Tumor-associated macrophages: a short compendium

  • Hans PrenenEmail author
  • Massimiliano MazzoneEmail author


Macrophages play an important role in tissue development and homeostasis. They serve as a nexus between adaptive and innate immunity, and employ considerable plasticity. In cancer, they play a pivotal role in chronic inflammation and tumor growth either by directly stimulating the proliferation of cancer cells or by producing angiogenic and lymphangiogenic factors. Although numerous immune cells play an important role in the tumor microenvironment, tumor-associated macrophages (TAMs) are by far the most extensively studied. A better understanding of the role of TAMs in mediating chemo- and radiotherapy resistance and suppressing immunosurveillance has led to numerous strategies targeting TAMs as an anticancer therapy either by targeting them directly or by polarizing TAMs toward a tumoricidal phenotype.


Monocytes TAM Macrophage Cancer Innate and adaptive immunity 



Hans Prenen is a Senior Clinical investigator of the Belgian Foundation against Cancer. This study was funded by H2020 European Research Council (Grant nos. OxyMO, 308459).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tang D, Kang R, Coyne CB et al (2012) PAMPs and DAMPs: signal 0 s that spur autophagy and immunity. Immunol Rev 249:158–175. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mass E, Ballesteros I, Farlik M et al (2016) Specification of tissue-resident macrophages during organogenesis. Science 353:aaf4238. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    O’Neill LAJ, Golenbock D, Bowie AG (2013) The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol 13:453–460. CrossRefPubMedGoogle Scholar
  5. 5.
    Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404. CrossRefPubMedGoogle Scholar
  6. 6.
    Cignarella A, Tedesco S, Cappellari R, Fadini GP (2018) The continuum of monocyte phenotypes: experimental evidence and prognostic utility in assessing cardiovascular risk. J Leukoc Biol. CrossRefPubMedGoogle Scholar
  7. 7.
    Hamm A, Prenen H, Van Delm W et al (2016) Tumour-educated circulating monocytes are powerful candidate biomarkers for diagnosis and disease follow-up of colorectal cancer. Gut 65:990–1000. CrossRefPubMedGoogle Scholar
  8. 8.
    Feng A-L, Zhu J-K, Sun J-T et al (2011) CD16+ monocytes in breast cancer patients: expanded by monocyte chemoattractant protein-1 and may be useful for early diagnosis. Clin Exp Immunol 164:57–65. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Takeda Y, Costa S, Delamarre E et al (2011) Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479:122–126. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Madsen DH, Leonard D, Masedunskas A et al (2013) M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol 202:951–966. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555CrossRefGoogle Scholar
  12. 12.
    Duluc D, Corvaisier M, Blanchard S et al (2009) Interferon-γ reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int J Cancer 125:367–373. CrossRefPubMedGoogle Scholar
  13. 13.
    Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–354. CrossRefPubMedGoogle Scholar
  14. 14.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Biswas SK, Sica A, Lewis CE (2008) Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 180:2011–2017CrossRefGoogle Scholar
  16. 16.
    Zarif JC, Taichman RS, Pienta KJ (2014) TAM macrophages promote growth and metastasis within the cancer ecosystem. Oncoimmunology 3:e941734. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Elinav E, Nowarski R, Thaiss CA et al (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13:759–771. CrossRefPubMedGoogle Scholar
  19. 19.
    Franklin RA, Liao W, Sarkar A et al (2014) The cellular and molecular origin of tumor-associated macrophages. Science (80-) 344:921–925. CrossRefGoogle Scholar
  20. 20.
    Henze A-T, Mazzone M (2016) The impact of hypoxia on tumor-associated macrophages. J Clin Invest 126:3672–3679. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Xiao M, Zhang J, Chen W, Chen W (2018) M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J Exp Clin Cancer Res 37:143. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen X, Ying X, Wang X et al (2017) Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep 38:522–528. CrossRefPubMedGoogle Scholar
  23. 23.
    Hsieh C-H, Tai S-K, Yang M-H (2018) Snail-overexpressing cancer cells promote M2-like polarization of tumor-associated macrophages by delivering MiR-21-abundant exosomes. Neoplasia 20:775–788. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol 27:16–25. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Qian B-Z, Pollard JW (2012) New tricks for metastasis-associated macrophages. Breast Cancer Res 14:316. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27:462–472. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444. CrossRefGoogle Scholar
  28. 28.
    Mantovani A, Allavena P (2015) The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 212:435–445. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Koong AC, Chen EY, Mivechi NF et al (1994) Hypoxic activation of nuclear factor-kappa B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Res 54:5273–5279PubMedGoogle Scholar
  30. 30.
    Minet E, Arnould T, Michel G et al (2000) ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett 468:53–58CrossRefGoogle Scholar
  31. 31.
    Keith B, Johnson RS, Simon MC (2011) HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12:9–22. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410. CrossRefPubMedGoogle Scholar
  33. 33.
    Leite de Oliveira R, Hamm A, Mazzone M (2011) Growing tumor vessels: more than one way to skin a cat—implications for angiogenesis targeted cancer therapies. Mol Aspects Med 32:71–87. CrossRefPubMedGoogle Scholar
  34. 34.
    Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887. CrossRefPubMedGoogle Scholar
  35. 35.
    Varricchi G, Loffredo S, Galdiero MR et al (2018) Innate effector cells in angiogenesis and lymphangiogenesis. Curr Opin Immunol 53:152–160. CrossRefPubMedGoogle Scholar
  36. 36.
    Sherwood LM, Parris EE, Folkman J (1971) Tumor Angiogenesis: therapeutic Implications. N Engl J Med 285:1182–1186. CrossRefGoogle Scholar
  37. 37.
    De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17:457–474. CrossRefPubMedGoogle Scholar
  38. 38.
    Eubank TD, Galloway M, Montague CM et al (2003) M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol 171:2637–2643CrossRefGoogle Scholar
  39. 39.
    Hill LM, Gavala ML, Lenertz LY, Bertics PJ (2010) Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol 185:3028–3034. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Poulin S, Thompson C, Thivierge M et al (2011) Cysteinyl-leukotrienes induce vascular endothelial growth factor production in human monocytes and bronchial smooth muscle cells. Clin Exp Allergy 41:204–217. CrossRefPubMedGoogle Scholar
  41. 41.
    Czepluch FS, Olieslagers S, van Hulten R et al (2011) VEGF-A-induced chemotaxis of CD16+ monocytes is decreased secondary to lower VEGFR-1 expression. Atherosclerosis 215:331–338. CrossRefPubMedGoogle Scholar
  42. 42.
    De Palma M, Venneri MA, Galli R et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226. CrossRefPubMedGoogle Scholar
  43. 43.
    Venneri MA, Palma MD, Ponzoni M et al (2007) Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109:5276–5285. CrossRefPubMedGoogle Scholar
  44. 44.
    Matsubara T, Kanto T, Kuroda S et al (2013) TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology 57:1416–1425. CrossRefPubMedGoogle Scholar
  45. 45.
    Turrini R, Pabois A, Xenarios I et al (2017) TIE-2 expressing monocytes in human cancers. Oncoimmunology 6:e1303585. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Coffelt SB, Chen Y-Y, Muthana M et al (2011) Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J Immunol 186:4183–4190. CrossRefPubMedGoogle Scholar
  47. 47.
    Mazzieri R, Pucci F, Moi D et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19:512–526. CrossRefPubMedGoogle Scholar
  48. 48.
    Lin EY, Li J-F, Gnatovskiy L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246. CrossRefPubMedGoogle Scholar
  49. 49.
    Stockmann C, Doedens A, Weidemann A et al (2008) Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456:814–818. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Priceman SJ, Sung JL, Shaposhnik Z et al (2010) Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115:1461–1471. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fischer C, Jonckx B, Mazzone M et al (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131:463–475. CrossRefPubMedGoogle Scholar
  53. 53.
    Rolny C, Mazzone M, Tugues S et al (2011) HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19:31–44. CrossRefPubMedGoogle Scholar
  54. 54.
    Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA 103:12493–12498. CrossRefPubMedGoogle Scholar
  55. 55.
    Mantovani A (2010) Molecular pathways linking inflammation and cancer. Curr Mol Med 10:369–373CrossRefGoogle Scholar
  56. 56.
    DeNardo DG, Barreto JB, Andreu P et al (2009) CD4+ T Cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Facciabene A, Peng X, Hagemann IS et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475:226–230. CrossRefPubMedGoogle Scholar
  58. 58.
    Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476. CrossRefPubMedGoogle Scholar
  59. 59.
    Wang Y, Oliver G (2010) Current views on the function of the lymphatic vasculature in health and disease. Genes Dev 24:2115–2126. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Joukov V, Pajusola K, Kaipainen A et al (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15:290–298CrossRefGoogle Scholar
  61. 61.
    Achen MG, Jeltsch M, Kukk E et al (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A 95:548–553CrossRefGoogle Scholar
  62. 62.
    Alitalo A, Detmar M (2012) Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 31:4499–4508. CrossRefPubMedGoogle Scholar
  63. 63.
    Hong Y-K (2004) VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the 1 1 and 2 1 integrins. FASEB J 18:1111–1113. CrossRefPubMedGoogle Scholar
  64. 64.
    Yuan L, Moyon D, Pardanaud L et al (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806PubMedGoogle Scholar
  65. 65.
    Christiansen A, Detmar M (2011) Lymphangiogenesis and cancer. Genes Cancer 2:1146–1158. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tammela T, Petrova TV, Alitalo K (2005) Molecular lymphangiogenesis: new players. Trends Cell Biol 15:434–441. CrossRefPubMedGoogle Scholar
  67. 67.
    Watari K, Shibata T, Kawahara A et al (2014) Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages. PLoS One 9:e99568. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Casazza A, Laoui D, Wenes M et al (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24:695–709. CrossRefPubMedGoogle Scholar
  69. 69.
    Cursiefen C, Chen L, Borges LP et al (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040–1050. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Shree T, Olson OC, Elie BT et al (2011) Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 25:2465–2479. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Alishekevitz D, Gingis-Velitski S, Kaidar-Person O et al (2016) Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Rep 17:1344–1356. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Thomas L (1982) On immunosurveillance in human cancer. Yale J Biol Med 55:329–333PubMedPubMedCentralGoogle Scholar
  73. 73.
    Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18:769–778PubMedGoogle Scholar
  74. 74.
    Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998. CrossRefPubMedGoogle Scholar
  75. 75.
    Pagès F, Mlecnik B, Marliot F et al (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391:2128–2139. CrossRefPubMedGoogle Scholar
  76. 76.
    Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science (80-) 313:1960–1964. CrossRefGoogle Scholar
  77. 77.
    Burke B, Giannoudis A, Corke KP et al (2003) Hypoxia-induced gene expression in human macrophages. Am J Pathol 163:1233–1243. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Doedens AL, Stockmann C, Rubinstein MP et al (2010) macrophage expression of hypoxia-inducible factor-1 suppresses T-cell function and promotes tumor progression. Cancer Res 70:7465–7475. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Movahedi K, Laoui D, Gysemans C et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739. CrossRefPubMedGoogle Scholar
  80. 80.
    Cortesi F, Delfanti G, Grilli A et al (2018) Bimodal CD40/Fas-dependent crosstalk between iNKT cells and tumor-associated macrophages impairs prostate cancer progression. Cell Rep 22:3006–3020. CrossRefPubMedGoogle Scholar
  81. 81.
    Gordon SR, Maute RL, Dulken BW et al (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545:495–499. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Neubert NJ, Schmittnaegel M, Bordry N et al (2018) T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci Transl Med 10:eaan3311. CrossRefPubMedGoogle Scholar
  83. 83.
    Arlauckas SP, Garris CS, Kohler RH et al (2017) In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med 9:eaal3604. CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Binnewies M, Roberts EW, Kersten K et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–550. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    DeNardo DG, Brennan DJ, Rexhepaj E et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Dijkgraaf EM, Heusinkveld M, Tummers B et al (2013) Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer Res 73:2480–2492. CrossRefPubMedGoogle Scholar
  87. 87.
    Jinushi M, Chiba S, Yoshiyama H et al (2011) Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci USA 108:12425–12430. CrossRefPubMedGoogle Scholar
  88. 88.
    Mitchem JB, Brennan DJ, Knolhoff BL et al (2013) Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 73:1128–1141. CrossRefPubMedGoogle Scholar
  89. 89.
    Tsai C-S, Chen F-H, Wang C-C et al (2007) Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int J Radiat Oncol Biol Phys 68:499–507. CrossRefPubMedGoogle Scholar
  90. 90.
    Stafford JH, Hirai T, Deng L et al (2016) Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro Oncol 18:797–806. CrossRefPubMedGoogle Scholar
  91. 91.
    Kalbasi A, Komar C, Tooker GM et al (2017) Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin Cancer Res 23:137–148. CrossRefPubMedGoogle Scholar
  92. 92.
    Meng Y, Beckett MA, Liang H et al (2010) Blockade of tumor necrosis factor alpha signaling in tumor-associated macrophages as a radiosensitizing strategy. Cancer Res 70:1534–1543. CrossRefPubMedGoogle Scholar
  93. 93.
    Kioi M, Vogel H, Schultz G et al (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120:694–705. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kozin SV, Kamoun WS, Huang Y et al (2010) Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res 70:5679–5685. CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Erler JT, Bennewith KL, Cox TR et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44. CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Hiratsuka S, Duda DG, Huang Y et al (2011) C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc Natl Acad Sci 108:302–307. CrossRefPubMedGoogle Scholar
  98. 98.
    Kitamura T, Doughty-Shenton D, Cassetta L et al (2017) Monocytes differentiate to immune suppressive precursors of metastasis-associated macrophages in mouse models of metastatic breast cancer. Front Immunol 8:2004. CrossRefPubMedGoogle Scholar
  99. 99.
    Celus W, Di Conza G, Oliveira AI et al (2017) Loss of caveolin-1 in metastasis-associated macrophages drives lung metastatic growth through increased angiogenesis. Cell Rep 21:2842–2854. CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Qian B-Z, Zhang H, Li J et al (2015) FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med 212:1433–1448. CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Qian B, Deng Y, Im JH et al (2009) A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4:e6562. CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Qian B-Z, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225. CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Kitamura T, Qian B-Z, Soong D et al (2015) CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med 212:1043–1059. CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Headley MB, Bins A, Nip A et al (2016) Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 531:513–517. CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Quail DF, Joyce JA (2017) Molecular pathways: deciphering mechanisms of resistance to macrophage-targeted therapies. Clin Cancer Res 23:876–884. CrossRefPubMedGoogle Scholar
  106. 106.
    Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61. CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Zhu Y, Knolhoff BL, Meyer MA et al (2014) CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74:5057–5069. CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Pyonteck SM, Akkari L, Schuhmacher AJ et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272. CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Peyraud F, Cousin S, Italiano A (2017) CSF-1R inhibitor development: current clinical status. Curr Oncol Rep 19:70. CrossRefPubMedGoogle Scholar
  110. 110.
    Quail DF, Bowman RL, Akkari L et al (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science (80-) 352:aad3018. CrossRefGoogle Scholar
  111. 111.
    Kumar V, Donthireddy L, Marvel D et al (2017) Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC Infiltration of tumors. Cancer Cell 32:654.e5–668.e5. CrossRefGoogle Scholar
  112. 112.
    Loberg RD, Ying C, Craig M et al (2007) Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res 67:9417–9424. CrossRefPubMedGoogle Scholar
  113. 113.
    Brana I, Calles A, LoRusso PM et al (2015) Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol 10:111–123. CrossRefPubMedGoogle Scholar
  114. 114.
    Sandhu SK, Papadopoulos K, Fong PC et al (2013) A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol 71:1041–1050. CrossRefPubMedGoogle Scholar
  115. 115.
    Bonapace L, Coissieux M-M, Wyckoff J et al (2014) Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515:130–133. CrossRefPubMedGoogle Scholar
  116. 116.
    D’Incalci M, Badri N, Galmarini CM, Allavena P (2014) Trabectedin, a drug acting on both cancer cells and the tumour microenvironment. Br J Cancer 111:646–650. CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Guerriero JL (2018) Macrophages: the road less traveled, changing anticancer therapy. Trends Mol Med 24:472–489. CrossRefPubMedGoogle Scholar
  118. 118.
    Beatty GL, Chiorean EG, Fishman MP et al (2011) CD40 Agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science (80-) 331:1612–1616. CrossRefGoogle Scholar
  119. 119.
    Beatty GL, Li Y, Long KB (2017) Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists. Expert Rev Anticancer Ther 17:175–186. CrossRefPubMedGoogle Scholar
  120. 120.
    Folkes AS, Feng M, Zain JM et al (2018) Targeting CD47 as a cancer therapeutic strategy. Curr Opin Oncol. CrossRefPubMedGoogle Scholar
  121. 121.
    Willingham SB, Volkmer J-P, Gentles AJ et al (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci 109:6662–6667. CrossRefPubMedGoogle Scholar
  122. 122.
    Guerriero JL, Sotayo A, Ponichtera HE et al (2017) Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 543:428–432. CrossRefPubMedGoogle Scholar
  123. 123.
    Poh AR, Ernst M (2018) Targeting macrophages in cancer: from bench to bedside. Front Oncol 8:49. CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Le RQ, Li L, Yuan W et al (2018) FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T Cell-induced severe or life-threatening cytokine release syndrome. Oncologist 23:943–947. CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K et al (2018) An overview on Vadimezan (DMXAA): the vascular disrupting agent. Chem Biol Drug Des 91:996–1006. CrossRefPubMedGoogle Scholar
  126. 126.
    Cheng B, Yuan W-E, Su J et al (2018) Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem 157:582–598. CrossRefPubMedGoogle Scholar
  127. 127.
    Peterson TE, Kirkpatrick ND, Huang Y et al (2016) Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci USA 113:4470–4475. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Oncology DepartmentUniversity Hospital AntwerpEdegemBelgium
  2. 2.Center for Oncological ResearchAntwerp UniversityEdegemBelgium
  3. 3.Lab of Tumor Inflammation and AngiogenesisCenter for Cancer Biology, VIBLeuvenBelgium
  4. 4.Lab of Tumor Inflammation and AngiogenesisCenter for Cancer Biology, Department of oncology, KU LeuvenLeuvenBelgium

Personalised recommendations