Comprehensive analysis of circular RNAs in pathological states: biogenesis, cellular regulation, and therapeutic relevance

  • Cornelia BraicuEmail author
  • Andreea-Alina Zimta
  • Diana Gulei
  • Andrei Olariu
  • Ioana Berindan-NeagoeEmail author


Circular RNAs (circRNAs) are members of the non-coding transcriptome; however, some of them are translated into proteins. These transcripts have important roles in both physiological and pathological mechanisms due to their ability to directly influence cellular signaling pathways. Specifically, circRNAs are regulators of transcription, translation, protein interaction, and signal transduction. An increased knowledge within their area is observed over the last few years, concomitant with the development of next-generation sequencing techniques. circRNAs are mostly tissue and disease specific with the ability of specifically changing the biological behavior of cells. The altered expression profile is currently investigated as novel minimally invasive diagnosis/prognosis tool and also therapeutic target in human disease. The diagnosis approach is based on their level modification within pathological states, especially cancer, where circRNAs’ therapies are intensively explored in anti-aging strategies, diabetes, cardiovascular diseases, and malignant pathologies, and are relying on the restoration of homeostatic profiles.


Circular RNA Biogenesis Gene expression regulation Human disease Biomarkers Databases Therapy 



Argonaute 2


Circular RNAs


Epidermal growth factor receptor


Exon–intron circular RNA


Epithelial-to-mesenchymal transition


Fusogenic circRNA


Long non-coding RNAs






Non-coding RNAs


Small interfering RNAs


tRNA intronic circular RNAs


Author contributions

CB wrote the paper; A-AZ participated for the introduction part and for figures concept; DG assisted for the table preparation and wrote the final part related to the circulating cirRNAs as biomarkers. AO was responsible for the figure design and for the part related to data-based and programs for circRNAs application. IBN was the design of the study, final correction of the manuscript. All the authors assisted in the preparation of the manuscript and editing and approved the final version of the manuscript.


This work was supported by a POC Grant, entitled “Clinical and economical impact of personalized targeted anti-microRNA therapies in reconverting lung cancer chemoresistance”-CANTEMIR (project no. 35/01.09.2016, Cod MySMIS 103375) and by PN-III-P1-1.2-PCCDI-2017-0737 (“Genomic mapping of population from polluted area with radioactivity and heavy metals to increase national security-ARTEMIS and PN-III-P2-2.1-PED-2016-0425 (project no 178 PED).

Compliance with ethical standards

Conflict of interest

Authors have no financial and non-financial competing interests to be declared.


  1. 1.
    Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX, Ji XP (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 11:e0151753CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Karreth FA, Reschke M, Ruocco A, Ng C, Chapuy B, Leopold V, Sjoberg M, Keane TM, Verma A, Ala U, Tay Y, Wu D, Seitzer N, Velasco-Herrera Mdel C, Bothmer A, Fung J, Langellotto F, Rodig SJ, Elemento O, Shipp MA, Adams DJ, Chiarle R, Pandolfi PP (2015) The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell 161:319–332CrossRefPubMedGoogle Scholar
  3. 3.
    Braicu C, Calin GA, Berindan-Neagoe I (2013) MicroRNAs and cancer therapy—from bystanders to major players. Curr Med Chem 20:3561–3573CrossRefPubMedGoogle Scholar
  4. 4.
    Braicu C, Catana C, Calin GA, Berindan-Neagoe I (2014) NCRNA combined therapy as future treatment option for cancer. Curr Pharm Des 20:6565–6574CrossRefPubMedGoogle Scholar
  5. 5.
    Seles M, Hutterer GC, Kiesslich T, Pummer K, Berindan-Neagoe I, Perakis S, Schwarzenbacher D, Stotz M, Gerger A, Pichler M (2016) Current Insights into Long Non-Coding RNAs in Renal Cell Carcinoma. Int J Mol Sci 17(4):573.
  6. 6.
    Redis RS, Berindan-Neagoe I, Pop VI, Calin GA (2012) Non-coding RNAs as theranostics in human cancers. J Cell Biochem 113:1451–1459PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gulei D, Magdo L, Jurj A, Raduly L, Cojocneanu-Petric R, Moldovan A, Moldovan C, Florea A, Pasca S, Pop LA, Moisoiu V, Budisan L, Pop-Bica C, Ciocan C, Buiga R, Muresan MS, Stiufiuc R, Ionescu C, Berindan-Neagoe I (2018) The silent healer: miR-205-5p up-regulation inhibits epithelial to mesenchymal transition in colon cancer cells by indirectly up-regulating E-cadherin expression. Cell Death Dis 9:66CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Irimie AI, Braicu C, Sonea L, Zimta AA, Cojocneanu-Petric R, Tonchev K, Mehterov N, Diudea D, Buduru S, Berindan-Neagoe I (2017) A looking-glass of non-coding RNAs in oral cancer. Int J Mol Sci 18(12):2620. CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Roberts TC, Morris KV (2013) Not so pseudo anymore: pseudogenes as therapeutic targets. Pharmacogenomics 14:2023–2034CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Irimie AI, Braicu C, Pileczki V, Petrushev B, Soritau O, Campian RS, Berindan-Neagoe I (2016) Knocking down of p53 triggers apoptosis and autophagy, concomitantly with inhibition of migration on SSC-4 oral squamous carcinoma cells. Mol Cell Biochem 419:75–82CrossRefPubMedGoogle Scholar
  11. 11.
    Berindan-Neagoe I, Braicu C, Gulei D, Tomuleasa C, Calin GA (2017) Noncoding RNAs in lung cancer angiogenesis. In: Simionescu D, Simionescu A (eds) Physiologic and pathologic angiogenesis—signaling mechanisms and targeted therapy. InTech, RijekaGoogle Scholar
  12. 12.
    Lekka E, Hall J (2018) Noncoding RNAs in disease. FEBS Lett 592:2884–2900CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sanger F, Donelson JE, Coulson AR, Kossel H, Fischer D (1973) Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage fl DNA. Proc Natl Acad Sci USA 70:1209–1213CrossRefPubMedGoogle Scholar
  14. 14.
    Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H (1986) The hepatitis delta (delta) virus possesses a circular RNA. Nature 323:558–560CrossRefPubMedGoogle Scholar
  15. 15.
    Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW, Vogelstein B (1991) Scrambled exons. Cell 64:607–613CrossRefPubMedGoogle Scholar
  16. 16.
    Cocquerelle C, Mascrez B, Hetuin D, Bailleul B (1993) Mis-splicing yields circular RNA molecules. FASEB J Off Publ Feder Am Soc Exp Biol 7:155–160Google Scholar
  17. 17.
    Wang X, Zhang Y, Huang L, Zhang J, Pan F, Li B, Yan Y, Jia B, Liu H, Li S, Zheng W (2015) Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol 8:16020–16025PubMedPubMedCentralGoogle Scholar
  18. 18.
    Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, Yang S, Zeng Z, Liao W, Ding YQ, Liang L (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7(18):26680–26691. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huang C, Shan G (2015) What happens at or after transcription: insights into circRNA biogenesis and function. Transcription 6:61–64CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tung MC, Lin PL, Wang YC, He TY, Lee MC, Yeh SD, Chen CY, Lee H (2015) Mutant p53 confers chemoresistance in non-small cell lung cancer by upregulating Nrf2. Oncotarget 6:41692–41705PubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26:1277–1287CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12:381–388CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL (2016) The biogenesis of nascent circular RNAs. Cell Rep 15(3):611–624. CrossRefPubMedGoogle Scholar
  24. 24.
    Xin Z, Ma Q, Ren S, Wang G, Li F (2016) The understanding of circular RNAs as special triggers in carcinogenesis. Brief Funct Genom 16(2):80–86. CrossRefGoogle Scholar
  25. 25.
    Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S (2017) Translation of circRNAs. Mol Cell 66:9–21CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, Lo-Coco F, Tay Y, Beck AH, Pandolfi PP (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 165:289–302CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang Y, Liang W, Zhang P, Chen J, Qian H, Zhang X, Xu W (2017) Circular RNAs: emerging cancer biomarkers and targets. J Exp Clin Cancer Res 36:152CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yang Z, Xie L, Han L, Qu X, Yang Y, Zhang Y, He Z, Wang Y, Li J (2017) Circular RNAs: regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers. Theranostics 7:3106–3117CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365:141–148CrossRefPubMedGoogle Scholar
  30. 30.
    Konarska MM, Grabowski PJ, Padgett RA, Sharp PA (1985) Characterization of the branch site in lariat RNAs produced by splicing of mRNA precursors. Nature 313:552–557CrossRefPubMedGoogle Scholar
  31. 31.
    Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388CrossRefPubMedGoogle Scholar
  32. 32.
    Suzuki H, Aoki Y, Kameyama T, Saito T, Masuda S, Tanihata J, Nagata T, Mayeda A, Takeda S, Tsukahara T (2016) Endogenous multiple exon skipping and back-splicing at the DMD mutation hotspot. Int J Mol Sci 17(10):1722. CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zhu LP, He YJ, Hou JC, Chen X, Zhou SY, Yang SJ, Li J, Zhang HD, Hu JH, Zhong SL, Zhao JH, Tang JH (2017) The role of circRNAs in cancers. Biosci Rep 37:BSR20170750CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73:1019–1030CrossRefPubMedGoogle Scholar
  35. 35.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chou MY, Rooke N, Turck CW, Black DL (1999) hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol Cell Biol 19:69–77CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L, Chen LL (2017) Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell 67(214–227):e7Google Scholar
  38. 38.
    Wang Y, Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs. RNA 21:172–179CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160:1125–1134CrossRefPubMedGoogle Scholar
  40. 40.
    Noto JJ, Schmidt CA, Matera AG (2017) Engineering and expressing circular RNAs via tRNA splicing. RNA Biol 14:978–984CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Danan M, Schwartz S, Edelheit S, Sorek R (2012) Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res 40:3131–3142CrossRefPubMedGoogle Scholar
  42. 42.
    Abu N, Jamal R (2016) Circular RNAs as promising biomarkers: a mini-review. Front Physiol 7:355CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Halbeisen RE, Galgano A, Scherrer T, Gerber AP (2008) Post-transcriptional gene regulation: from genome-wide studies to principles. Cell Mol Life Sci CMLS 65:798–813CrossRefPubMedGoogle Scholar
  44. 44.
    Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13:34–42CrossRefPubMedGoogle Scholar
  45. 45.
    Lu WY (2017) Roles of the circular RNA circ-Foxo3 in breast cancer progression. Cell Cycle (Georgetown, Tex) 16:589–590CrossRefGoogle Scholar
  46. 46.
    Lyu D, Huang S (2017) The emerging role and clinical implication of human exonic circular RNA. RNA Biol 14:1000–1006CrossRefPubMedGoogle Scholar
  47. 47.
    Huang S, Yang B, Chen BJ, Bliim N, Ueberham U, Arendt T, Janitz M (2017) The emerging role of circular RNAs in transcriptome regulation. Genomics 109:401–407CrossRefPubMedGoogle Scholar
  48. 48.
    Han YN, Xia SQ, Zhang YY, Zheng JH, Li W (2017) Circular RNAs: a novel type of biomarker and genetic tools in cancer. Oncotarget 8:64551–64563PubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806CrossRefPubMedGoogle Scholar
  50. 50.
    Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon–intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264CrossRefPubMedGoogle Scholar
  51. 51.
    Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, Ma J, Li X, Zeng Y, Yang Z, Dong J, Khorshidi A, Yang BB (2017) A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ 24:1609–1620CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL, Gorospe M (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14:361–369CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66CrossRefPubMedGoogle Scholar
  55. 55.
    Ferracin M, Gautheret D, Hubé F, Mani S, Mattick J, Andersson Ørom U, Santulli G, Slotkin R, Szweykowska-Kulinska Z, Taube J, Vazquez F, Yang J-H (2015) The non-coding RNA Journal Club: highlights on recent papers. Non-coding RNA 1:87CrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ebbesen KK, Hansen TB, Kjems J (2017) Insights into circular RNA biology. RNA Biol 14:1035–1045CrossRefPubMedGoogle Scholar
  57. 57.
    Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C, Rajewsky N (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10:170–177CrossRefPubMedGoogle Scholar
  58. 58.
    Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, Gabel G, Beutner F, Scholz M, Thiery J, Musunuru K, Krohn K, Mann M, Teupser D (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhao ZJ, Shen J (2015) Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biol 14(5):514–521. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Werfel S, Nothjunge S, Schwarzmayr T, Strom TM, Meitinger T, Engelhardt S (2016) Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 98:103–107CrossRefPubMedGoogle Scholar
  61. 61.
    Zhang XQ, Yang JH (2018) Discovering circRNA-microRNA interactions from CLIP-Seq data. Methods Mol Biol (Clifton, NJ) 1724:193–207CrossRefGoogle Scholar
  62. 62.
    Gomes CPC, Salgado-Somoza A, Creemers EE, Dieterich C, Lustrek M, Devaux Y (2018) Circular RNAs in the cardiovascular system. Non-coding RNA Res 3:1–11CrossRefGoogle Scholar
  63. 63.
    Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen L-L, Wang Y, Wong CCL, Xiao X, Wang Z (2017) Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27:626CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66:22–37CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Chen X, Han P, Zhou T, Guo X, Song X, Li Y (2016) circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep 6:34985CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, Li Z, Ming L, Xie B, Zhang N (2018) A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 37:1805CrossRefPubMedGoogle Scholar
  67. 67.
    Greene J, Baird A-M, Brady L, Lim M, Gray SG, McDermott R, Finn SP (2017) Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci 4:38CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ding H-X, Lv Z, Yuan Y, Xu Q (2018) The expression of circRNAs as a promising biomarker in the diagnosis and prognosis of human cancers: a systematic review and meta-analysis. Oncotarget 9(14):11824–11836. CrossRefPubMedGoogle Scholar
  69. 69.
    Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–2858CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X, Yang BB (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38:1402–1412CrossRefPubMedGoogle Scholar
  71. 71.
    Ling MT, Wang X, Zhang X, Wong YC (2006) The multiple roles of Id-1 in cancer progression. Differentiation 74:481–487CrossRefPubMedGoogle Scholar
  72. 72.
    Engelmann D, Putzer BM (2012) The dark side of E2F1: in transit beyond apoptosis. Cancer Res 72:571–575CrossRefPubMedGoogle Scholar
  73. 73.
    Sulzmaier FJ, Jean C, Schlaepfer DD (2014) FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 14:598–610CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Masoud GN, Li W (2015) HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, Yang BB (2017) Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 24:357–370CrossRefPubMedGoogle Scholar
  76. 76.
    Hui L (2017) Assessment of the role of ageing and non-ageing factors in death from non-communicable diseases based on a cumulative frequency model. Sci Rep 7:8159CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6:e1001233CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, Zhou LY, Sun T, Wang M, Yu T, Gong Y, Liu J, Dong YH, Li N, Li PF (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37:2602–2611CrossRefPubMedGoogle Scholar
  79. 79.
    Zhou LY, Zhai M, Huang Y, Xu S, An T, Wang YH, Zhang RC, Liu CY, Dong YH, Wang M, Qian LL, Ponnusamy M, Zhang YH, Zhang J, Wang K (2018) The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Differ.
  80. 80.
    He X, Pu C, Quan Y, Ou C, Zhou S (2018) Circular RNA HIPK3: an emerging player in diabetes. Transl Cancer Res 1:S715–S717CrossRefGoogle Scholar
  81. 81.
    Xu H, Guo S, Li W, Yu P (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Stoll L, Sobel J, Rodriguez-Trejo A, Guay C, Lee K, Veno MT, Kjems J, Laybutt DR, Regazzi R (2018) Circular RNAs as novel regulators of beta-cell functions in normal and disease conditions. Mol Metab 9:69–83CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Zhang SJ, Chen X, Li CP, Li XM, Liu C, Liu BH, Shan K, Jiang Q, Zhao C, Yan B (2017) Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy. Investig Ophthalmol Vis Sci 58:6500–6509CrossRefGoogle Scholar
  84. 84.
    Wang Y-H, Yu X-H, Luo S-S, Han H (2015) Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing. Immun Ageing I&A 12:17. CrossRefGoogle Scholar
  85. 85.
    Cai H, Li Y, Li H, Niringiyumukiza JD, Zhang M, Chen L, Chen G, Xiang W (2018) Identification and characterization of human ovary-derived circular RNAs and their potential roles in ovarian aging. Aging 10:2511–2534CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Yang ZG, Awan FM, Du WW, Zeng Y, Lyu J, Wu D, Gupta S, Yang W, Yang BB (2017) The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function. Mol Ther J Am Soc Gene Ther 25:2062–2074CrossRefGoogle Scholar
  87. 87.
    Knupp D, Miura P (2018) CircRNA accumulation: a new hallmark of aging? Mech Ageing Dev 173:71–79CrossRefPubMedGoogle Scholar
  88. 88.
    Veno MT, Hansen TB, Veno ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16:245CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Xu T, Wu J, Han P, Zhao Z, Song X (2017) Circular RNA expression profiles and features in human tissues: a study using RNA-seq data. BMC Genom 18:680CrossRefGoogle Scholar
  90. 90.
    Hall H, Medina P, Cooper DA, Escobedo SE, Rounds J, Brennan KJ, Vincent C, Miura P, Doerge R, Weake VM (2017) Transcriptome profiling of aging Drosophila photoreceptors reveals gene expression trends that correlate with visual senescence. BMC Genom 18:894CrossRefGoogle Scholar
  91. 91.
    Cortes-Lopez M, Gruner MR, Cooper DA, Gruner HN, Voda AI, van der Linden AM, Miura P (2018) Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genom 19:8CrossRefGoogle Scholar
  92. 92.
    Gruner H, Cortes-Lopez M, Cooper DA, Bauer M, Miura P (2016) CircRNA accumulation in the aging mouse brain. Sci Rep 6:38907CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Lei W, Feng T, Fang X, Yu Y, Yang J, Zhao ZA, Liu J, Shen Z, Deng W, Hu S (2018) Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes. Stem Cell Res Ther 9:56CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Zhao J, Li L, Wang Q, Han H, Zhan Q, Xu M (2017) CircRNA expression profile in early-stage lung adenocarcinoma patients. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 44:2138–2146CrossRefGoogle Scholar
  95. 95.
    Zeng Y, Xu Y, Shu R, Sun L, Tian Y, Shi C, Zheng Z, Wang K, Luo H (2017) Altered expression profiles of circular RNA in colorectal cancer tissues from patients with lung metastasis. Int J Mol Med 40:1818–1828CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Peng L, Yuan XQ, Li GC (2015) The emerging landscape of circular RNA ciRS-7 in cancer (Review). Oncol Rep 33:2669–2674CrossRefPubMedGoogle Scholar
  97. 97.
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338CrossRefPubMedGoogle Scholar
  98. 98.
    Tang W, Ji M, He G, Yang L, Niu Z, Jian M, Wei Y, Ren L, Xu J (2017) Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7. OncoTargets Ther 10:2045–2056CrossRefGoogle Scholar
  99. 99.
    Xu L, Zhang M, Zheng X, Yi P, Lan C, Xu M (2017) The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol 143:17–27CrossRefPubMedGoogle Scholar
  100. 100.
    Yu L, Gong X, Sun L, Zhou Q, Lu B, Zhu L (2016) The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One 11:e0158347CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Yang X, Xiong Q, Wu Y, Li S, Ge F (2017) Quantitative proteomics reveals the regulatory networks of circular RNA CDR1as in hepatocellular carcinoma cells. J Proteome Res 16:3891–3902CrossRefPubMedGoogle Scholar
  102. 102.
    Boeckel JN, Jae N, Heumuller AW, Chen W, Boon RA, Stellos K, Zeiher AM, John D, Uchida S, Dimmeler S (2015) Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res 117:884–890CrossRefPubMedGoogle Scholar
  103. 103.
    Liang G, Liu Z, Tan L, Su AN, Jiang WG, Gong C (2017) HIF1alpha-associated circDENND4C promotes proliferation of breast cancer cells in hypoxic environment. Anticancer Res 37:4337–4343PubMedGoogle Scholar
  104. 104.
    Nakaoka H, Gurumurthy A, Hayano T, Ahmadloo S, Omer WH, Yoshihara K, Yamamoto A, Kurose K, Enomoto T, Akira S, Hosomichi K, Inoue I (2016) Allelic imbalance in regulation of ANRIL through chromatin interaction at 9p21 endometriosis risk locus. PLoS Genet 12:e1005893CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Deng W, Wang J, Zhang J, Cai J, Bai Z, Zhang Z (2016) TET2 regulates LncRNA-ANRIL expression and inhibits the growth of human gastric cancer cells. IUBMB Life 68:355CrossRefPubMedGoogle Scholar
  106. 106.
    Nie FQ, Sun M, Yang JS, Xie M, Xu TP, Xia R, Liu YW, Liu XH, Zhang EB, Lu KH, Shu YQ (2015) Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther 14:268–277CrossRefPubMedGoogle Scholar
  107. 107.
    Huang MD, Chen WM, Qi FZ, Xia R, Sun M, Xu TP, Yin L, Zhang EB, De W, Shu YQ (2015) Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell apoptosis by epigenetic silencing of KLF2. J Hematol Oncol 8:50CrossRefPubMedGoogle Scholar
  108. 108.
    Cui Y, Zhang F, Zhu C, Geng L, Tian T, Liu H (2017) Upregulated lncRNA SNHG1 contributes to progression of non-small cell lung cancer through inhibition of miR-101-3p and activation of Wnt/beta-catenin signaling pathway. Oncotarget 8:17785–17794PubMedPubMedCentralGoogle Scholar
  109. 109.
    Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L, Chen J (2017) Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett 403:305–317. CrossRefPubMedGoogle Scholar
  110. 110.
    Huang G, Zhu H, Shi Y, Wu W, Cai H, Chen X (2015) cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway. PLoS One 10:e0131225CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Qin M, Liu G, Huo X, Tao X, Sun X, Ge Z, Yang J, Fan J, Liu L, Qin W (2016) Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark Sect A Dis Mark 16:161–169CrossRefGoogle Scholar
  112. 112.
    Paller CJ, Rudek MA, Zhou XC, Wagner WD, Hudson TS, Anders N, Hammers HJ, Dowling D, King S, Antonarakis ES, Drake CG, Eisenberger MA, Denmeade SR, Rosner GL, Carducci MA (2015) A phase I study of muscadine grape skin extract in men with biochemically recurrent prostate cancer: safety, tolerability, and dose determination. Prostate 75:1518–1525CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Wan L, Zhang L, Fan K, Cheng ZX, Sun QC, Wang JJ (2016) Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/beta-catenin pathway. Biomed Res Int 2016:1579490PubMedPubMedCentralGoogle Scholar
  114. 114.
    Luo YH, Zhu XZ, Huang KW, Zhang Q, Fan YX, Yan PW, Wen J (2017) Emerging roles of circular RNA hsa_circ_0000064 in the proliferation and metastasis of lung cancer. Biomed Pharmacother Biomed Pharmacother 96:892–898CrossRefPubMedGoogle Scholar
  115. 115.
    Li Y, Jiang F, Chen L, Yang Y, Cao S, Ye Y, Wang X, Mu J, Li Z, Li L (2015) Blockage of TGFβ-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo. FEBS Open Biol 5:466–475CrossRefGoogle Scholar
  116. 116.
    Yang C, Yuan W, Yang X, Li P, Wang J, Han J, Tao J, Li P, Yang H, Lv Q, Zhang W (2018) Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer 17:19CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, Huang S, Xie B, Zhang N (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 110(3).
  118. 118.
    Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Hoffmann S, Otto C, Doose G, Tanzer A, Langenberger D, Christ S, Kunz M, Holdt LM, Teupser D, Hackermüller J, Stadler PF (2014) A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol 15:R34CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development (Cambridge, England) 110(3):1838–1847CrossRefGoogle Scholar
  121. 121.
    Su H, Lin F, Deng X, Shen L, Fang Y, Fei Z, Zhao L, Zhang X, Pan H, Xie D, Jin X, Xie C (2016) Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. J Transl Med 14:225CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J, Zhang S, Wang H, Qin W, Lu ZJ, Guo Y, Zhu Q, Wang D (2018) Microarray is an efficient tool for circRNA profiling. Brief Bioinform.
  123. 123.
    Panda AC, Gorospe M (2018) Detection and analysis of circular RNAs by RT-PCR. Bio-protocol 8(6):e2775.
  124. 124.
    Li L, Guo J, Chen Y, Chang C, Xu C (2017) Comprehensive CircRNA expression profile and selection of key CircRNAs during priming phase of rat liver regeneration. BMC Genom 18:80CrossRefGoogle Scholar
  125. 125.
    Urbanek MO, Nawrocka AU, Krzyzosiak WJ (2015) Small RNA detection by in situ hybridization methods. Int J Mol Sci 16:13259–13286CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Schneider T, Schreiner S, Preusser C, Bindereif A, Rossbach O (2018) Northern blot analysis of circular RNAs. Methods Mol Biol (Clifton, NJ) 1724:119–133CrossRefGoogle Scholar
  127. 127.
    Grozdanov PN, Macdonald CC (2014) High-throughput sequencing of RNA isolated by cross-linking and immunoprecipitation (HITS-CLIP) to determine sites of binding of CstF-64 on nascent RNAs. Methods Mol Biol (Clifton, NJ) 1125:187–208CrossRefGoogle Scholar
  128. 128.
    Carbonell A (2017) Immunoprecipitation and high-throughput sequencing of ARGONAUTE-bound target RNAs from plants. Methods Mol Biol (Clifton, NJ) 1640:93–112CrossRefGoogle Scholar
  129. 129.
    Liu YC, Li JR, Sun CH, Andrews E, Chao RF, Lin FM, Weng SL, Hsu SD, Huang CC, Cheng C, Liu CC, Huang HD (2016) CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res 44:D209–D215CrossRefPubMedGoogle Scholar
  130. 130.
    Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97CrossRefPubMedGoogle Scholar
  131. 131.
    Xu, Y. (2017) An overview of the main circRNA databases. Non-coding RNA Investig 1:1–22.
  132. 132.
    Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20:1666–1670CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Hancock JM (2014) Circles within circles: commentary on Ghosal et al. (2013) “Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits”. Front Genet 5:459PubMedGoogle Scholar
  134. 134.
    Ghosal S, Das S, Sen R, Basak P, Chakrabarti J (2013) Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 4:283CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Hansen TB, Veno MT, Damgaard CK, Kjems J (2016) Comparison of circular RNA prediction tools. Nucleic Acids Res 44:e58CrossRefPubMedGoogle Scholar
  136. 136.
    Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16:4CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Hansen TB (2018) Improved circRNA identification by combining prediction algorithms. Front Cell Dev Biol 6:20CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Li X, Chu C, Pei J, Mandoiu I, Wu Y (2017) CircMarker: a fast and accurate algorithm for circular RNA detection. BMC Genomics19(6):572.
  139. 139.
    Chen L, Yu Y, Zhang X, Liu C, Ye C, Fan L (2016) PcircRNA_finder: a software for circRNA prediction in plants. Bioinformatics (Oxford, England) 32:3528–3529Google Scholar
  140. 140.
    Gaffo E, Bonizzato A, Kronnie G, Bortoluzzi S (2017) CirComPara: a multi-method comparative bioinformatics pipeline to detect and study circRNAs from RNA-seq data. Non-coding RNA 3:8CrossRefPubMedCentralGoogle Scholar
  141. 141.
    Xia S, Feng J, Chen K, Ma Y, Gong J, Cai F, Jin Y, Gao Y, Xia L, Chang H, Wei L, Han L, He C (2018) CSCD: a database for cancer-specific circular RNAs. Nucleic Acids Res 46:D925–D929CrossRefPubMedGoogle Scholar
  142. 142.
    Xia S, Feng J, Lei L, Hu J, Xia L, Wang J, Xiang Y, Liu L, Zhong S, Han L, He C (2017) Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform 18:984–992PubMedGoogle Scholar
  143. 143.
    Panda AC, Dudekula DB, Abdelmohsen K, Gorospe M (2018) Analysis of circular RNAs using the web tool CircInteractome. Methods Mol Biol (Clifton, NJ) 1724:43–56CrossRefGoogle Scholar
  144. 144.
    Wesselhoeft RA, Kowalski PS, Anderson DG (2018) Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9:2629CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Zeng X, Lin W, Guo M, Zou Q (2017) A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol 13:e1005420CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Li X, Chu C, Pei J, Măndoiu I, Wu Y (2018) CircMarker: a fast and accurate algorithm for circular RNA detection. BMC Genom 19:175–183CrossRefGoogle Scholar
  147. 147.
    Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W, Cao H (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 8:73271–73281PubMedPubMedCentralGoogle Scholar
  148. 148.
    Braicu C, Tomuleasa C, Monroig P, Cucuianu A, Berindan-Neagoe I, Calin GA (2015) Exosomes as divine messengers: are they the Hermes of modern molecular oncology? Cell Death Differ 22:34–45CrossRefPubMedGoogle Scholar
  149. 149.
    Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25:981–984CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Bao C, Lyu D, Huang S (2016) Circular RNA expands its territory. Mol Cell Oncol 3:e1084443CrossRefPubMedGoogle Scholar
  151. 151.
    Lasda E, Parker R (2016) Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PLoS One 11:e0148407CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D (2015) Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5:8057CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta Int J Clin Chem 444:132–136CrossRefGoogle Scholar
  155. 155.
    Kristensen LS, Hansen TB, Veno MT, Kjems J (2017) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37:555CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Aldea MD, Petrushev B, Soritau O, Tomuleasa CI, Berindan-Neagoe I, Filip AG, Chereches G, Cenariu M, Craciun L, Tatomir C, Florian IS, Crivii CB, Kacso G (2014) Metformin plus sorafenib highly impacts temozolomide resistant glioblastoma stem-like cells. J BUON Off J Balkan Union Oncol 19:502–511Google Scholar
  157. 157.
    Baguley BC (2010) Multiple drug resistance mechanisms in cancer. Mol Biotechnol 46:308–316CrossRefPubMedGoogle Scholar
  158. 158.
    Wang J, Seebacher N, Shi H, Kan Q, Duan Z (2017) Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget 8:84559–84571PubMedPubMedCentralGoogle Scholar
  159. 159.
    Braicu C, Mehterov N, Vladimirov B, Sarafian V, Nabavi SM, Atanasov AG, Berindan-Neagoe I (2017) Nutrigenomics in cancer: revisiting the effects of natural compounds. Semin Cancer Biol 46:84–106CrossRefPubMedGoogle Scholar
  160. 160.
    He R, Liu P, Xie X, Zhou Y, Liao Q, Xiong W, Li X, Li G, Zeng Z, Tang H (2017) circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res 36:145CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Kong Z, Wan X, Zhang Y, Zhang P, Zhang Y, Zhang X, Qi X, Wu H, Huang J, Li Y (2017) Androgen-responsive circular RNA circSMARCA5 is up-regulated and promotes cell proliferation in prostate cancer. Biochem Biophys Res Commun 493:1217–1223CrossRefPubMedGoogle Scholar
  162. 162.
    Yang P, Qiu Z, Jiang Y, Dong L, Yang W, Gu C, Li G, Zhu Y (2016) Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/beta-catenin signaling pathway. Oncotarget 7:63449–63455PubMedPubMedCentralGoogle Scholar
  163. 163.
    Han D, Li J, Wang H, Su X, Hou J, Gu Y, Qian C, Lin Y, Liu X, Huang M, Li N, Zhou W, Yu Y, Cao X (2017) Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66:1151–1164CrossRefPubMedGoogle Scholar
  164. 164.
    Yang W, Du WW, Li X, Yee AJ, Yang BB (2016) Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 35:3919–3931CrossRefPubMedGoogle Scholar
  165. 165.
    Chen YG, Kim MV, Chen X, Batista PJ, Aoyama S, Wilusz JE, Iwasaki A, Chang HY (2017) Sensing self and foreign circular RNAs by intron identity. Mol Cell 67(228–238):e5Google Scholar
  166. 166.
    Tomuleasa C, Braicu C, Irimie A, Craciun L, Berindan-Neagoe I (2014) Nanopharmacology in translational hematology and oncology. Int J Nanomed 9:3465–3479Google Scholar
  167. 167.
    Chira S, Gulei D, Hajitou A, Zimta AA, Cordelier P, Berindan-Neagoe I (2017) CRISPR/Cas9: transcending the reality of genome editing. Mol Ther Nucleic Acids 7:211–222CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Gulei D, Berindan-Neagoe I (2017) CRISPR/Cas9: a potential life-saving tool. What’s next? Mol Ther Nucleic Acids 9:333–336CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Center for Functional Genomics, Biomedicine and Translational Medicine“Iuliu Hatieganu” University of Medicine and PharmacyCluj-NapocaRomania
  2. 2.MEDFUTURE-Research Center for Advanced Medicine“Iuliu Hatieganu” University of Medicine and PharmacyCluj-NapocaRomania
  3. 3.Nordlogic SoftwareCluj-NapocaRomania
  4. 4.Department of Functional Genomics and Experimental Pathology“Prof. Dr. Ion Chiricuta” The Oncology InstituteCluj-NapocaRomania

Personalised recommendations