et al (2017) ASXL1 interacts with the cohesin complex to maintain chromatid separation and gene expression for normal hematopoiesis. Sci Adv 3(1):e1601602CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Inoue D, Nishimura K, Kozuka-Hata H, Oyama M, Kitamura T (2015) The stability of epigenetic factor ASXL1 is regulated through ubiquitination and USP7-mediated deubiquitination. Leukemia 29(11):2257CrossRefPubMedGoogle Scholar
  107. 107.
    Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L et al (2011) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 43(7):668CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Wiesner T, Obenauf AC, Murali R, Fried I, Griewank KG, Ulz P et al (2011) Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet 43(10):1018CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, Leng N, Pavia-Jimenez A, Wang S et al (2012) BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 44(7):751CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502(7471):333CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Balasubramani A, Larjo A, Bassein JA, Chang X, Hastie RB, Togher SM et al (2015) Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1–BAP1 complex. Nat Commun 6:7307CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Sahtoe DD, van Dijk WJ, Ekkebus R, Ovaa H, Sixma TK (2016) BAP1/ASXL1 recruitment and activation for H2A deubiquitination. Nat Commun 7:10292CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Daou S, Barbour H, Ahmed O, Masclef L, Baril C, Sen Nkwe N et al (2018) Monoubiquitination of ASXLs controls the deubiquitinase activity of the tumor suppressor BAP1. Nat Commun 9(1):4385CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Kitamura T (2018) ASXL1 mutations gain a function. Blood 131(3):274CrossRefPubMedGoogle Scholar
  115. 115.
    Hsu YC, Chiu YC, Lin CC, Kuo YY, Hou HA, Tzeng YS et al (2017) The distinct biological implications of Asxl1 mutation and its roles in leukemogenesis revealed by a knock-in mouse model. J Hematol Oncol 10(1):139CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Uni M, Masamoto Y, Sato T, Kamikubo Y, Arai S, Hara E et al (2018) Modeling ASXL1 mutation revealed impaired hematopoiesis caused by derepression of p16Ink4a through aberrant PRC1-mediated histone modification. Leukemia 33(1):191CrossRefPubMedGoogle Scholar
  117. 117.
    Wu X, Bekker-Jensen IH, Christensen J, Rasmussen KD, Sidoli S, Qi Y et al (2015) Tumor suppressor ASXL1 is essential for the activation of INK4B expression in response to oncogene activity and anti-proliferative signals. Cell Res 25(11):1205CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Campagne A, Lee MK, Zielinski D, Michaud A, Le Corre S, Dingli F et al (2019) BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nat Commun 10(1):348CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Guo Y, Yang H, Chen S, Zhang P, Li R, Nimer SD et al (2018) Reduced BAP1 activity prevents ASXL1 truncation-driven myeloid malignancy in vivo. Leukemia 32(8):1834CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al (2011) RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478(7370):524CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shuhei Asada
    • 1
  • Takeshi Fujino
    • 1
  • Susumu Goyama
    • 1
  • Toshio Kitamura
    • 1
    Email author
  1. 1.Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical ScienceThe University of TokyoTokyoJapan

Personalised recommendations