Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 10, pp 1889–1899 | Cite as

Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain

  • Meichun Deng
  • Shao-Rui Chen
  • Hui-Lin PanEmail author
Review

Abstract

Chronic neuropathic pain is a debilitating condition that remains challenging to treat. Glutamate N-methyl-d-aspartate receptor (NMDAR) antagonists have been used to treat neuropathic pain, but the exact sites of their actions have been unclear until recently. Although conventionally postsynaptic, NMDARs are also expressed presynaptically, particularly at the central terminals of primary sensory neurons, in the spinal dorsal horn. However, presynaptic NMDARs in the spinal cord are normally quiescent and are not actively involved in physiological nociceptive transmission. In this review, we describe the emerging role of presynaptic NMDARs at the spinal cord level in chronic neuropathic pain and the implications of molecular mechanisms for more effective treatment. Recent studies indicate that presynaptic NMDAR activity at the spinal cord level is increased in several neuropathic pain conditions but not in chronic inflammatory pain. Increased presynaptic NMDAR activity can potentiate glutamate release from primary afferent terminals to spinal dorsal horn neurons, which is crucial for the synaptic plasticity associated with neuropathic pain caused by traumatic nerve injury and chemotherapy-induced peripheral neuropathy. Furthermore, α2δ-1, previously considered a calcium channel subunit, can directly interact with NMDARs through its C-terminus to increase presynaptic NMDAR activity by facilitating synaptic trafficking of α2δ-1–NMDAR complexes in neuropathic pain caused by chemotherapeutic agents and peripheral nerve injury. Targeting α2δ-1–bound NMDARs with gabapentinoids or α2δ-1 C-terminus peptides can attenuate nociceptive drive form primary sensory nerves to dorsal horn neurons in neuropathic pain.

Keywords

Calcineurin K+–Cl cotransporter-2 Synaptic plasticity Dorsal root ganglion Gabapentin Pregabalin 

Abbreviations

AP5

2-Amino-5-phosphonopentanoic acid

CFA

Complete Freund’s adjuvant

CIPS

Calcineurin inhibitor-induced pain syndrome

DRG

Dorsal root ganglion

EPSC

Excitatory postsynaptic current

mEPSC

Miniature excitatory postsynaptic current

NMDAR

N-Methyl-d-aspartate receptor

PKC

Protein kinase C

Notes

Acknowledgements

Work conducted in the authors’ laboratory was funded by the National Institutes of Health (Grants R01 GM120844 and R01 NS101880).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

References

  1. 1.
    Yamamoto T, Yaksh TL (1992) Spinal pharmacology of thermal hyperesthesia induced by constriction injury of sciatic nerve. Excitatory amino acid antagonists. Pain 49(1):121–128CrossRefGoogle Scholar
  2. 2.
    Seltzer Z, Cohn S, Ginzburg R, Beilin B (1991) Modulation of neuropathic pain behavior in rats by spinal disinhibition and NMDA receptor blockade of injury discharge. Pain 45(1):69–75CrossRefGoogle Scholar
  3. 3.
    Zhou HY, Chen SR, Pan HL (2011) Targeting N-methyl-d-aspartate receptors for treatment of neuropathic pain. Expert Rev Clin Pharmacol 4(3):379–388CrossRefGoogle Scholar
  4. 4.
    Humeau Y, Shaban H, Bissiere S, Luthi A (2003) Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426(6968):841–845.  https://doi.org/10.1038/nature02194 CrossRefGoogle Scholar
  5. 5.
    Ye ZY, Li DP, Li L, Pan HL (2011) Protein kinase CK2 increases glutamatergic input in the hypothalamus and sympathetic vasomotor tone in hypertension. J Neurosci 31(22):8271–8279.  https://doi.org/10.1523/JNEUROSCI.1147-11.2011 CrossRefGoogle Scholar
  6. 6.
    Ma H, Chen SR, Chen H, Zhou JJ, Li DP, Pan HL (2018) alpha2delta-1 couples to NMDA receptors in the hypothalamus to sustain sympathetic vasomotor activity in hypertension. J Physiol 596(17):4269–4283.  https://doi.org/10.1113/jp276394 CrossRefGoogle Scholar
  7. 7.
    Park H, Popescu A, Poo MM (2014) Essential role of presynaptic NMDA receptors in activity-dependent BDNF secretion and corticostriatal LTP. Neuron 84(5):1009–1022.  https://doi.org/10.1016/j.neuron.2014.10.045 CrossRefGoogle Scholar
  8. 8.
    Zhou JJ, Li DP, Chen SR, Luo Y, Pan HL (2018) The alpha2delta-1-NMDA receptor coupling is essential for corticostriatal long-term potentiation and is involved in learning and memory. J Biol Chem 293(50):19354–19364.  https://doi.org/10.1074/jbc.RA118.003977 CrossRefGoogle Scholar
  9. 9.
    McGuinness L, Taylor C, Taylor RD, Yau C, Langenhan T, Hart ML, Christian H, Tynan PW, Donnelly P, Emptage NJ (2010) Presynaptic NMDARs in the hippocampus facilitate transmitter release at theta frequency. Neuron 68(6):1109–1127.  https://doi.org/10.1016/j.neuron.2010.11.023 CrossRefGoogle Scholar
  10. 10.
    Li L, Chen SR, Chen H, Wen L, Hittelman WN, Xie JD, Pan HL (2016) Chloride homeostasis critically regulates synaptic NMDA receptor activity in neuropathic pain. Cell Rep 15(7):1376–1383.  https://doi.org/10.1016/j.celrep.2016.04.039 CrossRefGoogle Scholar
  11. 11.
    Xie JD, Chen SR, Chen H, Zeng WA, Pan HL (2016) Presynaptic N-methyl-d-aspartate (NMDA) receptor activity is increased through protein kinase C in paclitaxel-induced neuropathic pain. J Biol Chem 291(37):19364–19373.  https://doi.org/10.1074/jbc.M116.732347 CrossRefGoogle Scholar
  12. 12.
    Zeng J, Thomson LM, Aicher SA, Terman GW (2006) Primary afferent NMDA receptors increase dorsal horn excitation and mediate opiate tolerance in neonatal rats. J Neurosci 26(46):12033–12042.  https://doi.org/10.1523/JNEUROSCI.2530-06.2006 CrossRefGoogle Scholar
  13. 13.
    Zhao YL, Chen SR, Chen H, Pan HL (2012) Chronic opioid potentiates presynaptic but impairs postsynaptic N-methyl-d-aspartic acid receptor activity in spinal cords: implications for opioid hyperalgesia and tolerance. J Biol Chem 287(30):25073–25085.  https://doi.org/10.1074/jbc.M112.378737 CrossRefGoogle Scholar
  14. 14.
    Yan X, Jiang E, Gao M, Weng HR (2013) Endogenous activation of presynaptic NMDA receptors enhances glutamate release from the primary afferents in the spinal dorsal horn in a rat model of neuropathic pain. J Physiol 591(7):2001–2019.  https://doi.org/10.1113/jphysiol.2012.250522 CrossRefGoogle Scholar
  15. 15.
    Cull-Candy SG, Leszkiewicz DN (2004) Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004(255):re16.  https://doi.org/10.1126/stke.2552004re16 Google Scholar
  16. 16.
    Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496.  https://doi.org/10.1124/pr.109.002451 CrossRefGoogle Scholar
  17. 17.
    Sanz-Clemente A, Nicoll RA, Roche KW (2013) Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist Rev J Bringing Neurobiol Neurol Psychiatry 19(1):62–75.  https://doi.org/10.1177/1073858411435129 Google Scholar
  18. 18.
    Kehoe LA, Bernardinelli Y, Muller D (2013) GluN3A: an NMDA receptor subunit with exquisite properties and functions. Neural Plast 2013:145387.  https://doi.org/10.1155/2013/145387 CrossRefGoogle Scholar
  19. 19.
    Farrant M, Feldmeyer D, Takahashi T, Cull-Candy SG (1994) NMDA-receptor channel diversity in the developing cerebellum. Nature 368(6469):335–339.  https://doi.org/10.1038/368335a0 CrossRefGoogle Scholar
  20. 20.
    Cavara NA, Orth A, Hicking G, Seebohm G, Hollmann M (2010) Residues at the tip of the pore loop of NR3B-containing NMDA receptors determine Ca2+ permeability and Mg2+ block. BMC Neurosci 11:133.  https://doi.org/10.1186/1471-2202-11-133 CrossRefGoogle Scholar
  21. 21.
    Fukaya M, Hayashi Y, Watanabe M (2005) NR2 to NR3B subunit switchover of NMDA receptors in early postnatal motoneurons. Eur J Neurosci 21(5):1432–1436.  https://doi.org/10.1111/j.1460-9568.2005.03957.x CrossRefGoogle Scholar
  22. 22.
    Shigemoto R, Ohishi H, Nakanishi S, Mizuno N (1992) Expression of the mRNA for the rat NMDA receptor (NMDAR1) in the sensory and autonomic ganglion neurons. Neurosci Lett 144(1–2):229–232CrossRefGoogle Scholar
  23. 23.
    Sato K, Kiyama H, Park HT, Tohyama M (1993) AMPA, KA and NMDA receptors are expressed in the rat DRG neurones. NeuroReport 4(11):1263–1265CrossRefGoogle Scholar
  24. 24.
    Willcockson H, Valtschanoff J (2008) AMPA and NMDA glutamate receptors are found in both peptidergic and non-peptidergic primary afferent neurons in the rat. Cell Tissue Res 334(1):17–23.  https://doi.org/10.1007/s00441-008-0662-0 CrossRefGoogle Scholar
  25. 25.
    Marvizon JC, McRoberts JA, Ennes HS, Song B, Wang X, Jinton L, Corneliussen B, Mayer EA (2002) Two N-methyl-d-aspartate receptors in rat dorsal root ganglia with different subunit composition and localization. J Comp Neurol 446(4):325–341CrossRefGoogle Scholar
  26. 26.
    Nagy GG, Watanabe M, Fukaya M, Todd AJ (2004) Synaptic distribution of the NR1, NR2A and NR2B subunits of the N-methyl-d-aspartate receptor in the rat lumbar spinal cord revealed with an antigen-unmasking technique. Eur J Neurosci 20(12):3301–3312.  https://doi.org/10.1111/j.1460-9568.2004.03798.x CrossRefGoogle Scholar
  27. 27.
    Liu H, Wang H, Sheng M, Jan LY, Jan YN, Basbaum AI (1994) Evidence for presynaptic N-methyl-d-aspartate autoreceptors in the spinal cord dorsal horn. Proc Natl Acad Sci USA 91(18):8383–8387CrossRefGoogle Scholar
  28. 28.
    Lu CR, Hwang SJ, Phend KD, Rustioni A, Valtschanoff JG (2003) Primary afferent terminals that express presynaptic NR1 in rats are mainly from myelinated, mechanosensitive fibers. J Comp Neurol 460(2):191–202.  https://doi.org/10.1002/cne.10632 CrossRefGoogle Scholar
  29. 29.
    Lu CR, Willcockson HH, Phend KD, Lucifora S, Darstein M, Valtschanoff JG, Rustioni A (2005) Ionotropic glutamate receptors are expressed in GABAergic terminals in the rat superficial dorsal horn. J Comp Neurol 486(2):169–178.  https://doi.org/10.1002/cne.20525 CrossRefGoogle Scholar
  30. 30.
    Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263CrossRefGoogle Scholar
  31. 31.
    Kavalali ET (2015) The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci 16(1):5–16.  https://doi.org/10.1038/nrn3875 CrossRefGoogle Scholar
  32. 32.
    Corlew R, Brasier DJ, Feldman DE, Philpot BD (2008) Presynaptic NMDA receptors: newly appreciated roles in cortical synaptic function and plasticity. Neuroscientist 14(6):609–625.  https://doi.org/10.1177/1073858408322675 CrossRefGoogle Scholar
  33. 33.
    Larsen RS, Corlew RJ, Henson MA, Roberts AC, Mishina M, Watanabe M, Lipton SA, Nakanishi N, Perez-Otano I, Weinberg RJ, Philpot BD (2011) NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nat Neurosci 14(3):338–344.  https://doi.org/10.1038/nn.2750 CrossRefGoogle Scholar
  34. 34.
    Banerjee A, Larsen RS, Philpot BD, Paulsen O (2016) Roles of presynaptic NMDA receptors in neurotransmission and plasticity. Trends Neurosci 39(1):26–39.  https://doi.org/10.1016/j.tins.2015.11.001 CrossRefGoogle Scholar
  35. 35.
    Liu H, Mantyh PW, Basbaum AI (1997) NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature 386(6626):721–724.  https://doi.org/10.1038/386721a0 CrossRefGoogle Scholar
  36. 36.
    McRoberts JA, Ennes HS, Marvizon JC, Fanselow MS, Mayer EA, Vissel B (2011) Selective knockdown of NMDA receptors in primary afferent neurons decreases pain during phase 2 of the formalin test. Neuroscience 172:474–482.  https://doi.org/10.1016/j.neuroscience.2010.10.045 CrossRefGoogle Scholar
  37. 37.
    Chen SR, Hu YM, Chen H, Pan HL (2014) Calcineurin inhibitor induces pain hypersensitivity by potentiating pre- and postsynaptic NMDA receptor activity in spinal cords. J Physiol 592(1):215–227.  https://doi.org/10.1113/jphysiol.2013.263814 CrossRefGoogle Scholar
  38. 38.
    Bardoni R, Torsney C, Tong CK, Prandini M, MacDermott AB (2004) Presynaptic NMDA receptors modulate glutamate release from primary sensory neurons in rat spinal cord dorsal horn. J Neurosci 24(11):2774–2781.  https://doi.org/10.1523/JNEUROSCI.4637-03.2004 CrossRefGoogle Scholar
  39. 39.
    Wu ZZ, Chen SR, Pan HL (2005) Transient receptor potential vanilloid type 1 activation down-regulates voltage-gated calcium channels through calcium-dependent calcineurin in sensory neurons. J Biol Chem 280(18):18142–18151.  https://doi.org/10.1074/jbc.M501229200 CrossRefGoogle Scholar
  40. 40.
    Wu ZZ, Chen SR, Pan HL (2006) Signaling mechanisms of down-regulation of voltage-activated Ca2+ channels by transient receptor potential vanilloid type 1 stimulation with olvanil in primary sensory neurons. Neuroscience 141(1):407–419.  https://doi.org/10.1016/j.neuroscience.2006.03.023 CrossRefGoogle Scholar
  41. 41.
    Oshima-Takago T, Takago H (2017) NMDA receptor-dependent presynaptic inhibition at the calyx of Held synapse of rat pups. Open Biol.  https://doi.org/10.1098/rsob.170032 Google Scholar
  42. 42.
    Pagadala P, Park CK, Bang S, Xu ZZ, Xie RG, Liu T, Han BX, Tracey WD Jr, Wang F, Ji RR (2013) Loss of NR1 subunit of NMDARs in primary sensory neurons leads to hyperexcitability and pain hypersensitivity: involvement of Ca(2+)-activated small conductance potassium channels. J Neurosci 33(33):13425–13430.  https://doi.org/10.1523/JNEUROSCI.0454-13.2013 CrossRefGoogle Scholar
  43. 43.
    Thomson LM, Zeng J, Terman GW (2006) Differential effect of glutamate transporter inhibition on EPSCs in the morphine naive and morphine tolerant neonatal spinal cord slice. Neurosci Lett 407(1):64–69.  https://doi.org/10.1016/j.neulet.2006.08.004 CrossRefGoogle Scholar
  44. 44.
    Deng M, Chen SR, Chen H, Luo Y, Dong Y, Pan HL (2019) Mitogen-activated protein kinase signaling mediates opioid-induced presynaptic NMDA receptor activation and analgesic tolerance. J Neurochem 148(2):275–290.  https://doi.org/10.1111/jnc.14628 Google Scholar
  45. 45.
    Zhou HY, Chen SR, Chen H, Pan HL (2010) Opioid-induced long-term potentiation in the spinal cord is a presynaptic event. J Neurosci 30(12):4460–4466.  https://doi.org/10.1523/Jneurosci.5857-09.2010 CrossRefGoogle Scholar
  46. 46.
    Correll GE, Maleki J, Gracely EJ, Muir JJ, Harbut RE (2004) Subanesthetic ketamine infusion therapy: a retrospective analysis of a novel therapeutic approach to complex regional pain syndrome. Pain medicine (Malden, Mass) 5(3):263–275.  https://doi.org/10.1111/j.1526-4637.2004.04043.x CrossRefGoogle Scholar
  47. 47.
    Kiefer RT, Rohr P, Ploppa A, Dieterich HJ, Grothusen J, Koffler S, Altemeyer KH, Unertl K, Schwartzman RJ (2008) Efficacy of ketamine in anesthetic dosage for the treatment of refractory complex regional pain syndrome: an open-label phase II study. Pain Med (Malden, Mass) 9(8):1173–1201.  https://doi.org/10.1111/j.1526-4637.2007.00402.x CrossRefGoogle Scholar
  48. 48.
    Chaplan SR, Malmberg AB, Yaksh TL (1997) Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. J Pharmacol Exp Ther 280(2):829–838Google Scholar
  49. 49.
    Zhou HY, Chen SR, Byun HS, Chen H, Li L, Han HD, Lopez-Berestein G, Sood AK, Pan HL (2012) N-Methyl-d-aspartate receptor- and calpain-mediated proteolytic cleavage of K+–Cl cotransporter-2 impairs spinal chloride homeostasis in neuropathic pain. J Biol Chem 287(40):33853–33864.  https://doi.org/10.1074/jbc.M112.395830 CrossRefGoogle Scholar
  50. 50.
    Santos SF, Rebelo S, Derkach VA, Safronov BV (2007) Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat. J Physiol 581(Pt 1):241–254.  https://doi.org/10.1113/jphysiol.2006.126912 CrossRefGoogle Scholar
  51. 51.
    Wang L, Chen SR, Ma H, Chen H, Hittelman WN, Pan HL (2018) Regulating nociceptive transmission by VGluT2-expressing spinal dorsal horn neurons. J Neurochem 147(4):526–540.  https://doi.org/10.1111/jnc.14588 CrossRefGoogle Scholar
  52. 52.
    Chen J, Li L, Chen SR, Chen H, Xie JD, Sirrieh RE, MacLean DM, Zhang Y, Zhou MH, Jayaraman V, Pan HL (2018) The α2δ-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep 22(9):2307–2321.  https://doi.org/10.1016/j.celrep.2018.02.021 CrossRefGoogle Scholar
  53. 53.
    Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61Google Scholar
  54. 54.
    Liu XJ, Gingrich JR, Vargas-Caballero M, Dong YN, Sengar A, Beggs S, Wang SH, Ding HK, Frankland PW, Salter MW (2008) Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat Med 14(12):1325–1332.  https://doi.org/10.1038/nm.1883 CrossRefGoogle Scholar
  55. 55.
    Yu XM, Salter MW (1999) Src, a molecular switch governing gain control of synaptic transmission mediated by N-methyl-d-aspartate receptors. Proc Natl Acad Sci USA 96(14):7697–7704CrossRefGoogle Scholar
  56. 56.
    Chen SR, Zhou HY, Byun HS, Chen H, Pan HL (2014) Casein kinase II regulates N-methyl-d-aspartate receptor activity in spinal cords and pain hypersensitivity induced by nerve injury. J Pharmacol Exp Ther 350(2):301–312.  https://doi.org/10.1124/jpet.114.215855 CrossRefGoogle Scholar
  57. 57.
    Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424(6951):938–942.  https://doi.org/10.1038/nature01868 CrossRefGoogle Scholar
  58. 58.
    Cole RL, Lechner SM, Williams ME, Prodanovich P, Bleicher L, Varney MA, Gu G (2005) Differential distribution of voltage-gated calcium channel alpha-2 delta (alpha2delta) subunit mRNA-containing cells in the rat central nervous system and the dorsal root ganglia. J Comp Neurol 491(3):246–269.  https://doi.org/10.1002/cne.20693 CrossRefGoogle Scholar
  59. 59.
    Luo Y, Ma H, Zhou JJ, Li L, Chen SR, Zhang J, Chen L, Pan HL (2018) Focal cerebral ischemia and reperfusion induce brain injury through alpha2delta-1-bound NMDA receptors. Stroke 49(10):2464–2472.  https://doi.org/10.1161/strokeaha.118.022330 CrossRefGoogle Scholar
  60. 60.
    Ma H, Chen SR, Chen H, Li L, Li DP, Zhou JJ, Pan HL (2018) alpha2delta-1 is essential for sympathetic output and NMDA receptor activity potentiated by angiotensin II in the hypothalamus. J Neurosci 38(28):6388–6398.  https://doi.org/10.1523/jneurosci.0447-18.2018 CrossRefGoogle Scholar
  61. 61.
    Luo ZD, Chaplan SR, Higuera ES, Sorkin LS, Stauderman KA, Williams ME, Yaksh TL (2001) Upregulation of dorsal root ganglion (alpha)2(delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci Off J Soc Neurosci 21(6):1868–1875CrossRefGoogle Scholar
  62. 62.
    Patel R, Bauer CS, Nieto-Rostro M, Margas W, Ferron L, Chaggar K, Crews K, Ramirez JD, Bennett DL, Schwartz A, Dickenson AH, Dolphin AC (2013) alpha2delta-1 gene deletion affects somatosensory neuron function and delays mechanical hypersensitivity in response to peripheral nerve damage. J Neurosci Off J Soc Neurosci 33(42):16412–16426.  https://doi.org/10.1523/jneurosci.1026-13.2013 CrossRefGoogle Scholar
  63. 63.
    Newton RA, Bingham S, Case PC, Sanger GJ, Lawson SN (2001) Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta-1 subunit following partial sciatic nerve injury. Brain Res Mol Brain Res 95(1–2):1–8CrossRefGoogle Scholar
  64. 64.
    Hauser W, Bernardy K, Uceyler N, Sommer C (2009) Treatment of fibromyalgia syndrome with gabapentin and pregabalin—a meta-analysis of randomized controlled trials. Pain 145(1–2):69–81.  https://doi.org/10.1016/j.pain.2009.05.014 CrossRefGoogle Scholar
  65. 65.
    Rowbotham M, Harden N, Stacey B, Bernstein P, Magnus-Miller L (1998) Gabapentin for the treatment of postherpetic neuralgia: a randomized controlled trial. JAMA 280(21):1837–1842CrossRefGoogle Scholar
  66. 66.
    Fuller-Bicer GA, Varadi G, Koch SE, Ishii M, Bodi I, Kadeer N, Muth JN, Mikala G, Petrashevskaya NN, Jordan MA, Zhang SP, Qin N, Flores CM, Isaacsohn I, Varadi M, Mori Y, Jones WK, Schwartz A (2009) Targeted disruption of the voltage-dependent calcium channel alpha2/delta-1-subunit. Am J Physiol Heart Circ Physiol 297(1):H117–124.  https://doi.org/10.1152/ajpheart.00122.2009 CrossRefGoogle Scholar
  67. 67.
    Chen SR, Zhu L, Chen H, Wen L, Laumet G, Pan HL (2014) Increased spinal cord Na(+)–K(+)–2Cl(−) cotransporter-1 (NKCC1) activity contributes to impairment of synaptic inhibition in paclitaxel-induced neuropathic pain. J Biol Chem 289(45):31111–31120.  https://doi.org/10.1074/jbc.M114.600320 CrossRefGoogle Scholar
  68. 68.
    Xie JD, Chen SR, Chen H, Pan HL (2017) Bortezomib induces neuropathic pain through protein kinase C-mediated activation of presynaptic NMDA receptors in the spinal cord. Neuropharmacology 123:477–487.  https://doi.org/10.1016/j.neuropharm.2017.06.027 CrossRefGoogle Scholar
  69. 69.
    Xie JD, Chen SR, Pan HL (2017) Presynaptic mGluR5 receptor controls glutamatergic input through protein kinase C-NMDA receptors in paclitaxel-induced neuropathic pain. J Biol Chem 292(50):20644–20654.  https://doi.org/10.1074/jbc.M117.818476 CrossRefGoogle Scholar
  70. 70.
    Chen Y, Chen SR, Chen H, Zhang J, Pan HL (2019) Increased alpha2delta-1-NMDA receptor coupling potentiates glutamatergic input to spinal dorsal horn neurons in chemotherapy-induced neuropathic pain. J Neurochem 148(2):252–274.  https://doi.org/10.1111/jnc.14627 CrossRefGoogle Scholar
  71. 71.
    Strack S, Wadzinski BE, Ebner FF (1996) Localization of the calcium/calmodulin-dependent protein phosphatase, calcineurin, in the hindbrain and spinal cord of the rat. J Comp Neurol 375(1):66–76.  https://doi.org/10.1002/(SICI)1096-9861(19961104)375:1%3c66:AID-CNE4%3e3.0.CO;2-M CrossRefGoogle Scholar
  72. 72.
    Kakihana K, Ohashi K, Murata Y, Tsubokura M, Kobayashi T, Yamashita T, Sakamaki H, Akiyama H (2012) Clinical features of calcineurin inhibitor-induced pain syndrome after allo-SCT. Bone Marrow Transplant 47(4):593–595.  https://doi.org/10.1038/bmt.2011.120 CrossRefGoogle Scholar
  73. 73.
    Noda Y, Kodama K, Yasuda T, Takahashi S (2008) Calcineurin-inhibitor-induced pain syndrome after bone marrow transplantation. J Anesth 22(1):61–63.  https://doi.org/10.1007/s00540-007-0574-2 CrossRefGoogle Scholar
  74. 74.
    Lieberman DN, Mody I (1994) Regulation of NMDA channel function by endogenous Ca(2 +)-dependent phosphatase. Nature 369(6477):235–239.  https://doi.org/10.1038/369235a0 CrossRefGoogle Scholar
  75. 75.
    Hu YM, Chen SR, Chen H, Pan HL (2014) Casein kinase II inhibition reverses pain hypersensitivity and potentiated spinal N-methyl-d-aspartate receptor activity caused by calcineurin inhibitor. J Pharmacol Exp Ther 349(2):239–247.  https://doi.org/10.1124/jpet.113.212563 CrossRefGoogle Scholar
  76. 76.
    Huang Y, Chen SR, Chen H, Pan HL (2019) Endogenous TRPA1 and TRPV1 activity contributes to potentiated glutamatergic input to spinal lamina I neurons in inflammatory pain. J Neurochem.  https://doi.org/10.1111/jnc.14677 Google Scholar
  77. 77.
    Weyerbacher AR, Xu Q, Tamasdan C, Shin SJ, Inturrisi CE (2010) N-Methyl-d-aspartate receptor (NMDAR) independent maintenance of inflammatory pain. Pain 148(2):237–246.  https://doi.org/10.1016/j.pain.2009.11.003 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain ResearchThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Biochemistry and Molecular Biology, School of Life SciencesCentral South UniversityChangshaChina

Personalised recommendations