Alternative polyadenylation coordinates embryonic development, sexual dimorphism and longitudinal growth in Xenopus tropicalis

  • Xiang Zhou
  • Yangzi Zhang
  • Jennifer J. Michal
  • Lujiang Qu
  • Shuwen Zhang
  • Mark R. Wildung
  • Weiwei Du
  • Derek J. Pouchnik
  • Hui Zhao
  • Yin Xia
  • Honghua Shi
  • Guoli Ji
  • Jon F. Davis
  • Gary D. Smith
  • Michael D. Griswold
  • Richard M. Harland
  • Zhihua JiangEmail author
Original Article


RNA alternative polyadenylation contributes to the complexity of information transfer from genome to phenome, thus amplifying gene function. Here, we report the first X. tropicalis resource with 127,914 alternative polyadenylation (APA) sites derived from embryos and adults. Overall, APA networks play central roles in coordinating the maternal–zygotic transition (MZT) in embryos, sexual dimorphism in adults and longitudinal growth from embryos to adults. APA sites coordinate reprogramming in embryos before the MZT, but developmental events after the MZT due to zygotic genome activation. The APA transcriptomes of young adults are more variable than growing adults and male frog APA transcriptomes are more divergent than females. The APA profiles of young females were similar to embryos before the MZT. Enriched pathways in developing embryos were distinct across the MZT and noticeably segregated from adults. Briefly, our results suggest that the minimal functional units in genomes are alternative transcripts as opposed to genes.


Whole transcriptome termini site sequencing (WTTS-seq) Gene biotypes APA site types Genomic neighborhoods RNA origin 



This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under Award Number R21HD076845 and the National Institute of Food and Agriculture, United States Department of Agriculture under Award number 2016-67015-24470 to ZJ. Development of bioinformatics pipelines for the data analysis at Xiamen University, China was supported by the National Science Foundation of China under Award number 61573296 to GJ.

Compliance with ethical standards

Conflict of interest

We have filed a provisional patent for our WTSS-seq method.

Supplementary material

18_2019_3036_MOESM1_ESM.docx (226 kb)
Supplementary material 1 (DOCX 226 kb)
18_2019_3036_MOESM2_ESM.docx (105 kb)
Supplementary material 2 (DOCX 104 kb)
18_2019_3036_MOESM3_ESM.docx (54 kb)
Supplementary material 3 (DOCX 54 kb)
18_2019_3036_MOESM4_ESM.docx (772 kb)
Supplementary material 4 (DOCX 772 kb)
18_2019_3036_MOESM5_ESM.xlsx (27.7 mb)
Supplementary material 5 (XLSX 28399 kb)
18_2019_3036_MOESM6_ESM.xlsx (42 kb)
Supplementary material 6 (XLSX 42 kb)
18_2019_3036_MOESM7_ESM.xlsx (63 kb)
Supplementary material 7 (XLSX 62 kb)
18_2019_3036_MOESM8_ESM.xlsx (37 kb)
Supplementary material 8 (XLSX 37 kb)
18_2019_3036_MOESM9_ESM.xlsx (43.7 mb)
Supplementary material 9 (XLSX 44743 kb)
18_2019_3036_MOESM10_ESM.xlsx (17 mb)
Supplementary material 10 (XLSX 17414 kb)


  1. 1.
    Wahle E, Keller W (1992) The biochemistry of 3′-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem 61:419–440CrossRefGoogle Scholar
  2. 2.
    Tian B, Manley JL (2013) Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci 38(6):312–320CrossRefGoogle Scholar
  3. 3.
    Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen R, Rohl CA, Johnson JM, Babak T (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22:1173–1183CrossRefGoogle Scholar
  4. 4.
    Matoulkova E, Michalova E, Vojtesek B, Hrstka R (2012) The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol 9(5):563–576CrossRefGoogle Scholar
  5. 5.
    Shi Y (2012) Alternative polyadenylation: new insights from global analyses. RNA 18(12):2105–2117CrossRefGoogle Scholar
  6. 6.
    Ma L, Guo C, Li QQ (2014) Role of alternative polyadenylation in epigenetic silencing and antisilencing. Proc Natl Acad Sci USA 111(1):9–10CrossRefGoogle Scholar
  7. 7.
    Harland RM, Grainger RM (2011) Xenopus research: metamorphosed by genetics and genomics. Trends Genet 27(12):507–515CrossRefGoogle Scholar
  8. 8.
    Mason PJ, Jones MB, Elkington JA, Williams JG (1985) Polyadenylation of the Xenopus beta 1 globin mRNA at a downstream minor site in the absence of the major site and utilization of an AAUACA polyadenylation signal. EMBO J 4(1):205–211CrossRefGoogle Scholar
  9. 9.
    Rabbitts KG, Morgan GT (1992) Alternative 3′ processing of Xenopus alpha-tubulin mRNAs; efficient use of a CAUAAA polyadenylation signal. Nucleic Acids Res 20(12):2947–2953CrossRefGoogle Scholar
  10. 10.
    Joos TO, Whittaker CA, Meng F, DeSimone DW, Gnau V, Hausen P (1995) Integrin alpha 5 during early development of Xenopus laevis. Mech Dev 50(2–3):187–199CrossRefGoogle Scholar
  11. 11.
    Zhao W, Manley JL (1996) Complex alternative RNA processing generates an unexpected diversity of poly(A) polymerase isoforms. Mol Cell Biol 16(5):2378–2386CrossRefGoogle Scholar
  12. 12.
    Plant KE, Hair A, Morgan GT (1996) Genes encoding isoforms of transcription elongation factor TFIIS in Xenopus and the use of multiple unusual RNA processing signals. Nucleic Acids Res 24(18):3514–3521CrossRefGoogle Scholar
  13. 13.
    Anquetil V, Le Sommer C, Méreau A, Hamon S, Lerivray H, Hardy S (2009) Polypyrimidine tract binding protein prevents activity of an intronic regulatory element that promotes usage of a composite 3′-terminal exon. J Biol Chem 284(47):32370–32383CrossRefGoogle Scholar
  14. 14.
    Andres AC, Hosbach HA, Weber R (1984) Comparative analysis of the cDNA sequences derived from the larval and the adult alpha 1-globin mRNAs of Xenopus laevis. Biochim Biophys Acta 781(3):294–301CrossRefGoogle Scholar
  15. 15.
    Banville D, Williams JG (1985) Developmental changes in the pattern of larval beta-globin gene expression in Xenopus laevis. Identification of two early larval beta-globin mRNA sequences. J Mol Biol 184(4):611–620CrossRefGoogle Scholar
  16. 16.
    Mason PJ, Elkington JA, Lloyd MM, Jones MB, Williams JG (1986) Mutations downstream of the polyadenylation site of a Xenopus beta-globin mRNA affect the position but not the efficiency of 3′ processing. Cell 46(2):263–270CrossRefGoogle Scholar
  17. 17.
    Paris J, Richter JD (1990) Maturation-specific polyadenylation and translational control: diversity of cytoplasmic polyadenylation elements, influence of poly(A) tail size, and formation of stable polyadenylation complexes. Mol Cell Biol 10(11):5634–5645CrossRefGoogle Scholar
  18. 18.
    Hake LE, Richter JD (1994) CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79(4):617–627CrossRefGoogle Scholar
  19. 19.
    Kühl M, Wedlich D (1995) XB/U-cadherin mRNA contains cytoplasmic polyadenylation elements and is polyadenylated during oocyte maturation in Xenopus laevis. Biochim Biophys Acta 1262(1):95–98CrossRefGoogle Scholar
  20. 20.
    Zhou X, Li R, Michal JJ, Wu XL, Liu Z, Zhao H, Xia Y, Du W, Wildung MR, Pouchnik DJ, Harland RM, Jiang Z (2016) Accurate profiling of gene expression and alternative polyadenylation with whole transcriptome termini site sequencing (WTTS-Seq). Genetics 203(2):683–697CrossRefGoogle Scholar
  21. 21.
    Owens ND, Blitz IL, Lane MA, Patrushev I, Overton JD, Gilchrist MJ, Cho KW, Khokha MK (2016) Measuring absolute RNA copy numbers at high temporal resolution reveals transcriptome kinetics in development. Cell Rep 14:632–647CrossRefGoogle Scholar
  22. 22.
    Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578CrossRefGoogle Scholar
  23. 23.
    Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33:201–212CrossRefGoogle Scholar
  24. 24.
    Retelska D, Iseli C, Bucher P, Jongeneel CV, Naef F (2006) Similarities and differences of polyadenylation signals in human and fly. BMC Genom 7:176CrossRefGoogle Scholar
  25. 25.
    Jan CH, Friedman RC, Ruby JG, Bartel DP (2011) Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469:97–101CrossRefGoogle Scholar
  26. 26.
    Ulitsky I, Shkumatava A, Jan CH, Subtelny AO, Koppstein D, Bell GW, Sive H, Bartel DP (2012) Extensive alternative polyadenylation during zebrafish development. Genome Res 22:2054–2066CrossRefGoogle Scholar
  27. 27.
    Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106CrossRefGoogle Scholar
  28. 28.
    Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LC, Yángüez E, Andenmatten D, Pache L, Manicassamy B, Albrecht RA, Gonzalez MG, Nguyen Q, Brass A, Elledge S, White M, Shapira S, Hacohen N, Karlas A, Meyer TF, Shales M, Gatorano A, Johnson JR, Jang G, Johnson T, Verschueren E, Sanders D, Krogan N, Shaw M, König R, Stertz S, García-Sastre A, Chanda SK (2015) Meta- and orthogonal integration of influenza “OMICs’’ data defines a role for UBR4 in virus budding. Cell Host Microbe 18(6):723–735CrossRefGoogle Scholar
  29. 29.
    Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328(5978):633–636CrossRefGoogle Scholar
  30. 30.
    Klein SL, Strausberg RL, Wagner L, Pontius J, Clifton SW, Richardson P (2002) Genetic and genomic tools for Xenopus research: the NIH Xenopus initiative. Dev Dyn 225:384–391CrossRefGoogle Scholar
  31. 31.
    Morin RD, Chang E, Petrescu A, Liao N, Griffith M, Chow W, Kirkpatrick R, Butterfield YS, Young AC, Stott J, Barber S, Babakaiff R, Dickson MC, Matsuo C, Wong D, Yang GS, Smailus DE, Wetherby KD, Kwong PN, Grimwood J, Brinkley CP III, Brown-John M, Reddix-Dugue ND, Mayo M, Schmutz J, Beland J, Park M, Gibson S, Olson T, Bouffard GG, Tsai M, Featherstone R, Chand S, Siddiqui AS, Jang W, Lee E, Klein SL, Blakesley RW, Zeeberg BR, Narasimhan S, Weinstein JN, Pennacchio CP, Myers RM, Green ED, Wagner L, Gerhard DS, Marra MA, Jones SJ, Holt RA (2006) Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling. Genome Res 16(6):796–803CrossRefGoogle Scholar
  32. 32.
    Fierro AC, Thuret R, Coen L, Perron M, Demeneix BA, Wegnez M, Gyapay G, Weissenbach J, Wincker P, Mazabraud A, Pollet N (2007) Exploring nervous system transcriptomes during embryogenesis and metamorphosis in Xenopus tropicalis using EST analysis. BMC Genom 8:118CrossRefGoogle Scholar
  33. 33.
    Lee MT, Bonneau AR, Giraldez AJ (2014) Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 30:581–613CrossRefGoogle Scholar
  34. 34.
    Onichtchouk DV, Voronina AS (2015) Regulation of Zygotic Genome and Cellular Pluripotency. Biochemistry (Mosc) 80:1723–1733CrossRefGoogle Scholar
  35. 35.
    Langley AR, Smith JC, Stemple DL, Harvey SA (2014) New insights into the maternal to zygotic transition. Development 141:3834–3841CrossRefGoogle Scholar
  36. 36.
    Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136:3033–3042CrossRefGoogle Scholar
  37. 37.
    Yang J, Aguero T, King ML (2015) The Xenopus maternal-to-zygotic transition from the perspective of the germline. Matern Zygotic Transit 113:271–303CrossRefGoogle Scholar
  38. 38.
    Jiang Z, Zhou X, Li R, Michal JJ, Zhang S, Dodson MV, Zhang Z, Harland RM (2015) Whole transcriptome analysis with sequencing: methods, challenges and potential solutions. Cell Mol Life Sci 72:3425–3439CrossRefGoogle Scholar
  39. 39.
    Nunes NM, Li W, Tian B, Furger A (2010) A functional human poly(A) site requires only a potent DSE and an A-rich upstream sequence. EMBO J 29:1523–1536CrossRefGoogle Scholar
  40. 40.
    Yoon OK, Hsu TY, Im JH, Brem RB (2012) Genetics and regulatory impact of alternative polyadenylation in human B-lymphoblastoid cells. PLoS Genet 8:e1002882CrossRefGoogle Scholar
  41. 41.
    Tian B, Pan ZH, Lee JY (2007) Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genome Res 17:156–165CrossRefGoogle Scholar
  42. 42.
    van Bakel H, Nislow C, Blencowe BJ, Hughes TR (2010) Most “dark matter” transcripts are associated with known genes. PLoS Biol 8:e1000371CrossRefGoogle Scholar
  43. 43.
    Biedler JK, Hu WQ, Tae H, Tu ZJ (2012) Identification of early zygotic genes in the yellow fever mosquito Aedes aegypti and discovery of a motif involved in early zygotic genome activation. PLoS One 7:e33933CrossRefGoogle Scholar
  44. 44.
    Artieri CG, Fraser HB (2014) Transcript length mediates developmental timing of gene expression across Drosophila. Mol Biol Evol 31:2879–2889CrossRefGoogle Scholar
  45. 45.
    Guilgur LG, Prudencio P, Sobral D, Liszekova D, Rosa A, Martinho RG (2014) Requirement for highly efficient pre-mRNA splicing during Drosophila early embryonic development. Elife 3:e02181CrossRefGoogle Scholar
  46. 46.
    Valen E, Pascarella G, Chalk A, Maeda N, Kojima M, Kawazu C, Murata M, Nishiyori H, Lazarevic D, Motti D, Marstrand TT, Tang MH, Zhao X, Krogh A, Winther O, Arakawa T, Kawai J, Wells C, Daub C, Harbers M, Hayashizaki Y, Gustincich S, Sandelin A, Carninci P (2009) Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE. Genome Res 19:255–265CrossRefGoogle Scholar
  47. 47.
    Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487CrossRefGoogle Scholar
  48. 48.
    Plessy C, Bertin N, Takahashi H, Simone R, Salimullah M, Lassmann T, Vitezic M, Severin J, Olivarius S, Lazarevic D, Hornig N, Orlando V, Bell I, Gao H, Dumais J, Kapranov P, Wang H, Davis CA, Gingeras TR, Kawai J, Daub CO, Hayashizaki Y, Gustincich S, Carninci P (2010) Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat Methods 7:528–534CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xiang Zhou
    • 1
    • 9
  • Yangzi Zhang
    • 1
  • Jennifer J. Michal
    • 1
  • Lujiang Qu
    • 1
    • 10
  • Shuwen Zhang
    • 1
  • Mark R. Wildung
    • 2
  • Weiwei Du
    • 2
  • Derek J. Pouchnik
    • 2
  • Hui Zhao
    • 3
  • Yin Xia
    • 3
  • Honghua Shi
    • 4
  • Guoli Ji
    • 5
  • Jon F. Davis
    • 6
  • Gary D. Smith
    • 7
  • Michael D. Griswold
    • 2
  • Richard M. Harland
    • 8
  • Zhihua Jiang
    • 1
    Email author
  1. 1.Department of Animal Sciences and Center for Reproductive BiologyWashington State UniversityPullmanUSA
  2. 2.Laboratory for Biotechnology and Bioanalysis, Center for Reproductive BiologyWashington State UniversityPullmanUSA
  3. 3.School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong KongChina
  4. 4.State Key Laboratory of Estuarine and Coastal ResearchEast China Normal UniversityShanghaiChina
  5. 5.Department of AutomationXiamen UniversityXiamenChina
  6. 6.Department of Integrative Physiology and NeuroscienceWashington State UniversityPullmanUSA
  7. 7.Departments of OB/GYN, Physiology, and UrologyUniversity of MichiganAnn ArborUSA
  8. 8.Department of Molecular and Cell BiologyUniversity of California BerkeleyBerkeleyUSA
  9. 9.College of Animal Sciences and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
  10. 10.College of Animal Sciences and TechnologyChina Agricultural UniversityBeijingChina

Personalised recommendations