Cellular and Molecular Life Sciences

, Volume 76, Issue 7, pp 1381–1396 | Cite as

Critical role of UQCRC1 in embryo survival, brain ischemic tolerance and normal cognition in mice

  • Weiran Shan
  • Jun Li
  • Wenhao Xu
  • Hong Li
  • Zhiyi ZuoEmail author
Original Article


Ubiquinol cytochrome c reductase core protein I (UQCRC1) is a component of the complex III in the respiratory chain. Its biological functions are unknown. Here, we showed that knockout of UQCRC1 led to embryonic lethality. Disrupting one UQCRC1 allele in mice (heterozygous mice) of both sexes did not affect their growth but reduced UQCRC1 mRNA and protein in the brain. These mice had decreased complex III formation, complex III activity and ATP content in the brain at baseline. They developed worsened neurological outcome after brain ischemia/hypoxia or focal brain ischemia compared with wild-type mice. The ischemic cerebral cortex of the heterozygous mice had decreased mitochondrial membrane potential and ATP content as well as increased free radicals. Also, the heterozygous mice performed poorly in the Barnes maze and novel object recognition tests. Finally, UQCRC1 was expressed abundantly in neurons and astrocytes. These results suggest a critical role of UQCRC1 in embryo survival. UQCRC1 may also be important by forming the complex III to maintain normal brain ischemic tolerance, learning and memory.


Brain ischemia Complex III Learning and memory Ubiquinol cytochrome c reductase core protein I 



Ubiquinol cytochrome c reductase core protein I


Ubiquinol cytochrome c reductase core protein 2


Microtubule associated protein 2


Glial fibrillary acidic protein


Ionized calcium-binding adaptor molecule 1


Transmembrane protein 119


Middle cerebral arterial occlusion


Glyceraldehyde 3-phosphate dehydrogenase


2,3,5-Triphenyltetrazolium chloride


Reactive oxygen species



This study was supported by Grants (GM098308, AG056995, HD089999 and NS099118) from the National Institutes of General Medical Sciences and National Institutes of Health, Bethesda, MD, the Robert M. Epstein Professorship endowment, University of Virginia, Charlottesville, VA.

Author contributions

ZZ conceived the project. WS, JL, WX, HL and ZZ designed the study, WS, JL and WX performed the experiments. WS did the initial data analysis and drafted Methods section. ZZ performed the final data analysis and wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.


  1. 1.
    Schulte U, Arretz M, Schneider H, Tropschug M, Wachter E, Neupert W, Weiss H (1989) A family of mitochondrial proteins involved in bioenergetICS and biogenesis. Nature 339:147–149CrossRefGoogle Scholar
  2. 2.
    Hoffman GG, Lee S, Christiano AM, Chung-Honet LC, Cheng W, Katchman S, Uitto J, Greenspan DS (1993) Complete coding sequence, intron/exon organization, and chromosomal location of the gene for the core I protein of human ubiquinol-cytochrome c reductase. J Biol Chem 268:21113–21119Google Scholar
  3. 3.
    Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito R, Suzuki H, Yamanaka I, Kiyosawa H, Yagi K, Tomaru Y, Hasegawa Y, Nogami A, Schonbach C, Gojobori T, Baldarelli R, Hill DP, Bult C, Hume DA, Quackenbush J, Schriml LM, Kanapin A, Matsuda H, Batalov S, Beisel KW, Blake JA, Bradt D, Brusic V, Chothia C, Corbani LE, Cousins S, Dalla E, Dragani TA, Fletcher CF, Forrest A, Frazer KS, Gaasterland T, Gariboldi M, Gissi C, Godzik A, Gough J, Grimmond S, Gustincich S, Hirokawa N, Jackson IJ, Jarvis ED, Kanai A, Kawaji H, Kawasawa Y, Kedzierski RM, King BL, Konagaya A, Kurochkin IV, Lee Y, Lenhard B, Lyons PA, Maglott DR, Maltais L, Marchionni L, McKenzie L, Miki H, Nagashima T, Numata K, Okido T, Pavan WJ, Pertea G, Pesole G, Petrovsky N, Pillai R, Pontius JU, Qi D, Ramachandran S, Ravasi T, Reed JC, Reed DJ, Reid J, Ring BZ, Ringwald M, Sandelin A, Schneider C, Semple CA, Setou M, Shimada K, Sultana R, Takenaka Y, Taylor MS, Teasdale RD, Tomita M, Verardo R, Wagner L, Wahlestedt C, Wang Y, Watanabe Y, Wells C, Wilming LG, Wynshaw-Boris A, Yanagisawa M, Yang I, Yang L, Yuan Z, Zavolan M, Zhu Y, Zimmer A, Carninci P, Hayatsu N, Hirozane-Kishikawa T, Konno H, Nakamura M, Sakazume N, Sato K, Shiraki T, Waki K, Kawai J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Imotani K, Ishii Y, Itoh M, Kagawa I, Miyazaki A, Sakai K, Sasaki D, Shibata K, Shinagawa A, Yasunishi A, Yoshino M, Waterston R, Lander ES, Rogers J, Birney E, Hayashizaki Y (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573CrossRefGoogle Scholar
  4. 4.
    Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc 1 complex. Science 281:64–71CrossRefGoogle Scholar
  5. 5.
    Fu W, Beattie DS (1991) Assembly of the iron-sulfur protein into the cytochrome bc 1, complex of yeast mitochondria. J Biol Chem 266:16212–16218Google Scholar
  6. 6.
    Kriaucionis S, Paterson A, Curtis J, Guy J, Macleod N, Bird A (2006) Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome. Mol Cell Biol 26:5033–5042CrossRefGoogle Scholar
  7. 7.
    Lin HB, Cadete VJ, Sawicka J, Wozniak M, Sawicki G (2012) Effect of the myosin light chain kinase inhibitor ML-7 on the proteome of hearts subjected to ischemia–reperfusion injury. J Proteom 75:5386–5395CrossRefGoogle Scholar
  8. 8.
    Wong R, Aponte AM, Steenbergen C, Murphy E (2010) Cardioprotection leads to novel changes in the mitochondrial proteome. Am J Physiol Heart Circ Physiol 298:H75–H91CrossRefGoogle Scholar
  9. 9.
    Yi T, Wu X, Long Z, Duan G, Wu Z, Li H, Chen H, Zhou X (2017) Overexpression of ubiquinol-cytochrome c reductase core protein 1 may protect H9c2 cardiac cells by binding with zinc. Biomed Res Int 2017:1314297Google Scholar
  10. 10.
    Long Z, Duan G, Li H, Yi T, Wu X, Chen F, Wu Z, Gao Y (2017) Ubiquinol-cytochrome c reductase core protein 1 may be involved in delayed cardioprotection from preconditioning induced by diazoxide. PLoS One 12:e0181903CrossRefGoogle Scholar
  11. 11.
    Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568CrossRefGoogle Scholar
  12. 12.
    Davis M, Whitely T, Turnbull DM, Mendelow AD (1997) Selective impairments of mitochondrial respiratory chain activity during aging and ischemic brain damage. Acta Neurochir Suppl 70:56–58Google Scholar
  13. 13.
    Moro MA, Almeida A, Bolanos JP, Lizasoain I (2005) Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 39:1291–1304CrossRefGoogle Scholar
  14. 14.
    Chen SD, Wu HY, Yang DI, Lee SY, Shaw FZ, Lin TK, Liou CW, Chuang YC (2006) Effects of rosiglitazone on global ischemia-induced hippocampal injury and expression of mitochondrial uncoupling protein 2. Biochem Biophys Res Commun 351:198–203CrossRefGoogle Scholar
  15. 15.
    Ames A 3rd (2000) CNS energy metabolism as related to function. Brain Res Brain Res Rev 34:42–68CrossRefGoogle Scholar
  16. 16.
    Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Graber S, Kovacs I, Lee WD, Waggoner J, Cui J, White AD, Bossy B, Martinou JC, Youle RJ, Lipton SA, Ellisman MH, Perkins GA, Bossy-Wetzel E (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25:3900–3911CrossRefGoogle Scholar
  17. 17.
    Grohm J, Kim SW, Mamrak U, Tobaben S, Cassidy-Stone A, Nunnari J, Plesnila N, Culmsee C (2012) Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ 19:1446–1458CrossRefGoogle Scholar
  18. 18.
    Zhao YX, Cui M, Chen SF, Dong Q, Liu XY (2014) Amelioration of ischemic mitochondrial injury and Bax-dependent outer membrane permeabilization by Mdivi-1. CNS Neurosci Ther 20:528–538CrossRefGoogle Scholar
  19. 19.
    Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C, Chemali M, Fazel A, Bergeron JJ, Trudeau LE, Burelle Y, Gagnon E, McBride HM, Desjardins M (2016) Parkinson’s disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation. Cell 166:314–327CrossRefGoogle Scholar
  20. 20.
    Mills EL, O’Neill LA (2016) Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol 46:13–21CrossRefGoogle Scholar
  21. 21.
    Zhao J, Mou Y, Bernstock JD, Klimanis D, Wang S, Spatz M, Maric D, Johnson K, Klinman DM, Li X, Li X, Hallenbeck JM (2015) Synthetic oligodeoxynucleotides containing multiple telemeric TTAGGG motifs suppress inflammasome activity in macrophages subjected to oxygen and glucose deprivation and reduce ischemic brain injury in stroke-prone spontaneously hypertensive rats. PLoS One 10:e0140772CrossRefGoogle Scholar
  22. 22.
    Franklin JL (2011) Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Signal 14:1437–1448CrossRefGoogle Scholar
  23. 23.
    Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N, Chan PH (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802:92–99CrossRefGoogle Scholar
  24. 24.
    Jacque CM, Vinner C, Kujas M, Raoul M, Racadot J, Baumann NA (1978) Determination of glial fibrillary acidic protein (GFAP) in human brain tumors. J Neurol Sci 35:147–155CrossRefGoogle Scholar
  25. 25.
    Zhang J, Tan H, Jiang W, Zuo Z (2014) Amantadine alleviates postoperative cognitive dysfunction possibly by increasing glial cell line-derived neurotrophic factor in rats. Anesthesiology 121:773–785CrossRefGoogle Scholar
  26. 26.
    Satoh J, Kino Y, Asahina N, Takitani M, Miyoshi J, Ishida T, Saito Y (2016) TMEM119 marks a subset of microglia in the human brain. Neuropathology 36:39–49CrossRefGoogle Scholar
  27. 27.
    Li J, Shan W, Zuo Z (2018) Age-related upregulation of carboxyl terminal modulator protein contributes to the decreased brain ischemic tolerance in older rats. Mol Neurobiol 55(7):6145–6154CrossRefGoogle Scholar
  28. 28.
    Budde SM, van den Heuvel LP, Janssen AJ, Smeets RJ, Buskens CA, DeMeirleir L, Van Coster R, Baethmann M, Voit T, Trijbels JM, Smeitink JA (2000) Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene. Biochem Biophys Res Commun 275:63–68CrossRefGoogle Scholar
  29. 29.
    Castro-Gago M, Eiris J, Pintos E, Rodrigo E, Blanco-Barca O, Campos Y, Arenas J (2000) Benign congenital myopathy associated with a partial deficiency of complexes I and III of the mitochondrial respiratory chain. Rev Neurol 31:838–841Google Scholar
  30. 30.
    Haut S, Brivet M, Touati G, Rustin P, Lebon S, Garcia-Cazorla A, Saudubray JM, Boutron A, Legrand A, Slama A (2003) A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis. Hum Genet 113:118–122Google Scholar
  31. 31.
    Johns DR, Neufeld MJ (1991) Cytochrome b mutations in Leber hereditary optic neuropathy. Biochem Biophys Res Commun 181:1358–1364CrossRefGoogle Scholar
  32. 32.
    Andreu AL, Bruno C, Shanske S, Shtilbans A, Hirano M, Krishna S, Hayward L, Systrom DS, Brown RH Jr, DiMauro S (1998) Missense mutation in the mtDNA cytochrome b gene in a patient with myopathy. Neurology 51:1444–1447CrossRefGoogle Scholar
  33. 33.
    Bouzidi MF, Carrier H, Godinot C (1996) Antimycin resistance and ubiquinol cytochrome c reductase instability associated with a human cytochrome b mutation. Biochim Biophys Acta 1317:199–209CrossRefGoogle Scholar
  34. 34.
    Dumoulin R, Sagnol I, Ferlin T, Bozon D, Stepien G, Mousson B (1996) A novel gly290asp mitochondrial cytochrome b mutation linked to a complex III deficiency in progressive exercise intolerance. Mol Cell Probes 10:389–391CrossRefGoogle Scholar
  35. 35.
    Andreu AL, Checcarelli N, Iwata S, Shanske S, DiMauro S (2000) A missense mutation in the mitochondrial cytochrome b gene in a revisited case with histiocytoid cardiomyopathy. Pediatr Res 48:311–314CrossRefGoogle Scholar
  36. 36.
    Marin-Garcia J, Hu Y, Ananthakrishnan R, Pierpont ME, Pierpont GL, Goldenthal MJ (1996) A point mutation in the cytb gene of cardiac mtDNA associated with complex III deficiency in ischemic cardiomyopathy. Biochem Mol Biol Int 40:487–495Google Scholar
  37. 37.
    Schultz BE, Chan SI (2001) Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu Rev Biophys Biomol Struct 30:23–65CrossRefGoogle Scholar
  38. 38.
    Mitchell P, Moyle J (1967) Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213:137–139CrossRefGoogle Scholar
  39. 39.
    Dimroth P, Kaim G, Matthey U (2000) Crucial role of the membrane potential for ATP synthesis by F(1)F(o) ATP synthases. J Exp Biol 203:51–59Google Scholar
  40. 40.
    Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–508CrossRefGoogle Scholar
  41. 41.
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247CrossRefGoogle Scholar
  42. 42.
    Yamagami S, Tamura M, Hayashi M, Endo N, Tanabe H, Katsuura Y, Komoriya K (1999) Differential production of MCP-1 and cytokine-induced neutrophil chemoattractant in the ischemic brain after transient focal ischemia in rats. J Leukoc Biol 65:744–749CrossRefGoogle Scholar
  43. 43.
    Hu WH, Hausmann ON, Yan MS, Walters WM, Wong PK, Bethea JR (2002) Identification and characterization of a novel Nogo-interacting mitochondrial protein (NIMP). J Neurochem 81:36–45CrossRefGoogle Scholar
  44. 44.
    Feng C, Xu W, Zuo Z (2009) Knockout of the regulatory factor X1 gene leads to early embryonic lethality. Biochem Biophys Res Commun 386:715–717CrossRefGoogle Scholar
  45. 45.
    Deng J, Li J, Li L, Feng C, Xiong L, Zuo Z (2013) Glutamate transporter type 3 knockout leads to decreased heart rate possibly via parasympathetic mechanism. Transgenic Res 22:757–766CrossRefGoogle Scholar
  46. 46.
    Diaz F, Barrientos A, Fontanesi F (2009) Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using blue native gel electrophoresis. Curr Protoc Hum Genet Chapter 19(Unit19):14Google Scholar
  47. 47.
    Bi J, Shan W, Luo A, Zuo Z (2017) Critical role of matrix metallopeptidase 9 in postoperative cognitive dysfunction and age-dependent cognitive decline. Oncotarget 8(31):51817–51829CrossRefGoogle Scholar
  48. 48.
    Zhao P, Peng L, Li L, Xu X, Zuo Z (2007) Isoflurane preconditioning improves long-term neurologic outcome after hypoxic-ischemic brain injury in neonatal rats. Anesthesiology 107:963–970CrossRefGoogle Scholar
  49. 49.
    Wang Z, Zhao H, Peng S, Zuo Z (2013) Intranasal pyrrolidine dithiocarbamate decreases brain inflammatory mediators and provides neuroprotection after brain hypoxia-ischemia in neonatal rats. Exp Neurol 249:74–82CrossRefGoogle Scholar
  50. 50.
    Ren X, Ma H, Zuo Z (2016) Dexmedetomidine postconditioning reduces brain injury after brain hypoxia-ischemia in neonatal rats. J Neuroimmune Pharmacol 11:238–247CrossRefGoogle Scholar
  51. 51.
    Kossatz E, Maldonado R, Robledo P (2016) CB2 cannabinoid receptors modulate HIF-1alpha and TIM-3 expression in a hypoxia-ischemia mouse model. Eur Neuropsychopharmacol 26:1972–1988CrossRefGoogle Scholar
  52. 52.
    Rogers DC, Campbell CA, Stretton JL, Mackay KB (1997) Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat. Stroke 28:2060–2065CrossRefGoogle Scholar
  53. 53.
    Zheng S, Zuo Z (2004) Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases. Mol Pharmacol 65:1172–1180CrossRefGoogle Scholar
  54. 54.
    Li L, Zuo Z (2009) Isoflurane preconditioning improves short-term and long-term neurological outcome after focal brain ischemia in adult rats. Neuroscience 164:497–506CrossRefGoogle Scholar
  55. 55.
    Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR (1990) A semiautomated method for measuring brain infarct volume [see comments]. J Cereb Blood Flow Metab 10:290–293CrossRefGoogle Scholar
  56. 56.
    Zhang J, Jiang W, Zuo Z (2014) Pyrrolidine dithiocarbamate attenuates surgery-induced neuroinflammation and cognitive dysfunction possibly via inhibition of nuclear factor kappaB. Neuroscience 261:1–10CrossRefGoogle Scholar
  57. 57.
    Seibenhener ML, Wooten MC (2015) Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp 96:e52434Google Scholar
  58. 58.
    Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T (2013) Object recognition test in mice. Nat Protoc 8:2531–2537CrossRefGoogle Scholar
  59. 59.
    Li L, Wang Z, Zuo Z (2013) Chronic intermittent fasting improves cognitive functions and brain structures in mice. PLoS One 8:e66069CrossRefGoogle Scholar
  60. 60.
    Yun J, Li J, Zuo Z (2014) Transferred inter-cell ischemic preconditioning-induced neuroprotection may be mediated by adenosine A1 receptors. Brain Res Bull 103:66–71CrossRefGoogle Scholar
  61. 61.
    McMurtrey RJ, Zuo Z (2010) Isoflurane preconditioning and postconditioning in rat hippocampal neurons. Brain Res 1358:184–190CrossRefGoogle Scholar
  62. 62.
    Li L, Peng L, Zuo Z (2008) Isoflurane preconditioning increases B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain. Eur J Pharmacol 586:106–113CrossRefGoogle Scholar
  63. 63.
    Xing W, Huang P, Lu Y, Zeng W, Zuo Z (2018) Amantadine attenuates sepsis-induced cognitive dysfunction possibly not through inhibiting toll-like receptor 2. J Mol Med (Berl) 96:391–402CrossRefGoogle Scholar
  64. 64.
    Al-Ghobashy MA, ElMeshad AN, Abdelsalam RM, Nooh MM, Al-Shorbagy M, Laible G (2017) Development and pre-clinical evaluation of recombinant human myelin basic protein nano therapeutic vaccine in experimental autoimmune encephalomyelitis mice animal model. Sci Rep 7:46468CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Weiran Shan
    • 1
  • Jun Li
    • 1
  • Wenhao Xu
    • 3
  • Hong Li
    • 4
  • Zhiyi Zuo
    • 1
    • 2
    Email author
  1. 1.Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleUSA
  2. 2.Department of Neuroscience and Neurological SurgeryUniversity of VirginiaCharlottesvilleUSA
  3. 3.Genetically Engineered Murine Model Core, School of MedicineUniversity of VirginiaCharlottesvilleUSA
  4. 4.Department of Anesthesiology, Xinqiao HospitalThird Military Medical UniversityChongqingChina

Personalised recommendations