Transcriptional repression of the ectodomain sheddase ADAM10 by TBX2 and potential implication for Alzheimer’s disease

  • Sven Reinhardt
  • Florian Schuck
  • Nicolai Stoye
  • Tobias Hartmann
  • Marcus O. W. Grimm
  • Gert Pflugfelder
  • Kristina EndresEmail author
Original Article



The ADAM10-mediated cleavage of transmembrane proteins regulates cellular processes such as proliferation or migration. Substrate cleavage by ADAM10 has also been implicated in pathological situations such as cancer or Morbus Alzheimer. Therefore, identifying endogenous molecules, which modulate the amount and consequently the activity of ADAM10, might contribute to a deeper understanding of the enzyme’s role in both, physiology and pathology.


To elucidate the underlying cellular mechanism of the TBX2-mediated repression of ADAM10 gene expression, we performed overexpression, RNAi-mediated knockdown and pharmacological inhibition studies in the human neuroblastoma cell line SH-SY5Y. Expression analysis was conducted by e.g. real-time RT-PCR or western blot techniques. To identify the binding region of TBX2 within the ADAM10 promoter, we used luciferase reporter assay on deletion constructs and EMSA/WEMSA experiments. In addition, we analyzed a TBX2 loss-of-function Drosophila model regarding the expression of ADAM10 orthologs by qPCR. Furthermore, we quantified the mRNA level of TBX2 in post-mortem brain tissue of AD patients.


Here, we report TBX2 as a transcriptional repressor of ADAM10 gene expression: both, the DNA-binding domain and the repression domain of TBX2 were necessary to effect transcriptional repression of ADAM10 in neuronal SH-SY5Y cells. This regulatory mechanism required HDAC1 as a co-factor of TBX2. Transcriptional repression was mediated by two functional TBX2 binding sites within the core promoter sequence (− 315 to − 286 bp). Analysis of a TBX2 loss-of-function Drosophila model revealed that kuzbanian and kuzbanian-like, orthologs of ADAM10, were derepressed compared to wild type. Vice versa, analysis of cortical brain samples of AD-patients, which showed reduced ADAM10 mRNA levels, revealed a 2.5-fold elevation of TBX2, while TBX3 and TBX21 levels were not affected.


Our results characterize TBX2 as a repressor of ADAM10 gene expression and suggest that this regulatory interaction is conserved across tissues and species.


ADAM10 Alpha-secretase APP-processing Kuzbanian Omb TBX2 Transcriptional regulation 



Alzheimer’s disease


A disintegrin and metalloproteinase 10




Amyloid precursor protein


Beta site APP cleaving enzyme-1


Consortium to establish a registry for Alzheimer’s disease


Expressed sequence tag


Electrophoretic mobility shift assay




Histone deacetylase 1






Nerve glia antigen 2






Peroxisome proliferator activated receptor-alpha


Retinoblastoma 1


Ribosomal protein 49

SA beta-GAL

Senescence associated beta-galactosidase


Transcription factor


Transcripts per million


X-box binding protein-1



This work was supported by the Federal Ministry of Education and Research (BMBF) in the framework of the National Genome Research Network (NGFN), FKZ01GS08130, 01GS08125 and 01GS08129-5 and by the Alfons Geib Stiftung. We thank K. Hilger, A. Bruns, and S. Schneider (all University Medical Center Mainz, Germany) for technical assistance; we also are grateful to Inka Hoffmann, Fred Eichinger, and Melanie Heyde (University of Mainz, Germany) for preparation of Drosophila wing imaginal discs and to Sven Grösgen (Saarland University, Germany) for experiments regarding human samples; we want to thank Colin Goding (University of Oxford, UK) for murine TBX2 expression constructs and Christian Haass (LMU Munich, Germany) for APP C-terminal antibody 6687. Stock 25706 obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) was used in this study.

Author contributions

KE conceived and coordinated the study, drafted the manuscript, performed experiments with dermal fibroblasts and generated the TBX2 binding site deletion mutant. SR carried out the molecular biology and biochemistry studies, performed analysis on EST profiles, conducted the statistical analysis, and helped to draft the manuscript. FS constructed secreted luciferase reporter vectors and helped to revise the manuscript. NS performed overexpression experiments of HDAC1 to assess effects on ADAM10 and luciferase reporter gene assays for analyzing the TBX2 binding site deletion mutant. MG and TH designed and coordinated studies regarding human brain tissue and revised the manuscript. GP provided expression constructs for human DDK-tagged TBX2 and Drosophila larval samples. All authors have read and approved the final version of the manuscript.


This work was supported by the German Federal Ministry of Education and Research (BMBF) in the framework of the National Genome Research Network (NGFN) and FKZ01GS08130 and by the Alfons-Geib Stiftung.

Compliance with ethical standards

Ethical approval and consent to participate

All experiments were conducted in accordance to the official regulations for the care and use of laboratory animals and approved by local authorities (University of Mainz, Germany).

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

18_2018_2998_MOESM1_ESM.pdf (76 kb)
Supplementary material 1 (PDF 76 kb)
18_2018_2998_MOESM2_ESM.pdf (75 kb)
Supplementary material 2 (PDF 75 kb)
18_2018_2998_MOESM3_ESM.pdf (90 kb)
Supplementary material 3 (PDF 90 kb)
18_2018_2998_MOESM4_ESM.pdf (85 kb)
Supplementary material 4 (PDF 84 kb)


  1. 1.
    Saftig P, Reiss K (2011) The “A Disintegrin And Metalloproteases” ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol 90:527–535PubMedCrossRefGoogle Scholar
  2. 2.
    Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289PubMedCrossRefGoogle Scholar
  3. 3.
    Anders A, Gilbert S, Garten W, Postina R, Fahrenholz F (2001) Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases. FASEB J 15:1837–1839PubMedCrossRefGoogle Scholar
  4. 4.
    Pruessmeyer J, Ludwig A (2009) The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin Cell Dev Biol 20:164–174PubMedCrossRefGoogle Scholar
  5. 5.
    Endres K, Deller T (2017) Regulation of alpha-secretase ADAM10 in vitro and in vivo: genetic, epigenetic, and protein-based mechanisms. Front Mol Neurosci 10:56PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sakry D, Neitz A, Singh J, Frischknecht R, Marongiu D, Biname F, Perera SS, Endres K, Lutz B, Radyushkin K et al (2014) Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol 12:e1001993PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Suzuki K, Hayashi Y, Nakahara S, Kumazaki H, Prox J, Horiuchi K, Zeng M, Tanimura S, Nishiyama Y, Osawa S et al (2012) Activity-dependent proteolytic cleavage of neuroligin-1. Neuron 76:410–422PubMedCrossRefGoogle Scholar
  8. 8.
    Jarriault S, Greenwald I (2005) Evidence for functional redundancy between C. elegans ADAM proteins SUP-17/Kuzbanian and ADM-4/TACE. Dev Biol 287:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Riddle DL, Blumenthal T, Meyer BJ, Priess JR (1997) Introduction to C. elegans. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans I. Cold Spring Harbor, New YorkGoogle Scholar
  10. 10.
    Rooke J, Pan D, Xu T, Rubin GM (1996) KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273:1227–1231PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wei S, Whittaker CA, Xu G, Bridges LC, Shah A, White JM, Desimone DW (2010) Conservation and divergence of ADAM family proteins in the Xenopus genome. BMC Evol Biol 10:211PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lübke T, Lena Illert A, von Figura K, Saftig P (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11:2615–2624PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Jorissen E, Prox J, Bernreuther C, Weber S, Schwanbeck R, Serneels L, Snellinx A, Craessaerts K, Thathiah A, Tesseur I et al (2010) The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci 30:4833–4844PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Esselens CW, Malapeira J, Colome N, Moss M, Canals F, Arribas J (2008) Metastasis-associated C4.4A, a GPI-anchored protein cleaved by ADAM10 and ADAM17. Biol Chem 389:1075–1084PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gavert N, Conacci-Sorrell M, Gast D, Schneider A, Altevogt P, Brabletz T, Ben-Ze’ev A (2005) L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 168:633–642PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kohutek ZA, diPierro CG, Redpath GT, Hussaini IM (2009) ADAM-10-mediated N-cadherin cleavage is protein kinase C-alpha dependent and promotes glioblastoma cell migration. J Neurosci 29:4605–4615PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    McCulloch DR, Akl P, Samaratunga H, Herington AC, Odorico DM (2004) Expression of the disintegrin metalloprotease, ADAM-10, in prostate cancer and its regulation by dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor in the prostate cancer cell model LNCaP. Clin Cancer Res 10:314–323PubMedCrossRefGoogle Scholar
  18. 18.
    Moss ML, Stoeck A, Yan W, Dempsey PJ (2008) ADAM10 as a target for anti-cancer therapy. Curr Pharm Biotechnol 9:2–8PubMedCrossRefGoogle Scholar
  19. 19.
    Wu E, Croucher PI, McKie N (1997) Expression of members of the novel membrane linked metalloproteinase family ADAM in cells derived from a range of haematological malignancies. Biochem Biophys Res Commun 235:437–442PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Endres K, Fahrenholz F (2010) Upregulation of the alpha-secretase ADAM10–risk or reason for hope? FEBS J 277:1585–1596PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Endres K, Fahrenholz F (2012) Regulation of alpha-secretase ADAM10 expression and activity. Exp Brain Res 217:343–352PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Endres K, Fahrenholz F, Lotz J, Hiemke C, Teipel S, Lieb K, Tuscher O, Fellgiebel A (2014) Increased CSF APPs-alpha levels in patients with Alzheimer disease treated with acitretin. Neurology 83:1930–1935PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Tippmann F, Hundt J, Schneider A, Endres K, Fahrenholz F (2009) Up-regulation of the alpha-secretase ADAM10 by retinoic acid receptors and acitretin. FASEB J 23:1643–1654PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R, van den Heuvel C (2012) sAPPalpha rescues deficits in amyloid precursor protein knockout mice following focal traumatic brain injury. J Neurochem 122:208–220PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kuhn PH, Wang H, Dislich B, Colombo A, Zeitschel U, Ellwart JW, Kremmer E, Rossner S, Lichtenthaler SF (2010) ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J 29:3020–3032PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Milosch N, Tanriover G, Kundu A, Rami A, Francois JC, Baumkotter F, Weyer SW, Samanta A, Jaschke A, Brod F et al (2014) Holo-APP and G-protein-mediated signaling are required for sAPPalpha-induced activation of the Akt survival pathway. Cell Death Dis 5:e1391PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M et al (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113:1456–1464PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Thornton E, Vink R, Blumbergs PC, Van Den Heuvel C (2006) Soluble amyloid precursor protein alpha reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats. Brain Res 1094:38–46PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Prinzen C, Muller U, Endres K, Fahrenholz F, Postina R (2005) Genomic structure and functional characterization of the human ADAM10 promoter. FASEB J 19:1522–1524PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Endres K, Postina R, Schroeder A, Mueller U, Fahrenholz F (2005) Shedding of the amyloid precursor protein-like protein APLP2 by disintegrin-metalloproteinases. FEBS J 272:5808–5820PubMedCrossRefGoogle Scholar
  31. 31.
    Corbett GT, Gonzalez FJ, Pahan K (2015) Activation of peroxisome proliferator-activated receptor alpha stimulates ADAM10-mediated proteolysis of APP. Proc Natl Acad Sci USA 112:8445–8450PubMedCrossRefGoogle Scholar
  32. 32.
    Reinhardt S, Schuck F, Grosgen S, Riemenschneider M, Hartmann T, Postina R, Grimm M, Endres K (2014) Unfolded protein response signaling by transcription factor XBP-1 regulates ADAM10 and is affected in Alzheimer’s disease. FASEB J 28:978–997PubMedCrossRefGoogle Scholar
  33. 33.
    Harrelson Z, Kelly RG, Goldin SN, Gibson-Brown JJ, Bollag RJ, Silver LM, Papaioannou VE (2004) Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development 131:5041–5052PubMedCrossRefGoogle Scholar
  34. 34.
    Jacobs JJ, Keblusek P, Robanus-Maandag E, Kristel P, Lingbeek M, Nederlof PM, van Welsem T, van de Vijver MJ, Koh EY, Daley GQ, van Lohuizen M (2000) Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat Genet 26:291–299PubMedCrossRefGoogle Scholar
  35. 35.
    Kokubo H, Tomita-Miyagawa S, Hamada Y, Saga Y (2007) Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developing heart through the repression of Tbx2. Development 134:747–755PubMedCrossRefGoogle Scholar
  36. 36.
    Prince S, Carreira S, Vance KW, Abrahams A, Goding CR (2004) Tbx2 directly represses the expression of the p21(WAF1) cyclin-dependent kinase inhibitor. Cancer Res 64:1669–1674PubMedCrossRefGoogle Scholar
  37. 37.
    Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741PubMedCrossRefGoogle Scholar
  38. 38.
    Naiche LA, Harrelson Z, Kelly RG, Papaioannou VE (2005) T-box genes in vertebrate development. Annu Rev Genet 39:219–239PubMedCrossRefGoogle Scholar
  39. 39.
    Papaioannou VE, Silver LM (1998) The T-box gene family. BioEssays 20:9–19PubMedCrossRefGoogle Scholar
  40. 40.
    Chapman DL, Garvey N, Hancock S, Alexiou M, Agulnik SI, Gibson-Brown JJ, Cebra-Thomas J, Bollag RJ, Silver LM, Papaioannou VE (1996) Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev Dyn 206:379–390PubMedCrossRefGoogle Scholar
  41. 41.
    Gibson-Brown JJ, Agulnik SI, Silver LM, Niswander L, Papaioannou VE (1998) Involvement of T-box genes Tbx2-Tbx5 in vertebrate limb specification and development. Development 125:2499–2509PubMedGoogle Scholar
  42. 42.
    Takabatake Y, Takabatake T, Takeshima K (2000) Conserved and divergent expression of T-box genes Tbx2-Tbx5 in Xenopus. Mech Dev 91:433–437PubMedCrossRefGoogle Scholar
  43. 43.
    Douglas NC, Papaioannou VE (2013) The T-box transcription factors TBX2 and TBX3 in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 18:143–147PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Peres J, Davis E, Mowla S, Bennett DC, Li JA, Wansleben S, Prince S (2010) The highly homologous T-box transcription factors, TBX2 and TBX3, have distinct roles in the oncogenic process. Genes Cancer 1:272–282PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Rowley M, Grothey E, Couch FJ (2004) The role of Tbx2 and Tbx3 in mammary development and tumorigenesis. J Mammary Gland Biol Neoplasia 9:109–118PubMedCrossRefGoogle Scholar
  46. 46.
    Lingbeek ME, Jacobs JJ, van Lohuizen M (2002) The T-box repressors TBX2 and TBX3 specifically regulate the tumor suppressor gene p14ARF via a variant T-site in the initiator. J Biol Chem 277:26120–26127PubMedCrossRefGoogle Scholar
  47. 47.
    He M, Wen L, Campbell CE, Wu JY, Rao Y (1999) Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar-mammary syndrome. Proc Natl Acad Sci USA 96:10212–10217PubMedCrossRefGoogle Scholar
  48. 48.
    Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226PubMedCrossRefGoogle Scholar
  49. 49.
    Demay F, Bilican B, Rodriguez M, Carreira S, Pontecorvi M, Ling Y, Goding CR (2007) T-box factors: targeting to chromatin and interaction with the histone H3 N-terminal tail. Pigment Cell Res 20:279–287PubMedCrossRefGoogle Scholar
  50. 50.
    Fischer K, Pflugfelder GO (2015) Putative breast cancer driver mutations in TBX3 cause impaired transcriptional repression. Front Oncol 5:244PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Rodriguez M, Aladowicz E, Lanfrancone L, Goding CR (2008) Tbx3 represses E-cadherin expression and enhances melanoma invasiveness. Cancer Res 68:7872–7881PubMedCrossRefGoogle Scholar
  52. 52.
    Macindoe I, Glockner L, Vukasin P, Stennard FA, Costa MW, Harvey RP, Mackay JP, Sunde M (2009) Conformational stability and DNA binding specificity of the cardiac T-box transcription factor Tbx20. J Mol Biol 389:606–618PubMedCrossRefGoogle Scholar
  53. 53.
    Sinha S, Abraham S, Gronostajski RM, Campbell CE (2000) Differential DNA binding and transcription modulation by three T-box proteins, T, TBX1 and TBX2. Gene 258:15–29PubMedCrossRefGoogle Scholar
  54. 54.
    Vance KW, Shaw HM, Rodriguez M, Ott S, Goding CR (2010) The retinoblastoma protein modulates Tbx2 functional specificity. Mol Biol Cell 21:2770–2779PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Vance KW, Carreira S, Brosch G, Goding CR (2005) Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas. Cancer Res 65:2260–2268PubMedCrossRefGoogle Scholar
  56. 56.
    Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T, Suzuki T, Tsuruo T, Nakanishi O (1999) A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci USA 96:4592–4597PubMedCrossRefGoogle Scholar
  57. 57.
    Hu E, Dul E, Sung CM, Chen Z, Kirkpatrick R, Zhang GF, Johanson K, Liu R, Lago A, Hofmann G et al (2003) Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 307:720–728PubMedCrossRefGoogle Scholar
  58. 58.
    Narath R, Ambros IM, Kowalska A, Bozsaky E, Boukamp P, Ambros PF (2007) Induction of senescence in MYCN amplified neuroblastoma cell lines by hydroxyurea. Genes Chromosomes Cancer 46:130–142PubMedCrossRefGoogle Scholar
  59. 59.
    Yu X, Li X, Jiang G, Wang X, Chang HC, Hsu WH, Li Q (2013) Isradipine prevents rotenone-induced intracellular calcium rise that accelerates senescence in human neuroblastoma SH-SY5Y cells. Neuroscience 246:243–253PubMedCrossRefGoogle Scholar
  60. 60.
    Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367PubMedCrossRefGoogle Scholar
  61. 61.
    Yang NC, Hu ML (2005) The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol 40:813–819PubMedCrossRefGoogle Scholar
  62. 62.
    Li J, Ballim D, Rodriguez M, Cui R, Goding CR, Teng H, Prince S (2014) The anti-proliferative function of the TGF-beta1 signaling pathway involves the repression of the oncogenic TBX2 by its homologue TBX3. J Biol Chem 289:35633–35643PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Grimm S, Pflugfelder GO (1996) Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless. Science 271:1601–1604PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Pflugfelder GO, Eichinger F, Shen J (2017) T-box genes in drosophila limb development. Curr Top Dev Biol 122:313–354PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Poeck B, Hofbauer A, Pflugfelder GO (1993) Expression of the Drosophila optomotor-blind gene transcript in neuronal and glial cells of the developing nervous system. Development 117:1017–1029PubMedPubMedCentralGoogle Scholar
  66. 66.
    Lieber T, Kidd S, Young MW (2002) kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev 16:209–221PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kidd S, Lieber T (2002) Furin cleavage is not a requirement for Drosophila Notch function. Mech Dev 115:41–51PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Boogerd KJ, Wong LY, Christoffels VM, Klarenbeek M, Ruijter JM, Moorman AF, Barnett P (2008) Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43. Cardiovasc Res 78:485–493PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Christoffels VM, Hoogaars WM, Tessari A, Clout DE, Moorman AF, Campione M (2004) T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn 229:763–770PubMedCrossRefGoogle Scholar
  71. 71.
    Weber S, Niessen MT, Prox J, Lullmann-Rauch R, Schmitz A, Schwanbeck R, Blobel CP, Jorissen E, de Strooper B, Niessen CM, Saftig P (2011) The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development 138:495–505PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Zhang C, Tian L, Chi C, Wu X, Yang X, Han M, Xu T, Zhuang Y, Deng K (2010) Adam10 is essential for early embryonic cardiovascular development. Dev Dyn 239:2594–2602PubMedCrossRefGoogle Scholar
  73. 73.
    Kispert A, Hermann BG (1993) The Brachyury gene encodes a novel DNA binding protein. EMBO J 12:4898–4899PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Sen A, Grimm S, Hofmeyer K, Pflugfelder GO (2014) Optomotor-blind in the development of the Drosophila HS and VS lobula plate tangential cells. J Neurogenet 28:250–263PubMedCrossRefGoogle Scholar
  75. 75.
    Chen JR, Chatterjee B, Meyer R, Yu JC, Borke JL, Isales CM, Kirby ML, Lo CW, Bollag RJ (2004) Tbx2 represses expression of Connexin43 in osteoblastic-like cells. Calcif Tissue Int 74:561–573PubMedCrossRefGoogle Scholar
  76. 76.
    Abrahams A, Parker MI, Prince S (2010) The T-box transcription factor Tbx2: its role in development and possible implication in cancer. IUBMB Life 62:92–102PubMedGoogle Scholar
  77. 77.
    Paxton C, Zhao H, Chin Y, Langner K, Reecy J (2002) Murine Tbx2 contains domains that activate and repress gene transcription. Gene 283:117–124PubMedCrossRefGoogle Scholar
  78. 78.
    Zhu B, Zhang M, Byrum SD, Tackett AJ, Davie JK (2014) TBX2 blocks myogenesis and promotes proliferation in rhabdomyosarcoma cells. Int J Cancer 135:785–797PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zhu B, Zhang M, Williams EM, Keller C, Mansoor A, Davie JK (2016) TBX2 represses PTEN in rhabdomyosarcoma and skeletal muscle. Oncogene 35:4212–4224PubMedCrossRefGoogle Scholar
  80. 80.
    Kaltenbrun E, Greco TM, Slagle CE, Kennedy LM, Li T, Cristea IM, Conlon FL (2013) A Gro/TLE-NuRD corepressor complex facilitates Tbx20-dependent transcriptional repression. J Proteome Res 12:5395–5409PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lewandowski SL, Janardhan HP, Smee KM, Bachman M, Sun Z, Lazar MA, Trivedi CM (2014) Histone deacetylase 3 modulates Tbx5 activity to regulate early cardiogenesis. Hum Mol Genet 23:3801–3809PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Cunliffe VT (2004) Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurones in response to hedgehog signalling. Development 131:2983–2995PubMedCrossRefGoogle Scholar
  83. 83.
    Lightman EG, Harrison MR, Cunliffe VT (2011) Opposing actions of histone deacetylase 1 and Notch signalling restrict expression of erm and fgf20a to hindbrain rhombomere centres during zebrafish neurogenesis. Int J Dev Biol 55:597–602PubMedCrossRefGoogle Scholar
  84. 84.
    Rutenberg JB, Fischer A, Jia H, Gessler M, Zhong TP, Mercola M (2006) Developmental patterning of the cardiac atrioventricular canal by Notch and Hairy-related transcription factors. Development 133:4381–4390PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8:709–715PubMedCrossRefGoogle Scholar
  86. 86.
    Pan D, Rubin GM (1997) Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90:271–280PubMedCrossRefGoogle Scholar
  87. 87.
    Sapir A, Assa-Kunik E, Tsruya R, Schejter E, Shilo BZ (2005) Unidirectional Notch signaling depends on continuous cleavage of Delta. Development 132:123–132PubMedCrossRefGoogle Scholar
  88. 88.
    Sotillos S, Roch F, Campuzano S (1997) The metalloprotease-disintegrin Kuzbanian participates in Notch activation during growth and patterning of Drosophila imaginal discs. Development 124:4769–4779PubMedGoogle Scholar
  89. 89.
    Currais A, Hortobagyi T, Soriano S (2009) The neuronal cell cycle as a mechanism of pathogenesis in Alzheimer’s disease. Aging (Albany NY) 1:363–371CrossRefGoogle Scholar
  90. 90.
    McShea A, Lee HG, Petersen RB, Casadesus G, Vincent I, Linford NJ, Funk JO, Shapiro RA, Smith MA (2007) Neuronal cell cycle re-entry mediates Alzheimer disease-type changes. Biochim Biophys Acta 1772:467–472PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Counts SE, Mufson EJ (2017) Regulator of cell cycle (RGCC) expression during the progression of Alzheimer’s disease. Cell Transplant 26:693–702PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Schneider MA, Scheffer KD, Bund T, Boukhallouk F, Lambert C, Cotarelo C, Pflugfelder GO, Florin L, Spoden GA (2013) The transcription factors TBX2 and TBX3 interact with human papillomavirus 16 (HPV16) L2 and repress the long control region of HPVs. J Virol 87:4461–4474PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Habets PE, Moorman AF, Clout DE, van Roon MA, Lingbeek M, van Lohuizen M, Campione M, Christoffels VM (2002) Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev 16:1234–1246PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51:187–200PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Moeenrezakhanlou A, Nandan D, Reiner NE (2008) Identification of a calcitriol-regulated Sp-1 site in the promoter of human CD14 using a combined western blotting electrophoresis mobility shift assay (WEMSA). Biol Proced Online 10:29–35PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Poeck B, Balles J, Pflugfelder GO (1993) Transcript identification in the optomotor-blind locus of Drosophila melanogaster by intragenic recombination mapping and PCR-aided sequence analysis of lethal point mutations. Mol Gen Genet 238:325–332PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Pflugfelder GO, Roth H, Poeck B, Kerscher S, Schwarz H, Jonschker B, Heisenberg M (1992) The lethal(1)optomotor-blind gene of Drosophila melanogaster is a major organizer of optic lobe development: isolation and characterization of the gene. Proc Natl Acad Sci USA 89:1199–1203PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Sen A, Gadomski C, Balles J, Abassi Y, Dorner C, Pflugfelder GO (2010) Null mutations in Drosophila Optomotor-blind affect T-domain residues conserved in all Tbx proteins. Mol Genet Genom 283:147–156CrossRefGoogle Scholar
  99. 99.
    Grimm MO, Grosgen S, Rothhaar TL, Burg VK, Hundsdorfer B, Haupenthal VJ, Friess P, Muller U, Fassbender K, Riemenschneider M et al (2011) Intracellular APP domain regulates serine-palmitoyl-CoA transferase expression and is affected in alzheimer’s disease. Int J Alzheimers Dis 2011:695413PubMedPubMedCentralGoogle Scholar
  100. 100.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Steiner H, Kostka M, Romig H, Basset G, Pesold B, Hardy J, Capell A, Meyn L, Grim ML, Baumeister R et al (2000) Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases. Nat Cell Biol 2:848–851PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Fehon RG, Kooh PJ, Rebay I, Regan CL, Xu T, Muskavitch MA, Artavanis-Tsakonas S (1990) Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61:523–534PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Psychiatry and PsychotherapyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
  2. 2.Deutsches Institut für Demenz Prävention (DIDP), Neurodegeneration and NeurobiologySaarland UniversityHomburgGermany
  3. 3.Experimental NeurologySaarland UniversityHomburgGermany
  4. 4.Institute of Developmental Biology and NeurobiologyJohannes Gutenberg UniversityMainzGermany

Personalised recommendations