Advertisement

To be or not to be: PP2A as a dual player in CNS functions, its role in neurodegeneration, and its interaction with brain insulin signaling

  • Pegah Javadpour
  • Leila Dargahi
  • Abolhassan Ahmadiani
  • Rasoul GhasemiEmail author
Review

Abstract

Accumulating evidence has reached the consensus that the balance of phosphorylation state of signaling molecules is a pivotal point in the regulation of cell signaling. Therefore, characterizing elements (kinases–phosphatases) in the phosphorylation balance are at great importance. However, the role of phosphatase enzymes is less investigated than kinase enzymes. PP2A is a member of serine/threonine protein phosphatase that its imbalance has been reported in neurodegenerative diseases. Therefore, we reviewed the superfamily of phosphatases and more specifically PP2A, its regulation, and physiological functions participate in CNS. Thereafter, we discussed the latest findings about PP2A dysregulation in Alzheimer and Parkinson diseases and possible interplay between this phosphatase and insulin signaling pathways. Finally, activating/inhibitory modulators for PP2A activity as well as experimental methods for PP2A study have been reviewed.

Keywords

Protein phosphatase 2A Alzheimer disease Parkinson disease Insulin Insulin resistance Brain 

Notes

Acknowledgements

The authors are thankful to neuroscience research center and neurophysiology research center Shahid Beheshti University of Medical science for supporting this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Kurosawa M (1994) Phosphorylation and dephosphorylation of protein in regulating cellular function. J Pharmacol Toxicol Methods 31:135–139.  https://doi.org/10.1016/1056-8719(94)90075-2 Google Scholar
  2. 2.
    Novak B, Kapuy O, Domingo-Sananes MR, Tyson JJ (2010) Regulated protein kinases and phosphatases in cell cycle decisions. Curr Opin Cell Biol 22(6):801–808.  https://doi.org/10.1016/j.ceb.2010.07.001 Google Scholar
  3. 3.
    Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711.  https://doi.org/10.1016/j.cell.2004.05.018 Google Scholar
  4. 4.
    Mustelin T (2007) A brief introduction to the protein phosphatase families. Protein Phosphatase Protoc.  https://doi.org/10.1385/1-59745-267-x:9 Google Scholar
  5. 5.
    He RJ, Yu ZH, Zhang RY, Zhang ZY (2014) Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 35(10):1227–1246.  https://doi.org/10.1038/aps.2014.80 Google Scholar
  6. 6.
    Ghasemi R, Dargahi L, Haeri A, Moosavi M, Mohamed Z, Ahmadiani A (2013) Brain insulin dysregulation: implication for neurological and neuropsychiatric disorders. Mol Neurobiol 47(3):1045–1065.  https://doi.org/10.1007/s12035-013-8404-z Google Scholar
  7. 7.
    Zhande R, Zhang W, Zheng Y, Pendleton E, Li Y, Polakiewicz RD, Sun XJ (2006) Dephosphorylation by default, a potential mechanism for regulation of insulin receptor substrate-1/2, Akt, and ERK1/2. J Biol Chem 281(51):39071–39080.  https://doi.org/10.1074/jbc.M605251200 Google Scholar
  8. 8.
    Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484.  https://doi.org/10.1016/j.cell.2009.10.006 Google Scholar
  9. 9.
    Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80(4):1483–1521.  https://doi.org/10.1152/physrev.2000.80.4.1483 Google Scholar
  10. 10.
    Hinds TD Jr, Sánchez ER (2008) Protein phosphatase 5. Int J Biochem Cell Biol 40(11):2358–2362.  https://doi.org/10.1016/j.biocel.2007.08.010 Google Scholar
  11. 11.
    Davies TH, Ning Y-M, Sánchez ER (2005) Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506. Biochemistry 44(6):2030–2038.  https://doi.org/10.1021/bi048503v Google Scholar
  12. 12.
    Golden T, Swingle M, Honkanen RE (2008) The role of serine/threonine protein phosphatase type 5 (PP5) in the regulation of stress-induced signaling networks and cancer. Cancer Metastasis Rev 27(2):169–178.  https://doi.org/10.1007/s10555-008-9125-z Google Scholar
  13. 13.
    Kutuzov MA, Bennett N, Andreeva AV (2001) Interaction of plant protein Ser/Thr phosphatase PP7 with calmodulin. Biochem Biophys Res Commun 289(2):634–640.  https://doi.org/10.1006/bbrc.2001.6020 Google Scholar
  14. 14.
    Lu G, Wang Y (2008) Functional diversity of mammalian type 2C protein phosphatase isoforms: new tales from an old family. Clin Exp Pharmacol Physiol 35(2):107–112.  https://doi.org/10.1111/j.1440-1681.2007.04843.x Google Scholar
  15. 15.
    Patterson KI, Brummer T, O’Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418(3):475–489Google Scholar
  16. 16.
    Jeong DG, Wei CH, Ku B, Jeon TJ, Chien PN, Kim JK, Park SY, Hwang HS, Ryu SY, Park H (2014) The family-wide structure and function of human dual-specificity protein phosphatases. Acta Crystallogr D Biol Crystallogr 70(2):421–435.  https://doi.org/10.1107/S1399004713029866 Google Scholar
  17. 17.
    Bastan R, Eskandari N, Sabzghabaee AM, Manian M (2014) Serine/Threonine phosphatases: classification, roles and pharmacological regulation. Int J Immunopathol Pharmacol 27(4):473–484.  https://doi.org/10.1177/039463201402700402 Google Scholar
  18. 18.
    Seshacharyulu P, Pandey P, Datta K, Batra SK (2013) Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 335(1):9–18.  https://doi.org/10.1016/j.canlet.2013.02.036 Google Scholar
  19. 19.
    Cho US, Xu W (2007) Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 445(7123):53.  https://doi.org/10.1038/nature05351 Google Scholar
  20. 20.
    Nematullah M, Hoda M, Khan F (2018) Protein phosphatase 2A: a double-faced phosphatase of cellular system and Its role in neurodegenerative disorders. Mol Neurobiol 55(2):1750–1761.  https://doi.org/10.1007/s12035-017-0444-3 Google Scholar
  21. 21.
    Kiely M, Kiely PA (2015) PP2A: the wolf in sheep’s clothing? Cancers (Basel) 7(2):648–669.  https://doi.org/10.3390/cancers7020648 Google Scholar
  22. 22.
    Sangodkar J, Farrington CC, McClinch K, Galsky MD, Kastrinsky DB, Narla G (2016) All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. FEBS J 283(6):1004–1024.  https://doi.org/10.1111/febs.13573 Google Scholar
  23. 23.
    Francia G, Poulsom R, Hanby AM, Mitchell SD, Williams G, McKee P, Hart IR (1999) Identification by differential display of a protein phosphatase-2A regulatory subunit preferentially expressed in malignant melanoma cells. Int J Cancer 82(5):709–713Google Scholar
  24. 24.
    Janssens V, Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353(Pt 3):417–439Google Scholar
  25. 25.
    Janssens V, Longin S, Goris J (2008) PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci 33(3):113–121.  https://doi.org/10.1016/j.tibs.2007.12.004 Google Scholar
  26. 26.
    Sents W, Ivanova E, Lambrecht C, Haesen D, Janssens V (2013) The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J 280(2):644–661.  https://doi.org/10.1111/j.1742-4658.2012.08579.x Google Scholar
  27. 27.
    Ikehara T, Ikehara S, Imamura S, Shinjo F, Yasumoto T (2007) Methylation of the C-terminal leucine residue of the PP2A catalytic subunit is unnecessary for the catalytic activity and the binding of regulatory subunit (PR55/B). Biochem Biophys Res Commun 354(4):1052–1057.  https://doi.org/10.1016/j.bbrc.2007.01.085 Google Scholar
  28. 28.
    Lee JA, Pallas DC (2007) Leucine carboxyl methyltransferase-1 is necessary for normal progression through mitosis in mammalian cells. J Biol Chem 282(42):30974–30984.  https://doi.org/10.1074/jbc.M704861200 Google Scholar
  29. 29.
    Ortega-Gutierrez S, Leung D, Ficarro S, Peters EC, Cravatt BF (2008) Targeted disruption of the PME-1 gene causes loss of demethylated PP2A and perinatal lethality in mice. PLoS One 3(7):e2486.  https://doi.org/10.1371/journal.pone.0002486 Google Scholar
  30. 30.
    Longin S, Jordens J, Martens E, Stevens I, Janssens V, Rondelez E, De Baere I, Derua R, Waelkens E, Goris J, Van Hoof C (2004) An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator. Biochem J 380(Pt 1):111–119.  https://doi.org/10.1042/BJ20031643 Google Scholar
  31. 31.
    Guo F, Stanevich V, Wlodarchak N, Sengupta R, Jiang L, Satyshur KA, Xing Y (2014) Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone. Cell Res 24(2):190–203.  https://doi.org/10.1038/cr.2013.138 Google Scholar
  32. 32.
    Luo Y, Nie YJ, Shi HR, Ni ZF, Wang Q, Wang JZ (1833) Liu GP (2013) PTPA activates protein phosphatase-2A through reducing its phosphorylation at tyrosine-307 with upregulation of protein tyrosine phosphatase 1B. Biochim Biophys Acta 5:1235–1243.  https://doi.org/10.1016/j.bbamcr.2013.02.005 Google Scholar
  33. 33.
    Stanevich V, Jiang L, Satyshur KA, Li Y, Jeffrey PD, Li Z, Menden P, Semmelhack MF, Xing Y (2011) The structural basis for tight control of PP2A methylation and function by LCMT-1. Mol Cell 41(3):331–342.  https://doi.org/10.1016/j.molcel.2010.12.030 Google Scholar
  34. 34.
    Silverstein AM, Barrow CA, Davis AJ, Mumby MC (2002) Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proc Natl Acad Sci USA 99(7):4221–4226.  https://doi.org/10.1073/pnas.072071699 Google Scholar
  35. 35.
    Kong M, Ditsworth D, Lindsten T, Thompson CB (2009) Alpha4 is an essential regulator of PP2A phosphatase activity. Mol Cell 36(1):51–60.  https://doi.org/10.1016/j.molcel.2009.09.025 Google Scholar
  36. 36.
    McConnell JL, Gomez RJ, McCorvey LR, Law BK, Wadzinski BE (2007) Identification of a PP2A-interacting protein that functions as a negative regulator of phosphatase activity in the ATM/ATR signaling pathway. Oncogene 26(41):6021–6030.  https://doi.org/10.1038/sj.onc.1210406 Google Scholar
  37. 37.
    Smetana JH, Zanchin NI (2007) Interaction analysis of the heterotrimer formed by the phosphatase 2A catalytic subunit, alpha4 and the mammalian ortholog of yeast Tip41 (TIPRL). FEBS J 274(22):5891–5904.  https://doi.org/10.1111/j.1742-4658.2007.06112.x Google Scholar
  38. 38.
    Li M, Guo H, Damuni Z (1995) Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney. Biochemistry 34(6):1988–1996.  https://doi.org/10.1021/bi00006a020 Google Scholar
  39. 39.
    Hino H, Takaki K, Mochida S (2015) Inhibitor-1 and -2 of PP2A have preference between PP2A complexes. Biochem Biophys Res Commun 467(2):297–302.  https://doi.org/10.1016/j.bbrc.2015.09.168 Google Scholar
  40. 40.
    Gharbi-Ayachi A, Labbe JC, Burgess A, Vigneron S, Strub JM, Brioudes E, Van-Dorsselaer A, Castro A, Lorca T (2010) The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science 330(6011):1673–1677.  https://doi.org/10.1126/science.1197048 Google Scholar
  41. 41.
    Mochida S, Maslen SL, Skehel M, Hunt T (2010) Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science 330(6011):1670–1673.  https://doi.org/10.1126/science.1195689 Google Scholar
  42. 42.
    Porter IM, Schleicher K, Porter M, Swedlow JR (2013) Bod1 regulates protein phosphatase 2A at mitotic kinetochores. Nat Commun 4:2677.  https://doi.org/10.1038/ncomms3677 Google Scholar
  43. 43.
    Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2):195–203.  https://doi.org/10.1016/j.pharep.2014.09.004 Google Scholar
  44. 44.
    Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5(1):64–74.  https://doi.org/10.1016/S1474-4422(05)70284-2 Google Scholar
  45. 45.
    Gratuze M, Planel E (2017) Regulation of brain insulin signaling: a new function for tau. Rockefeller University Press, New York City.  https://doi.org/10.1084/jem.20170979 Google Scholar
  46. 46.
    Suzanne M (2017) Insulin resistance and neurodegeneration: progress towards the development of new therapeutics for Alzheimer’s disease. Drugs 77(1):47–65.  https://doi.org/10.1007/s40265-016-0674-0 Google Scholar
  47. 47.
    Sontag JM, Sontag E (2014) Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci 7:16.  https://doi.org/10.3389/fnmol.2014.00016 Google Scholar
  48. 48.
    Gong CX, Singh TJ, Grundke-Iqbal I, Iqbal K (1993) Phosphoprotein phosphatase activities in Alzheimer disease brain. J Neurochem 61(3):921–927.  https://doi.org/10.1111/j.1471-4159.1993.tb03603.x Google Scholar
  49. 49.
    Sontag E, Luangpirom A, Hladik C, Mudrak I, Ogris E, Speciale S, White CL 3rd (2004) Altered expression levels of the protein phosphatase 2A ABalphaC enzyme are associated with Alzheimer disease pathology. J Neuropathol Exp Neurol 63(4):287–301.  https://doi.org/10.1093/jnen/63.4.287 Google Scholar
  50. 50.
    Sontag J-M, Wasek B, Taleski G, Smith J, Arning E, Sontag E, Bottiglieri T (2014) Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brain of methylenetetrahydrofolate reductase (MTHFR) deficient mice. Front Aging Neurosci 6:214.  https://doi.org/10.3389/fnagi.2014.00214 Google Scholar
  51. 51.
    Arif M, Wei J, Zhang Q, Liu F, Basurto-Islas G, Grundke-Iqbal I, Iqbal K (2014) Cytoplasmic retention of protein phosphatase 2A inhibitor 2 (I2PP2A) induces Alzheimer-like abnormal hyperphosphorylation of Tau. J Biol Chem 289(40):27677–27691.  https://doi.org/10.1074/jbc.M114.565358 Google Scholar
  52. 52.
    Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268(32):24374–24384Google Scholar
  53. 53.
    Qian W, Shi J, Yin X, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F (2010) PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. J Alzheimers Dis 19(4):1221–1229.  https://doi.org/10.3233/JAD-2010-1317 Google Scholar
  54. 54.
    Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F (2013) Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A. Ageing Res Rev 12(1):39–49.  https://doi.org/10.1016/j.arr.2012.06.008 Google Scholar
  55. 55.
    Hu W, Wu F, Zhang Y, Gong CX, Iqbal K, Liu F (2017) Expression of tau pathology-related proteins in different brain regions: a molecular basis of tau pathogenesis. Front Aging Neurosci 9:311.  https://doi.org/10.3389/fnagi.2017.00311 Google Scholar
  56. 56.
    Iqbal K, Gong CX, Liu F (2014) Microtubule-associated protein tau as a therapeutic target in Alzheimer’s disease. Expert Opin Ther Targets 18(3):307–318.  https://doi.org/10.1517/14728222.2014.870156 Google Scholar
  57. 57.
    Yu UY, Yoo BC, Ahn JH (2014) Regulatory B subunits of protein phosphatase 2A are involved in site-specific regulation of tau protein phosphorylation. Korean J Physiol Pharmacol 18(2):155–161.  https://doi.org/10.4196/kjpp.2014.18.2.155 Google Scholar
  58. 58.
    Schweiger S, Matthes F, Posey K, Kickstein E, Weber S, Hettich MM, Pfurtscheller S, Ehninger D, Schneider R, Krauss S (2017) Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Sci Rep 7(1):13753.  https://doi.org/10.1038/s41598-017-12974-4 Google Scholar
  59. 59.
    Yang CC, Kuai XX, Gao WB, Yu JC, Wang Q, Li L, Zhang L (2016) Morroniside-induced PP2A activation antagonizes tau hyperphosphorylation in a cellular model of neurodegeneration. J Alzheimers Dis 51(1):33–44.  https://doi.org/10.3233/JAD-150728 Google Scholar
  60. 60.
    Wang QM, Fiol CJ, DePaoli-Roach AA, Roach PJ (1994) Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J Biol Chem 269(20):14566–14574Google Scholar
  61. 61.
    Hagen T, Di Daniel E, Culbert AA, Reith AD (2002) Expression and characterization of GSK-3 mutants and their effect on beta-catenin phosphorylation in intact cells. J Biol Chem.  https://doi.org/10.1074/jbc.m201364200 Google Scholar
  62. 62.
    Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, Wang Y, Chang H, Qian W, Shi J (2015) Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging 36(1):188–200.  https://doi.org/10.1016/j.neurobiolaging.2014.07.035 Google Scholar
  63. 63.
    Millward TA, Zolnierowicz S, Hemmings BA (1999) Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci 24(5):186–191.  https://doi.org/10.1016/S0968-0004(99)01375-4 Google Scholar
  64. 64.
    Kins S, Kurosinski P, Nitsch RM, Gotz J (2003) Activation of the ERK and JNK signaling pathways caused by neuron-specific inhibition of PP2A in transgenic mice. Am J Pathol 163(3):833–843.  https://doi.org/10.1016/S0002-9440(10)63444-X Google Scholar
  65. 65.
    O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204.  https://doi.org/10.1146/annurev-neuro-061010-113613 Google Scholar
  66. 66.
    Tian Q, Wang J (2002) Role of serine/threonine protein phosphatase in Alzheimer’s disease. Neurosignals 11(5):262–269.  https://doi.org/10.1159/000067425 Google Scholar
  67. 67.
    Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y, Neve R, Ahlijanian MK, Tsai LH (2003) APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163(1):83–95.  https://doi.org/10.1083/jcb.200301115 Google Scholar
  68. 68.
    Colombo A, Bastone A, Ploia C, Sclip A, Salmona M, Forloni G, Borsello T (2009) JNK regulates APP cleavage and degradation in a model of Alzheimer’s disease. Neurobiol Dis 33(3):518–525.  https://doi.org/10.1016/j.nbd.2008.12.014 Google Scholar
  69. 69.
    Zhang JW, Jing LJ, Jian G, Dong GC (2015) Mechanism of protein phosphatase-2Aregulating phosphorylation of amyloid precursor proteosome and Abeta generation. Bratisl Lek Listy 116(3):184–190Google Scholar
  70. 70.
    Braithwaite SP, Schmid RS, He DN, Sung ML, Cho S, Resnick L, Monaghan MM, Hirst WD, Essrich C, Reinhart PH, Lo DC (2010) Inhibition of c-Jun kinase provides neuroprotection in a model of Alzheimer’s disease. Neurobiol Dis 39(3):311–317.  https://doi.org/10.1016/j.nbd.2010.04.015 Google Scholar
  71. 71.
    Eichhorn PJ, Creyghton MP, Bernards R (2009) Protein phosphatase 2A regulatory subunits and cancer. BBA Rev Cancer 1795(1):1–15.  https://doi.org/10.1016/j.bbcan.2008.05.005 Google Scholar
  72. 72.
    Perrotti D, Neviani P (2013) Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol 14(6):e229–e238.  https://doi.org/10.1016/S1470-2045(12)70558-2 Google Scholar
  73. 73.
    Jin Z, Wallace L, Harper SQ, Yang J (2010) PP2A: B56ε, a substrate of caspase-3, regulates p53-dependent and-independent apoptosis during development. JBC M110:169581.  https://doi.org/10.1074/jbc.M110.169581 Google Scholar
  74. 74.
    Deng X, Gao F, May WS (2009) Protein phosphatase 2A inactivates Bcl2′s antiapoptotic function by dephosphorylation and up-regulation of Bcl2-p53 binding. Blood 113(2):422–428.  https://doi.org/10.1182/blood-2008-06-165134 Google Scholar
  75. 75.
    Van Hoof C, Goris J (2003) Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question. BBA Mol Cell Res 1640(2–3):97–104.  https://doi.org/10.1016/s0167-4889(03)00029-6 Google Scholar
  76. 76.
    Shang S, Hua F, Hu ZW (2017) The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8(20):33972–33989.  https://doi.org/10.18632/oncotarget.15687 Google Scholar
  77. 77.
    Donmez HG, Demirezen S, Beksac MS (2016) The relationship between beta-catenin and apoptosis: a cytological and immunocytochemical examination. Tissue Cell 48(3):160–167.  https://doi.org/10.1016/j.tice.2016.04.001 Google Scholar
  78. 78.
    Yao W, Zou HJ, Sun D, Ren SQ (2013) Abeta induces acute depression of excitatory glutamatergic synaptic transmission through distinct phosphatase-dependent mechanisms in rat CA1 pyramidal neurons. Brain Res 1515:88–97.  https://doi.org/10.1016/j.brainres.2013.03.049 Google Scholar
  79. 79.
    Theendakara V, Bredesen DE, Rao RV (2017) Downregulation of protein phosphatase 2A by apolipoprotein E: implications for Alzheimer’s disease. Mol Cell Neurosci 83:83–91.  https://doi.org/10.1016/j.mcn.2017.07.002 Google Scholar
  80. 80.
    Tanimukai H, Grundke-Iqbal I, Iqbal K (2005) Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer’s disease. Am J Pathol 166(6):1761–1771.  https://doi.org/10.1016/S0002-9440(10)62486-8 Google Scholar
  81. 81.
    Basurto-Islas G, Grundke-Iqbal I, Tung YC, Liu F, Iqbal K (2013) Activation of asparaginyl endopeptidase leads to Tau hyperphosphorylation in Alzheimer disease. J Biol Chem 288(24):17495–17507.  https://doi.org/10.1074/jbc.M112.446070 Google Scholar
  82. 82.
    Chasseigneaux S, Clamagirand C, Huguet L, Gorisse-Hussonnois L, Rose C, Allinquant B (2014) Cytoplasmic SET induces tau hyperphosphorylation through a decrease of methylated phosphatase 2A. BMC Neurosci 15:82.  https://doi.org/10.1186/1471-2202-15-82 Google Scholar
  83. 83.
    Sun XY, Wei YP, Xiong Y, Wang XC, Xie AJ, Wang XL, Yang Y, Wang Q, Lu YM, Liu R, Wang JZ (2012) Synaptic released zinc promotes tau hyperphosphorylation by inhibition of protein phosphatase 2A (PP2A). J Biol Chem 287(14):11174–11182.  https://doi.org/10.1074/jbc.M111.309070 Google Scholar
  84. 84.
    Xiong Y, Jing XP, Zhou XW, Wang XL, Yang Y, Sun XY, Qiu M, Cao FY, Lu YM, Liu R, Wang JZ (2013) Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A (tyrosine 307) phosphorylation. Neurobiol Aging 34(3):745–756.  https://doi.org/10.1016/j.neurobiolaging.2012.07.003 Google Scholar
  85. 85.
    Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, Raymond AA, Dargahi L, Ghasemi R, Ahmadiani A (2015) Glycogen synthase kinase-3 beta (GSK-3β) signaling: implications for Parkinson’s disease. Pharmacol Res 97:16–26.  https://doi.org/10.1016/j.phrs.2015.03.010 Google Scholar
  86. 86.
    Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2):160–164.  https://doi.org/10.1038/ncb748 Google Scholar
  87. 87.
    Waxman EA, Giasson BI (2008) Specificity and regulation of casein kinase-mediated phosphorylation of alpha-synuclein. J Neuropathol Exp Neurol 67(5):402–416.  https://doi.org/10.1097/NEN.0b013e31816fc995 Google Scholar
  88. 88.
    Taymans JM, Baekelandt V (2014) Phosphatases of alpha-synuclein, LRRK2, and tau: important players in the phosphorylation-dependent pathology of Parkinsonism. Front Genet 5:382.  https://doi.org/10.3389/fgene.2014.00382 Google Scholar
  89. 89.
    Lee KW, Chen W, Junn E, Im JY, Grosso H, Sonsalla PK, Feng X, Ray N, Fernandez JR, Chao Y, Masliah E, Voronkov M, Braithwaite SP, Stock JB, Mouradian MM (2011) Enhanced phosphatase activity attenuates alpha-synucleinopathy in a mouse model. J Neurosci 31(19):6963–6971.  https://doi.org/10.1523/JNEUROSCI.6513-10.2011 Google Scholar
  90. 90.
    Park HJ, Lee KW, Park ES, Oh S, Yan R, Zhang J, Beach TG, Adler CH, Voronkov M, Braithwaite SP, Stock JB, Mouradian MM (2016) Dysregulation of protein phosphatase 2A in parkinson disease and dementia with lewy bodies. Ann Clin Transl Neurol 3(10):769–780.  https://doi.org/10.1002/acn3.337 Google Scholar
  91. 91.
    Wu J, Lou H, Alerte TN, Stachowski EK, Chen J, Singleton AB, Hamilton RL, Perez RG (2012) Lewy-like aggregation of alpha-synuclein reduces protein phosphatase 2A activity in vitro and in vivo. Neuroscience 207:288–297.  https://doi.org/10.1016/j.neuroscience.2012.01.028 Google Scholar
  92. 92.
    Tian H, Lu Y, Liu J, Liu W, Lu L, Duan C, Gao G, Yang H (2018) Leucine carboxyl methyltransferase downregulation and protein phosphatase methylesterase upregulation contribute toward the inhibition of protein phosphatase 2A by alpha-synuclein. Front Aging Neurosci 10:173.  https://doi.org/10.3389/fnagi.2018.00173 Google Scholar
  93. 93.
    Arif M, Kazim SF, Grundke-Iqbal I, Garruto RM, Iqbal K (2014) Tau pathology involves protein phosphatase 2A in parkinsonism-dementia of Guam. Proc Natl Acad Sci USA 111(3):1144–1149.  https://doi.org/10.1073/pnas.1322614111 Google Scholar
  94. 94.
    Jazvinscak Jembrek M, Hof PR, Simic G (2015) Ceramides in Alzheimer’s disease: key mediators of neuronal apoptosis induced by oxidative stress and abeta accumulation. Oxid Med Cell Longev 2015:346783.  https://doi.org/10.1155/2015/346783 Google Scholar
  95. 95.
    Beg M, Srivastava A, Shankar K, Varshney S, Rajan S, Gupta A, Kumar D, Gaikwad AN (2016) PPP2R5B, a regulatory subunit of PP2A, contributes to adipocyte insulin resistance. Mol Cell Endocrinol 437:97–107.  https://doi.org/10.1016/j.mce.2016.08.016 Google Scholar
  96. 96.
    Jun HS, Hwang K, Kim Y, Park T (2008) High-fat diet alters PP2A, TC10, and CIP4 expression in visceral adipose tissue of rats. Obesity (Silver Spring) 16(6):1226–1231.  https://doi.org/10.1038/oby.2008.220 Google Scholar
  97. 97.
    Cazzolli R, Carpenter L, Biden TJ, Schmitz-Peiffer C (2001) A role for protein phosphatase 2A-like activity, but not atypical protein kinase Czeta, in the inhibition of protein kinase B/Akt and glycogen synthesis by palmitate. Diabetes 50(10):2210–2218.  https://doi.org/10.2337/DIABETES.50.10.2210 Google Scholar
  98. 98.
    Srinivasan M, Begum N (1994) Regulation of protein phosphatase 1 and 2A activities by insulin during myogenesis in rat skeletal muscle cells in culture. J Biol Chem 269(17):12514–12520Google Scholar
  99. 99.
    Begum N, Ragolia L (1996) cAMP counter-regulates insulin-mediated protein phosphatase-2A inactivation in rat skeletal muscle cells. J Biol Chem 271(49):31166–31171.  https://doi.org/10.1074/jbc.271.49.31166 Google Scholar
  100. 100.
    Hojlund K, Poulsen M, Staehr P, Brusgaard K, Beck-Nielsen H (2002) Effect of insulin on protein phosphatase 2A expression in muscle in type 2 diabetes. Eur J Clin Invest 32(12):918–923.  https://doi.org/10.1046/j.1365-2362.2002.01098.x Google Scholar
  101. 101.
    Vazquez-Carballo A, Ceperuelo-Mallafre V, Chacon MR, Maymo-Masip E, Lorenzo M, Porras A, Vendrell J, Fernandez-Veledo S (2013) TWEAK prevents TNF-alpha-induced insulin resistance through PP2A activation in human adipocytes. Am J Physiol Endocrinol Metab 305(1):E101–E112.  https://doi.org/10.1152/ajpendo.00589.2012 Google Scholar
  102. 102.
    Carlson CJ, White MF, Rondinone CM (2004) Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation. Biochem Biophys Res Commun 316(2):533–539.  https://doi.org/10.1016/j.bbrc.2004.02.082 Google Scholar
  103. 103.
    Hartley D, Cooper GM (2002) Role of mTOR in the degradation of IRS-1: regulation of PP2A activity. J Cell Biochem 85(2):304–314.  https://doi.org/10.1002/jcb.10135 Google Scholar
  104. 104.
    Mandavia C, Sowers JR (2012) Phosphoprotein phosphatase PP2A regulation of insulin receptor substrate 1 and insulin metabolic signaling. Cardiorenal Med 2(4):308–313.  https://doi.org/10.1159/000343889 Google Scholar
  105. 105.
    Galbo T, Perry RJ, Nishimura E, Samuel VT, Quistorff B, Shulman GI (2013) PP2A inhibition results in hepatic insulin resistance despite Akt2 activation. Aging (Albany NY) 5(10):770–781.  https://doi.org/10.18632/aging.100611 Google Scholar
  106. 106.
    Gratuze M, Julien J, Petry FR, Morin F, Planel E (2017) Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer’s disease-like tau pathology. Sci Rep 7:46359.  https://doi.org/10.1038/srep46359 Google Scholar
  107. 107.
    Oaks J, Ogretmen B (2014) Regulation of PP2A by sphingolipid metabolism and signaling. Front Oncol 4:388.  https://doi.org/10.3389/fonc.2014.00388 Google Scholar
  108. 108.
    Rincón R, Cristóbal I, Zazo S, Arpí O, Menéndez S, Manso R, Lluch A, Eroles P, Rovira A, Albanell J (2015) PP2A inhibition determines poor outcome and doxorubicin resistance in early breast cancer and its activation shows promising therapeutic effects. Oncotarget 6(6):4299.  https://doi.org/10.18632/oncotarget.3012 Google Scholar
  109. 109.
    Cristóbal I, González-Alonso P, Daoud L, Solano E, Torrejón B, Manso R, Madoz-Gúrpide J, Rojo F, García-Foncillas J (2015) Activation of the tumor suppressor PP2A emerges as a potential therapeutic strategy for treating prostate cancer. Mar Drugs 13(6):3276–3286.  https://doi.org/10.3390/md13063276 Google Scholar
  110. 110.
    Mani R, Mao Y, Frissora FW, Chiang C-L, Wang J, Zhao Y, Wu Y, Yu B, Yan R, Mo X (2015) Tumor antigen ROR1 targeted drug delivery mediated selective leukemic but not normal B-cell cytotoxicity in chronic lymphocytic leukemia. Leukemia 29(2):346.  https://doi.org/10.1038/leu.2014.199 Google Scholar
  111. 111.
    Zonta F, Pagano MA, Trentin L, Tibaldi E, Frezzato F, Trimarco V, Facco M, Zagotto G, Pavan V, Ribaudo G, Bordin L, Semenzato G, Brunati AM (2015) Lyn sustains oncogenic signaling in chronic lymphocytic leukemia by strengthening SET-mediated inhibition of PP2A. Blood 125(24):3747–3755.  https://doi.org/10.1182/blood-2014-12-619155 Google Scholar
  112. 112.
    Yu JT, Tan L, Hardy J (2014) Apolipoprotein E in Alzheimer’s disease: an update. Annu Rev Neurosci 37:79–100.  https://doi.org/10.1146/annurev-neuro-071013-014300 Google Scholar
  113. 113.
    O’Connor CM, Perl A, Leonard D, Sangodkar J, Narla G (2018) Therapeutic targeting of PP2A. Int J Biochem Cell Biol 96:182–193.  https://doi.org/10.1016/j.biocel.2017.10.008 Google Scholar
  114. 114.
    Vitek M, Christensen D, Wilcock D, Davis J, Van Nostrand W, Li F, Colton C (2012) APOE-mimetic peptides reduce behavioral deficits, plaques and tangles in Alzheimer’s disease transgenics. Neurodegener Dis 10(1–4):122–126.  https://doi.org/10.1159/000334914 Google Scholar
  115. 115.
    Ghosal K, Stathopoulos A, Thomas D, Phenis D, Vitek MP, Pimplikar SW (2013) The apolipoprotein-E-mimetic COG112 protects amyloid precursor protein intracellular domain-overexpressing animals from Alzheimer’s disease-like pathological features. Neurodegener Dis 12(1):51–58.  https://doi.org/10.1159/000341299 Google Scholar
  116. 116.
    Christensen DJ, Ohkubo N, Oddo J, Van Kanegan MJ, Neil J, Li F, Colton CA, Vitek MP (2011) Apolipoprotein E and peptide mimetics modulate inflammation by binding the SET protein and activating protein phosphatase 2A. J Immunol 186(4):2535–2542.  https://doi.org/10.4049/jimmunol.1002847 Google Scholar
  117. 117.
    Agarwal A, MacKenzie RJ, Pippa R, Eide CA, Oddo J, Tyner JW, Sears RC, Vitek MP, Odero MD, Christensen DJ (2014) Antagonism of SET using OP449 enhances the efficacy of tyrosine kinase inhibitors and overcomes drug resistance in myeloid leukemia. Clin Cancer Res 2575:2013.  https://doi.org/10.1158/1078-0432.CCR-13-2575 Google Scholar
  118. 118.
    Liu Z, Ma L, Zhou GB (2011) The main anticancer bullets of the Chinese medicinal herb, thunder god vine. Molecules 16(6):5283–5297.  https://doi.org/10.3390/molecules16065283 Google Scholar
  119. 119.
    Liu Z, Ma L, Wen Z-S, Hu Z, Wu F-Q, Li W, Liu J, Zhou G-B (2013) Cancerous inhibitor of PP2A is targeted by natural compound celastrol for degradation in non-small-cell lung cancer. Carcinogenesis 35(4):905–914.  https://doi.org/10.1093/carcin/bgt395 Google Scholar
  120. 120.
    Wu J, Ding M, Mao N, Wu Y, Wang C, Yuan J, Miao X, Li J, Shi Z (2017) Celastrol inhibits chondrosarcoma proliferation, migration and invasion through suppression CIP2A/c-MYC signaling pathway. J Pharm Sci 134(1):22–28.  https://doi.org/10.1016/j.jphs.2016.12.007 Google Scholar
  121. 121.
    Mendelsohn J, Baselga J (2006) Epidermal growth factor receptor targeting in cancer. Seminars in oncology, vol 4. Elsevier, Oxfrod, pp 369–385.  https://doi.org/10.1053/j.seminoncol.2006.04.003 Google Scholar
  122. 122.
    Chen K-F, Pao K-C, Su J-C, Chou Y-C, Liu C-Y, Chen H-J, Huang J-W, Kim I, Shiau C-W (2012) Development of erlotinib derivatives as CIP2A-ablating agents independent of EGFR activity. Bioorg Med Chem 20(20):6144–6153.  https://doi.org/10.1016/j.bmc.2012.08.039 Google Scholar
  123. 123.
    Liu C-Y, Huang T-T, Huang C-T, Hu M-H, Wang D-S, Wang W-L, Tsai W-C, Lee C-H, Lau K-Y, Yang H-P (2017) EGFR-independent Elk1/CIP2A signalling mediates apoptotic effect of an erlotinib derivative TD52 in triple-negative breast cancer cells. Eur J Cancer 72:112–123.  https://doi.org/10.1016/j.ejca.2016.11.012 Google Scholar
  124. 124.
    Chen KF, Liu CY, Lin YC, Yu HC, Liu TH, Hou DR, Chen PJ, Cheng AL (2010) CIP2A mediates effects of bortezomib on phospho-Akt and apoptosis in hepatocellular carcinoma cells. Oncogene 29(47):6257–6266.  https://doi.org/10.1038/onc.2010.357 Google Scholar
  125. 125.
    Ding Y, Wang Y, Ju S, Wu X, Zhu W, Shi F, Mao L (2014) Role of CIP2A in the antitumor effect of bortezomib in colon cancer. Mol Med Rep 10(1):387–392.  https://doi.org/10.3892/mmr.2014.2173 Google Scholar
  126. 126.
    Miao F, Yang X-J, Zhou L, Hu H-J, Zheng F, Ding X-D, Sun D-M, Zhou C-D, Sun W (2011) Structural modification of sanguinarine and chelerythrine and their antibacterial activity. Nat Prod Res 25(9):863–875.  https://doi.org/10.1080/14786419.2010.482055 Google Scholar
  127. 127.
    W-g Li, F-y Dai, Y-x Cheng, G-f Yin, J-l Bi, D-p Li (2013) Identification of porcine reproductive and respiratory syndrome virus inhibitors through an oriented screening on natural products. Chem Res Chin Univ 29(2):290–293.  https://doi.org/10.1007/s40242-013-2300-y Google Scholar
  128. 128.
    Liu Z, Ma L, Wen ZS, Cheng YX, Zhou GB (2014) Ethoxysanguinarine induces inhibitory effects and downregulates CIP2A in lung cancer cells. ACS Med Chem Lett 5(2):113–118.  https://doi.org/10.1021/ml400341k Google Scholar
  129. 129.
    Bachovchin DA, Mohr JT, Speers AE, Wang C, Berlin JM, Spicer TP, Fernandez-Vega V, Chase P, Hodder PS, Schurer SC, Nomura DK, Rosen H, Fu GC, Cravatt BF (2011) Academic cross-fertilization by public screening yields a remarkable class of protein phosphatase methylesterase-1 inhibitors. Proc Natl Acad Sci USA 108(17):6811–6816.  https://doi.org/10.1073/pnas.1015248108 Google Scholar
  130. 130.
    Bachovchin DA, Zuhl AM, Speers AE, Wolfe MR, Weerapana E, Brown SJ, Rosen H, Cravatt BF (2011) Discovery and optimization of sulfonyl acrylonitriles as selective, covalent inhibitors of protein phosphatase methylesterase-1. J Med Chem 54(14):5229–5236.  https://doi.org/10.1021/jm200502u Google Scholar
  131. 131.
    Guénin S, Schwartz L, Morvan D, Steyaert JM, Poignet A, Madelmont JC, Demidem A (2008) PP2A activity is controlled by methylation and regulates oncoprotein expression in melanoma cells: a mechanism which participates in growth inhibition induced by chloroethylnitrosourea treatment. Int J Oncol 32(1):49–57.  https://doi.org/10.3892/ijo.32.1.49 Google Scholar
  132. 132.
    Kabashima T, Kawaguchi T, Wadzinski BE, Uyeda K (2003) Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA 100(9):5107–5112.  https://doi.org/10.1073/pnas.0730817100 Google Scholar
  133. 133.
    Schabel FM Jr (1976) Nitrosoureas: a review of experimental antitumor activity. Cancer Treat Rep 60(6):665–698Google Scholar
  134. 134.
    Seamon KB, Padgett W, Daly JW (1981) Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci USA 78(6):3363–3367.  https://doi.org/10.1073/pnas.78.6.3363 Google Scholar
  135. 135.
    Cristobal I, Garcia-Orti L, Cirauqui C, Alonso M, Calasanz M, Odero M (2011) PP2A impaired activity is a common event in acute myeloid leukemia and its activation by forskolin has a potent anti-leukemic effect. Leukemia 25(4):606.  https://doi.org/10.1038/leu.2010.294 Google Scholar
  136. 136.
    Cristóbal I, Rincón R, Manso R, Madoz-Gúrpide J, Caramés C, del Puerto-Nevado L, Rojo F (1842) García-Foncillas J (2014) Hyperphosphorylation of PP2A in colorectal cancer and the potential therapeutic value showed by its forskolin-induced dephosphorylation and activation. BBA Mol Basis Dis 9:1823–1829.  https://doi.org/10.1016/j.bbadis.2014.06.032 Google Scholar
  137. 137.
    Huang PH, Wang D, Chuang HC, Wei S, Kulp SK, Chen CS (2009) alpha-Tocopheryl succinate and derivatives mediate the transcriptional repression of androgen receptor in prostate cancer cells by targeting the PP2A-JNK-Sp1-signaling axis. Carcinogenesis 30(7):1125–1131.  https://doi.org/10.1093/carcin/bgp112 Google Scholar
  138. 138.
    Neuzil J, Weber T, Schroder A, Lu M, Ostermann G, Gellert N, Mayne GC, Olejnicka B, Negre-Salvayre A, Sticha M, Coffey RJ, Weber C (2001) Induction of cancer cell apoptosis by alpha-tocopheryl succinate: molecular pathways and structural requirements. FASEB J 15(2):403–415.  https://doi.org/10.1096/fj.00-0251com Google Scholar
  139. 139.
    Gutierrez A, Pan L, Groen RW, Baleydier F, Kentsis A, Marineau J, Grebliunaite R, Kozakewich E, Reed C, Pflumio F, Poglio S, Uzan B, Clemons P, VerPlank L, An F, Burbank J, Norton S, Tolliday N, Steen H, Weng AP, Yuan H, Bradner JE, Mitsiades C, Look AT, Aster JC (2014) Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest 124(2):644–655.  https://doi.org/10.1172/JCI65093 Google Scholar
  140. 140.
    Fujiki H, Sueoka E, Watanabe T, Suganuma M (2018) The concept of the okadaic acid class of tumor promoters is revived in endogenous protein inhibitors of protein phosphatase 2A, SET and CIP2A, in human cancers. J Cancer Res Clin Oncol 144(12):2339–2349.  https://doi.org/10.1007/s00432-018-2765-7 Google Scholar
  141. 141.
    Swingle M, Ni L, Honkanen RE (2007) Small-Molecule Inhibitors of Ser/Thr Protein Phosphatases. In: Moorhead G (ed) Protein Phosphatase Protocols. Springer New York, Totowa, NJ, pp 23-38.  https://doi.org/10.1385/1-59745-267-x:23
  142. 142.
    Honkanen R, Golden T (2002) Regulators of serine/threonine protein phosphatases at the dawn of a clinical era? Curr Med Chem 9(22):2055–2075.  https://doi.org/10.2174/0929867023368836 Google Scholar
  143. 143.
    Prickett TD, Brautigan DL (2006) The α4 regulatory subunit exerts opposing allosteric effects on protein phosphatases PP6 and PP2A. J Biol Chem 281(41):30503–30511.  https://doi.org/10.1074/jbc.M601054200 Google Scholar
  144. 144.
    Walsh AH, Cheng A, Honkanen RE (1997) Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A. FEBS Lett 416(3):230–234.  https://doi.org/10.1016/S0014-5793(97)01210-6 Google Scholar
  145. 145.
    Twiner MJ, Doucette GJ, Pang Y, Fang C, Forsyth CJ, Miles CO (2016) Structure-activity relationship studies using natural and synthetic okadaic acid/dinophysistoxin toxins. Mar Drugs 14(11):207.  https://doi.org/10.3390/md14110207 Google Scholar
  146. 146.
    Hong CS, Ho W, Zhang C, Yang C, Elder JB, Zhuang Z (2015) LB100, a small molecule inhibitor of PP2A with potent chemo- and radio-sensitizing potential. Cancer Biol Ther 16(6):821–833.  https://doi.org/10.1080/15384047.2015.1040961 Google Scholar
  147. 147.
    Azad N, Rasoolijazi H, Joghataie MT, Soleimani S (2011) Neuroprotective effects of carnosic acid in an experimental model of Alzheimer’s disease in rats. Cell J (Yakhteh) 13(1):39Google Scholar
  148. 148.
    Lipina C, Hundal HS (2014) Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. Cell Signal 26(11):2343–2349.  https://doi.org/10.1016/j.cellsig.2014.07.022 Google Scholar
  149. 149.
    Kar S, Palit S, Ball WB, Das PK (2012) Carnosic acid modulates Akt/IKK/NF-κB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis 17(7):735–747.  https://doi.org/10.1007/s10495-012-0715-4 Google Scholar
  150. 150.
    Kolupaeva V, Daempfling L, Basilico C (2013) The B55alpha regulatory subunit of protein phosphatase 2A mediates fibroblast growth factor-induced p107 dephosphorylation and growth arrest in chondrocytes. Mol Cell Biol 33(15):2865–2878.  https://doi.org/10.1128/MCB.01730-12 Google Scholar
  151. 151.
    Yabe R, Fujiwara N, Mizuno T, Usui T, Ohama T, Sato K (2014) Characterization of SET/I2PP2A isoforms in dogs. J Vet Med Sci 76(9):1235–1240.  https://doi.org/10.1292/jvms.14-0209 Google Scholar
  152. 152.
    Zhou H, Luo W, Zeng C, Zhang Y, Wang L, Yao W, Nie C (2017) PP2A mediates apoptosis or autophagic cell death in multiple myeloma cell lines. Oncotarget 8(46):80770–80789.  https://doi.org/10.18632/oncotarget.20415 Google Scholar
  153. 153.
    Suprynowicz FA, Kamonjoh CM, Krawczyk E, Agarwal S, Wellstein A, Agboke FA, Choudhury S, Liu X, Schlegel R (2017) Conditional cell reprogramming involves non-canonical beta-catenin activation and mTOR-mediated inactivation of Akt. PLoS One 12(7):e0180897.  https://doi.org/10.1371/journal.pone.0180897 Google Scholar
  154. 154.
    Sangodkar J, Perl A, Tohme R, Kiselar J, Kastrinsky DB, Zaware N, Izadmehr S, Mazhar S, Wiredja DD, O’Connor CM, Hoon D, Dhawan NS, Schlatzer D, Yao S, Leonard D, Borczuk AC, Gokulrangan G, Wang L, Svenson E, Farrington CC, Yuan E, Avelar RA, Stachnik A, Smith B, Gidwani V, Giannini HM, McQuaid D, McClinch K, Wang Z, Levine AC, Sears RC, Chen EY, Duan Q, Datt M, Haider S, Ma’Ayan A, DiFeo A, Sharma N, Galsky MD, Brautigan DL, Ioannou YA, Xu W, Chance MR, Ohlmeyer M, Narla G (2017) Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth. J Clin Investign 127(6):2081–2090.  https://doi.org/10.1172/JCI89548 Google Scholar
  155. 155.
    Jin Z, Mei W, Strack S, Jia J, Yang J (2011) The antagonistic action of B56-containing protein phosphatase 2As and casein kinase 2 controls the phosphorylation and Gli turnover function of Daz interacting protein 1. Journal of Biological Chemistry 286 (42):jbc. M111. 274761.  https://doi.org/10.1074/jbc.m111.274761
  156. 156.
    Stanevich V, Zheng A, Guo F, Jiang L, Wlodarchak N, Xing Y (2014) Mechanisms of the scaffold subunit in facilitating protein phosphatase 2A methylation. PLoS One 9(1):e86955.  https://doi.org/10.1371/journal.pone.0086955 Google Scholar
  157. 157.
    Lu S, Yao Y, Xu G, Zhou C, Zhang Y, Sun J, Jiang R, Shao Q, Chen Y (2018) CD24 regulates sorafenib resistance via activating autophagy in hepatocellular carcinoma. Cell Death Dis 9(6):646.  https://doi.org/10.1038/s41419-018-0681-z Google Scholar
  158. 158.
    Longin S, Jordens J, Martens E, Stevens I, Janssens V, Rondelez E, De Baere I, Derua R, Waelkens E, Goris J (2004) An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator. Biochem J 380(1):111–119.  https://doi.org/10.1042/BJ20031643 Google Scholar
  159. 159.
    Liu XP, Zheng HY, Qu M, Zhang Y, Cao FY, Wang Q, Ke D, Liu GP, Wang JZ (2012) Upregulation of astrocytes protein phosphatase-2A stimulates astrocytes migration via inhibiting p38 MAPK in tg2576 mice. Glia 60(9):1279–1288.  https://doi.org/10.1002/glia.22347 Google Scholar
  160. 160.
    Lorenz U (2011) Protein tyrosine phosphatase assays. Curr Protoc Immunol Chapter 11 (1):Unit 11 17.  https://doi.org/10.1002/0471142735.im1107s93
  161. 161.
    Rudrabhatla P, Albers W, Pant HC (2009) Peptidyl-prolyl isomerase 1 regulates protein phosphatase 2A-mediated topographic phosphorylation of neurofilament proteins. J Neurosci 29(47):14869–14880.  https://doi.org/10.1523/JNEUROSCI.4469-09.2009 Google Scholar
  162. 162.
    Rahman A, Brew BJ, Guillemin GJ (2011) Lead dysregulates serine/threonine protein phosphatases in human neurons. Neurochem Res 36(2):195–204.  https://doi.org/10.1007/s11064-010-0300-6 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Neurobiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
  4. 4.Neurophysiology Research CenterShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations