Advertisement

A critical role for miR-142 in alveolar epithelial lineage formation in mouse lung development

  • Amit Shrestha
  • Gianni Carraro
  • Nicolas Nottet
  • Ana Ivonne Vazquez-Armendariz
  • Susanne Herold
  • Julio Cordero
  • Indrabahadur Singh
  • Jochen Wilhelm
  • Guillermo Barreto
  • Rory Morty
  • Elie El Agha
  • Bernard Mari
  • Chengshui Chen
  • Jin-San Zhang
  • Cho-Ming ChaoEmail author
  • Saverio BellusciEmail author
Original Article

Abstract

The respiratory epithelium arises from alveolar epithelial progenitors which differentiate into alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. AT2 cells are stem cells in the lung critical for the repair process after injury. Mechanisms regulating AT1 and AT2 cell maturation are poorly defined. We report that the activation of the glucocorticoid pathway in an in vitro alveolar epithelial lineage differentiation assay led to increased AT2 marker Sftpc and decreased miR-142 expression. Using miR-142 KO mice, we demonstrate an increase in the AT2/AT1 cell number ratio. Overexpression of miR-142 in alveolar progenitor cells in vivo led to the opposite effect. Examination of the KO lungs at E18.5 revealed enhanced expression of miR-142 targets Apc, Ep300 and Kras associated with increased β-catenin and p-Erk signaling. Silencing of miR-142 expression in lung explants grown in vitro triggers enhanced Sftpc expression as well as increased AT2/AT1 cell number ratio. Pharmacological inhibition of Ep300-β-catenin but not Erk in vitro prevented the increase in Sftpc expression triggered by loss of miR-142. These results suggest that the glucocorticoid-miR-142-Ep300-β-catenin signaling axis controls pneumocyte maturation.

Keywords

Alveolar epithelium microRNA-142 Lung EP300 Beta-catenin 

Notes

Acknowledgements

We acknowledge the precious help provided by Kerstin Goth and Jana Rostkovius in managing the mouse colonies, and Shirisha Bagari for the genotyping of the mice. C.M.C. and E.E.A. were funded by start-up grants from the Cardio Pulmonary Institute (CPI) (previously known as Excellence Cluster Cardio-Pulmonary System (ECCPS)). C.M.C. also acknowledges the support of the University Hospital Giessen and Marburg (UKGM). E.E.A. acknowledges the support of the University Hospital Giessen and Marburg (UKGM) and the German Center for Lung Research (DZL). S.B. was supported by grants from the Deutsche Forschungsgemeinschaft (DFG; BE4443/1-1, BE4443/4-1, BE4443/6-1, BE4443/14-1, KFO309 P7 and SFB1213-projects A02 and A04), UKGM, Universities of Giessen and Marburg Lung Center (UGMLC) and the Deutsche Zentrum fur Lungenforschung (DZL). J.S.Z was funded through a start-up package from Wenzhou Medical University and the National Natural Science Foundation of China (Grant Number 81472601). S.H. was supported by University Hospital Giessen and Marburg (FOKOOPV), the German Center for Lung Research (DZL), and Grants from the DFG (KFO309 P2/8; SFB1021 C05, SFB TR84 B2). CC was supported by the Interventional Pulmonary Key Laboratory of Zhejiang Province, the Interventional Pulmonology Key Laboratory of Wenzhou City, the Interventional Pulmonology Innovation Subject of Zhejiang Province, the National Nature Science Foundation of China (81570075, 81770074), Zhejiang Provincial Natural Science Foundation (LZ15H010001), Zhejiang Provincial Science Technology Department Foundation (2015103253) as well as the National Key Research and Development Program of China (2016YFC1304000). B.M. acknowledges the ANR-18-CE92-0009-01.

Supplementary material

18_2019_3067_MOESM1_ESM.jpg (1.4 mb)
Supplementary material 1 (JPEG 1410 kb) Fig. S1: Nuclear and Cytoplasmic expression of miR-142 as well as FACS-based isolation of resident epithelial and mesenchymal cells and validation of gene expression. (A) Expression of miR142-3p and miR-142-5p in the nuclear and cytoplasmic compartment after cellular fractionation. (B) Efficiency of cell fractionation experiment shown by western blot analysis of nuclear and cytosolic fractions from the 3 weeks old adult WT lungs homogenate. (C) In situ hybridization on E18.5 lung sections for miR-142-3p and -5p with immunofluorescence for the AT1 marker Hopx. Please note the co-expression of miR-142-3p and -5p with the AT1 marker Hopx (yellow arrowhead: non specific signal; white arrow: specific signal showing cells co-expressing miR-142 and Hopx). (D,E) FACS-based isolation of resident epithelial and mesenchymal cells and validation of gene expression. (D) Experimental design for FACS-based isolation of CD31−ve CD45−ve Epcam+ve (resident epithelium) and Epcam−ve (resident mesenchyme). Quantification showing the conservation of the epithelial to mesenchymal ratio (around 1 to 3) at E14.5 and E18.5. (E) qPCR validation of the isolated epithelial and mesenchymal cells using epithelial (Cdh1, Epcam, Fgfr2b) and mesenchymal (Fgf10, Acta2, Vimentin) markers at these two time points
18_2019_3067_MOESM2_ESM.jpg (895 kb)
Supplementary material 2 (JPEG 895 kb) Fig. S2: Combined loss of miR-142-3p and miR-142-5p invitro showed no branching defect during pseudoglandular stage of lung development (A) In vitro culture of E11.5 embryonic lung explants, treated with scramble, mo142-3p and mo142-(3p + 5p). (B) Corresponding qPCR analysis for the expression of miR-142-3p and -5p and their respective targets Apc and Ep300.Scale bar low mag: 100 µm, high mag: 25 µm
18_2019_3067_MOESM3_ESM.jpg (709 kb)
Supplementary material 3 (JPEG 709 kb) Fig. S3: Gene Array and KEGG pathway analysis on E18.5 control and KO lungs. (A) Heat map of the most differentially expressed genes (according to their p values) between KO and Control lungs at E18.5 (n = 3). (B) Corresponding KEGG pathway analysis
18_2019_3067_MOESM4_ESM.jpg (1017 kb)
Supplementary material 4 (JPEG 1016 kb) Fig. S4: Quantification of the number of Epcam as well as AT1 and AT2 cells in Control and Experimental miR-142 KO lungs at E18.5. Analysis of proliferation (A) Flow cytometry analysis using Epcam and Sftpc antibodies in E18.5 miR-142 KO showing an increase in the percentage of AT2 cells compared to the wild type littermate controls. (B) Cdh1/Ki67 double IF staining showing no significant difference in proliferation in E18.5 Control and KO lungs. (C) qPCR analysis for general epithelial markers (Cdh1, Epcam) as well as for markers of the conducting (p63, Scgb1a1) and respiratory (Sftpc, Pdpn) airways in E18.5 Control and KO lungs. Scale bar D: low mag: 20 µm, high mag: 5 µm
18_2019_3067_MOESM5_ESM.jpg (916 kb)
Supplementary material 5 (JPEG 915 kb) Fig. S5: Examination of Fgf signaling in E18.5 miR-142 Control and KO lungs. (A) qPCR analysis of Fgf10, Fgfr1b, Fgfr2b Fgfr2c, Sprouty2 and Etv5 in E18.5 Control and KO lungs. (B) Fgfr2 expression in the epithelium is validated by immunofluorescence staining with Fgfr2 and Cdh1 antibodies. Quantification indicating increased number of Fgfr2+ve cells in KO vs. control lungs. Scale bar B: low mag: 16 µm, high mag: 4 µm
18_2019_3067_MOESM6_ESM.docx (1 mb)
Supplementary material 6 (DOCX 1037 kb) Fig. S6: In vitro alveolar epithelial lineage formation. Flow cytometry analysis on the number of Epcam (A), bipotent (B), AT2 (C) and AT1 (D) cells in lungs cultured with morpholino miR-142-3p and -5p (mo-(3p +5p)) together. Expression of Sftpc and Pdpn upon IQ-1 treatment (E, F) or Erk inhibitor (G, H) treatment in E14.5 lungs grown in vitro with Scramble and morpholino specific to miR-142-3p and miR-142-5p. (I) Dose response curve for IQ1. Note that 2 µM IQ1, the lowest dose allowing Sftpc inhibition is still capable of blocking the effect of mo-5p on Sftpc expression
18_2019_3067_MOESM7_ESM.ai (1.4 mb)
Supplementary material 7 (AI 1410 kb)
18_2019_3067_MOESM8_ESM.jpg (192 kb)
Supplementary material 8 (JPEG 192 kb) Fig. S7: Expression of Sftpc in E14.5 Control and KO embryonic lungs grown 4 days in vitro (A) untreated conditions, (B) in presence of Erk inhibitor and (C) in presence of IQ1

References

  1. 1.
    McCulley D, Wienhold M, Sun X (2015) The pulmonary mesenchyme directs lung development. Curr Opin Genet Dev 32:98–105CrossRefGoogle Scholar
  2. 2.
    El Agha E, Bellusci S (2014) Walking along the fibroblast growth factor 10 route: a key pathway to understand the control and regulation of epithelial and mesenchymal cell-lineage formation during lung development and repair after injury. Scientifica 2014:538379Google Scholar
  3. 3.
    Rawlins EL, Clark CP, Xue Y, Hogan BL (2009) The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development 136:3741–3745CrossRefGoogle Scholar
  4. 4.
    Rockich BE, Hrycaj SM, Shih HP, Nagy MS, Ferguson MA, Kopp JL, Sander M, Wellik DM, Spence JR (2013) Sox9 plays multiple roles in the lung epithelium during branching morphogenesis. Proc Natl Acad Sci USA 110:E4456–E4464CrossRefGoogle Scholar
  5. 5.
    Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake SR (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509:371–375CrossRefGoogle Scholar
  6. 6.
    Li J, Wang Z, Chu Q, Jiang K, Li J, Tang N (2018) The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev Cell 44:297–312 e295CrossRefGoogle Scholar
  7. 7.
    Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433CrossRefGoogle Scholar
  8. 8.
    Shrestha A, Mukhametshina RT, Taghizadeh S, Vasquez-Pacheco E, Cabrera-Fuentes H, Rizvanov A, Mari B, Carraro G, Bellusci S (2017) MicroRNA-142 is a multifaceted regulator in organogenesis, homeostasis, and disease. Dev Dyn 246:285–290CrossRefGoogle Scholar
  9. 9.
    Carraro G, Shrestha A, Rostkovius J, Contreras A, Chao CM, El Agha E, Mackenzie B, Dilai S, Guidolin D, Taketo MM, Gunther A, Kumar ME, Seeger W, De Langhe S, Barreto G, Bellusci S (2014) miR-142-3p balances proliferation and differentiation of mesenchymal cells during lung development. Development 141:1272–1281CrossRefGoogle Scholar
  10. 10.
    Sun Y, Kolligs FT, Hottiger MO, Mosavin R, Fearon ER, Nabel GJ (2000) Regulation of beta-catenin transformation by the p300 transcriptional coactivator. Proc Natl Acad Sci USA 97:12613–12618CrossRefGoogle Scholar
  11. 11.
    Sharma S, Liu J, Wei J, Yuan H, Zhang T, Bishopric NH (2012) Repression of miR-142 by p300 and MAPK is required for survival signalling via gp130 during adaptive hypertrophy. EMBO Mol Med 4:617–632CrossRefGoogle Scholar
  12. 12.
    Shrestha A, Carraro G, El Agha E, Mukhametshina R, Chao CM, Rizvanov A, Barreto G, Bellusci S (2015) Generation and validation of miR-142 knock out mice. PLoS One 10:e0136913CrossRefGoogle Scholar
  13. 13.
    Laresgoiti U, Nikolic MZ, Rao C, Brady JL, Richardson RV, Batchen EJ, Chapman KE, Rawlins EL (2016) Lung epithelial tip progenitors integrate glucocorticoid- and STAT3-mediated signals to control progeny fate. Development 143:3686–3699CrossRefGoogle Scholar
  14. 14.
    Kotton DN, Morrisey EE (2014) Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med 20:822–832CrossRefGoogle Scholar
  15. 15.
    Desai TJ, Brownfield DG, Krasnow MA (2014) Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507:190–194CrossRefGoogle Scholar
  16. 16.
    Chao CM, Yahya F, Moiseenko A, Tiozzo C, Shrestha A, Ahmadvand N, El Agha E, Quantius J, Dilai S, Kheirollahi V, Jones M, Wilhem J, Carraro G, Ehrhardt H, Zimmer KP, Barreto G, Ahlbrecht K, Morty RE, Herold S, Abellar RG, Seeger W, Schermuly R, Zhang JS, Minoo P, Bellusci S (2017) Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia. J Pathol 241:91–103CrossRefGoogle Scholar
  17. 17.
    Ramasamy SK, Mailleux AA, Gupte VV, Mata F, Sala FG, Veltmaat JM, Del Moral PM, De Langhe S, Parsa S, Kelly LK, Kelly R, Shia W, Keshet E, Minoo P, Warburton D, Bellusci S (2007) Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Dev Biol 307:237–247CrossRefGoogle Scholar
  18. 18.
    Herriges JC, Verheyden JM, Zhang Z, Sui P, Zhang Y, Anderson MJ, Swing DA, Zhang Y, Lewandoski M, Sun X (2015) FGF-regulated ETV transcription factors control FGF-SHH feedback loop in lung branching. Dev Cell 35:322–332CrossRefGoogle Scholar
  19. 19.
    Mailleux AA, Tefft D, Ndiaye D, Itoh N, Thiery JP, Warburton D, Bellusci S (2001) Evidence that SPROUTY2 functions as an inhibitor of mouse embryonic lung growth and morphogenesis. Mech Dev 102:81–94CrossRefGoogle Scholar
  20. 20.
    McQualter JL, Yuen K, Williams B, Bertoncello I (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA 107:1414–1419CrossRefGoogle Scholar
  21. 21.
    Weiss DJ, Kolls JK, Ortiz LA, Panoskaltsis-Mortari A, Prockop DJ (2008) Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc 5:637–667CrossRefGoogle Scholar
  22. 22.
    Zemke AC, Teisanu RM, Giangreco A, Drake JA, Brockway BL, Reynolds SD, Stripp BR (2009) beta-Catenin is not necessary for maintenance or repair of the bronchiolar epithelium. Am J Respir Cell Mol Biol 41:535–543CrossRefGoogle Scholar
  23. 23.
    Wang Y, Frank DB, Morley MP, Zhou S, Wang X, Lu MM, Lazar MA, Morrisey EE (2016) HDAC3-dependent epigenetic pathway controls lung alveolar epithelial cell remodeling and spreading via miR-17-92 and TGF-beta signaling regulation. Dev Cell 36:303–315CrossRefGoogle Scholar
  24. 24.
    Carraro G, El-Hashash A, Guidolin D, Tiozzo C, Turcatel G, Young BM, De Langhe SP, Bellusci S, Shi W, Parnigotto PP, Warburton D (2009) miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution. Dev Biol 333:238–250CrossRefGoogle Scholar
  25. 25.
    Wang X, Wang Y, Snitow ME, Stewart KM, Li S, Lu M, Morrisey EE (2016) Expression of histone deacetylase 3 instructs alveolar type I cell differentiation by regulating a Wnt signaling niche in the lung. Dev Biol 414:161–169CrossRefGoogle Scholar
  26. 26.
    Alanis DM, Chang DR, Akiyama H, Krasnow MA, Chen J (2014) Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nat Commun 5:3923CrossRefGoogle Scholar
  27. 27.
    Rieger ME, Zhou B, Solomon N, Sunohara M, Li C, Nguyen C, Liu Y, Pan JH, Minoo P, Crandall ED, Brody SL, Kahn M, Borok Z (2016) p300/beta-catenin interactions regulate adult progenitor cell differentiation downstream of WNT5a/protein kinase C (PKC). J Biol Chem 291:6569–6582CrossRefGoogle Scholar
  28. 28.
    Sasaki T, Kahn M (2014) Inhibition of beta-catenin/p300 interaction proximalizes mouse embryonic lung epithelium. Transl Respir Med 2:8CrossRefGoogle Scholar
  29. 29.
    Sladitschek HL, Neveu PA (2015) The bimodally expressed microRNA miR-142 gates exit from pluripotency. Mol Syst Biol 11:850CrossRefGoogle Scholar
  30. 30.
    Chang DR, Martinez Alanis D, Miller RK, Ji H, Akiyama H, McCrea PD, Chen J (2013) Lung epithelial branching program antagonizes alveolar differentiation. Proc Natl Acad Sci USA 110:18042–18051CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amit Shrestha
    • 1
    • 2
  • Gianni Carraro
    • 3
  • Nicolas Nottet
    • 4
    • 5
  • Ana Ivonne Vazquez-Armendariz
    • 2
  • Susanne Herold
    • 2
  • Julio Cordero
    • 6
  • Indrabahadur Singh
    • 6
  • Jochen Wilhelm
    • 2
  • Guillermo Barreto
    • 6
    • 7
  • Rory Morty
    • 8
  • Elie El Agha
    • 1
    • 2
  • Bernard Mari
    • 4
    • 5
  • Chengshui Chen
    • 1
  • Jin-San Zhang
    • 1
    • 9
  • Cho-Ming Chao
    • 1
    • 2
    • 10
    Email author
  • Saverio Bellusci
    • 1
    • 2
    Email author
  1. 1.Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
  2. 2.Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL)Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University GiessenGiessenGermany
  3. 3.Department of Medicine, Cedars-Sinai Medical CenterLung and Regenerative Medicine InstitutesLos AngelesUSA
  4. 4.Centre National de la Recherche Scientifique, CNRS, UMR 7275Institut de Pharmacologie Moleculaire et Cellulaire (IPMC)Sophia AntipolisFrance
  5. 5.Universite Cote d’AzurNiceFrance
  6. 6.Lung Cancer Epigenetics, Member of the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL)Max-Planck-Institute for Heart and Lung ResearchBad NauheimGermany
  7. 7.Institute of Fundamental Medicine and BiologyKazan (Volga Region) Federal UniversityKazanRussian Federation
  8. 8.Department of Lung Development and RemodelingMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
  9. 9.Institute of Life SciencesWenzhou UniversityWenzhouPeople’s Republic of China
  10. 10.Department of General Pediatrics and NeonatologyUniversity Children’s Hospital Gießen, Justus-Liebig-UniversityGiessenGermany

Personalised recommendations