Advertisement

Mammalian class I odorant receptors exhibit a conserved vestibular-binding pocket

  • Caroline Bushdid
  • Claire A. de March
  • Jérémie Topin
  • Matthew Do
  • Hiroaki Matsunami
  • Jérôme Golebiowski
Original Article
  • 153 Downloads

Abstract

Odorant receptors represent the largest family of mammalian G protein-coupled receptors. Phylogenetically, they are split into two classes (I and II). By analyzing the entire subclass I odorant receptors sequences, we identified two class I-specific and highly conserved motifs. These are predicted to face each other at the extra-cellular portion of the transmembrane domain, forming a vestibular site at the entrance to the orthosteric-binding cavity. Molecular dynamics simulation combined with site-directed mutagenesis and in vitro functional assays confirm the functional role of this vestibular site in ligand-driven activation. Mutations at this part of the receptor differentially affect the receptor response to four agonists. Since this vestibular site is involved in ligand recognition, it could serve ligand design that targets specifically this sub-genome of mammalian odorant receptors.

Keywords

Olfactory GPCR Molecular modeling Mechanism Binding Mutant 

Notes

Acknowledgements

This work is supported by Grants from the National Institute on Deafness and Other Communication Disorders, National Institute of Health Grants DC014423 and DC016224, National Science Foundation (NSF) Grants 1515801 and 1556207 (to H.M.) and from Agence Nationale de la Recherche (Neurolf project to J.G.) as part of NSF/NIH/ANR Collaborative Research in Computational Neuroscience and from the Fondation Roudnitska under the aegis of Fondation de France to C.B. This work is also funded by Université Côte d’Azur IDEX JEDI to J.G. C.B. thanks GIRACT and the GEN foundation for a Ph.D. bursary.

Author contributions

CB: performed numerical modeling, analyzed the data, and wrote the paper. CADM: performed in vitro experiments and analyzed the data. JT: performed numerical modeling and analyzed the data. MD: performed in vitro experiments. HM: conceived the study and analyzed the data. JG: conceived the study, analyzed the data, and wrote the paper.

Supplementary material

18_2018_2996_MOESM1_ESM.docx (7.5 mb)
Supplementary material 1 (DOCX 7668 kb)
18_2018_2996_MOESM2_ESM.fa (30 kb)
Supplementary material 2 (FA 29 kb)
18_2018_2996_MOESM3_ESM.fa (173 kb)
Supplementary material 3 (FA 172 kb)
18_2018_2996_MOESM4_ESM.xlsx (17 kb)
Supplementary material 4 (XLSX 17 kb)
18_2018_2996_MOESM5_ESM.xlsx (41 kb)
Supplementary material 5 (XLSX 41 kb)

References

  1. 1.
    Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187CrossRefGoogle Scholar
  2. 2.
    Niimura Y (2012) Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genom 13(2):103–114.  https://doi.org/10.2174/138920212799860706 CrossRefGoogle Scholar
  3. 3.
    Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494(7436):185–194.  https://doi.org/10.1038/nature11896 CrossRefPubMedGoogle Scholar
  4. 4.
    de March CA, Topin J, Bruguera E, Novikov G, Ikegami K, Matsunami H, Golebiowski J (2018) Odorant receptor 7D4 activation dynamics. Angew Chem Int Ed Engl 57(17):4554–4558.  https://doi.org/10.1002/anie.201713065 CrossRefPubMedGoogle Scholar
  5. 5.
    Yu Y, de March CA, Ni MJ, Adipietro KA, Golebiowski J, Matsunami H, Ma M (2015) Responsiveness of G protein-coupled odorant receptors is partially attributed to the activation mechanism. Proc Natl Acad Sci USA 112(48):14966–14971.  https://doi.org/10.1073/pnas.1517510112 CrossRefPubMedGoogle Scholar
  6. 6.
    de March CA, Yu Y, Ni MJ, Adipietro KA, Matsunami H, Ma M, Golebiowski J (2015) Conserved residues control activation of mammalian G protein-coupled odorant receptors. J Am Chem Soc 137(26):8611–8616.  https://doi.org/10.1021/jacs.5b04659 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Geithe C, Protze J, Kreuchwig F, Krause G, Krautwurst D (2017) Structural determinants of a conserved enantiomer-selective carvone binding pocket in the human odorant receptor OR1A1. Cell Mol Life Sci CMLS 74(22):4209–4229.  https://doi.org/10.1007/s00018-017-2576-z CrossRefPubMedGoogle Scholar
  8. 8.
    Ahmed L, Zhang Y, Block E, Buehl M, Corr MJ, Cormanich RA, Gundala S, Matsunami H, O’Hagan D, Ozbil M, Pan Y, Sekharan S, Ten N, Wang M, Yang M, Zhang Q, Zhang R, Batista VS, Zhuang H (2018) Molecular mechanism of activation of human musk receptors OR5AN1 and OR1A1 by (R)-muscone and diverse other musk-smelling compounds. Proc Natl Acad Sci USA 115(17):E3950–E3958.  https://doi.org/10.1073/pnas.1713026115 CrossRefPubMedGoogle Scholar
  9. 9.
    Gelis L, Wolf S, Hatt H, Neuhaus EM, Gerwert K (2012) Prediction of a ligand-binding niche within a human olfactory receptor by combining site-directed mutagenesis with dynamic homology modeling. Angew Chem Int Ed Engl 51(5):1274–1278.  https://doi.org/10.1002/anie.201103980 CrossRefPubMedGoogle Scholar
  10. 10.
    de March CA, Kim SK, Antonczak S, Goddard WA 3rd, Golebiowski J (2015) G protein-coupled odorant receptors: from sequence to structure. Protein Sci Publ Protein Soc 24(9):1543–1548.  https://doi.org/10.1002/pro.2717 CrossRefGoogle Scholar
  11. 11.
    Freitag J, Krieger J, Strotmann J, Breer H (1995) Two classes of olfactory receptors in Xenopus laevis. Neuron 15(6):1383–1392CrossRefGoogle Scholar
  12. 12.
    Glusman G, Bahar A, Sharon D, Pilpel Y, White J, Lancet D (2000) The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm Genome Off J Int Mamm Genome Soc 11(11):1016–1023CrossRefGoogle Scholar
  13. 13.
    Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5(2):124–133.  https://doi.org/10.1038/nn800 CrossRefPubMedGoogle Scholar
  14. 14.
    Niimura Y, Nei M (2005) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci USA 102(17):6039–6044.  https://doi.org/10.1073/pnas.0501922102 CrossRefPubMedGoogle Scholar
  15. 15.
    Niimura Y, Nei M (2003) Evolution of olfactory receptor genes in the human genome. Proc Natl Acad Sci USA 100(21):12235–12240.  https://doi.org/10.1073/pnas.1635157100 CrossRefPubMedGoogle Scholar
  16. 16.
    Iwata T, Niimura Y, Kobayashi C, Shirakawa D, Suzuki H, Enomoto T, Touhara K, Yoshihara Y, Hirota J (2017) A long-range cis-regulatory element for class I odorant receptor genes. Nat Commun 8(1):885.  https://doi.org/10.1038/s41467-017-00870-4 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Freitag J, Ludwig G, Andreini I, Rossler P, Breer H (1998) Olfactory receptors in aquatic and terrestrial vertebrates. J Comp Physiol A 183(5):635–650CrossRefGoogle Scholar
  18. 18.
    Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2(60):ra9.  https://doi.org/10.1126/scisignal.2000016 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Thal DM, Glukhova A, Sexton PM, Christopoulos A (2018) Structural insights into G-protein-coupled receptor allostery. Nature 559(7712):45–53.  https://doi.org/10.1038/s41586-018-0259-z CrossRefPubMedGoogle Scholar
  20. 20.
    Yuan X, Raniolo S, Limongelli V, Xu Y (2018) The molecular mechanism underlying ligand binding to the membrane-embedded site of a G-protein-coupled receptor. J Chem Theory Comput 14(5):2761–2770.  https://doi.org/10.1021/acs.jctc.8b00046 CrossRefPubMedGoogle Scholar
  21. 21.
    Stanley N, Pardo L, Fabritiis GD (2016) The pathway of ligand entry from the membrane bilayer to a lipid G protein-coupled receptor. Sci Rep 6:22639.  https://doi.org/10.1038/srep22639 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci USA 108(32):13118–13123.  https://doi.org/10.1073/pnas.1104614108 CrossRefPubMedGoogle Scholar
  23. 23.
    Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482(7386):552–556.  https://doi.org/10.1038/nature10867 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Provasi D, Bortolato A, Filizola M (2009) Exploring molecular mechanisms of ligand recognition by opioid receptors with metadynamics. Biochemistry 48(42):10020–10029.  https://doi.org/10.1021/bi901494n CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sandal M, Behrens M, Brockhoff A, Musiani F, Giorgetti A, Carloni P, Meyerhof W (2015) Evidence for a transient additional ligand binding site in the TAS2R46 bitter taste receptor. J Chem Theory Comput 11(9):4439–4449.  https://doi.org/10.1021/acs.jctc.5b00472 CrossRefPubMedGoogle Scholar
  26. 26.
    Sharma K, Balfanz S, Baumann A, Korsching S (2018) Full rescue of an inactive olfactory receptor mutant by elimination of an allosteric ligand-gating site. Sci Rep 8(1):9631.  https://doi.org/10.1038/s41598-018-27790-7 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cvicek V, Goddard WA 3rd, Abrol R (2016) Structure-based sequence alignment of the transmembrane domains of all human GPCRs: phylogenetic, structural and functional implications. PLoS Comput Biol 12(3):e1004805.  https://doi.org/10.1371/journal.pcbi.1004805 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure–function relations in G protein-coupled receptors. Methods Neurosci 25:366–428.  https://doi.org/10.1016/s1043-9471(05)80049-7 CrossRefGoogle Scholar
  29. 29.
    Bushdid C, de March CA, Fiorucci S, Matsunami H, Golebiowski J (2018) Agonists of G-protein-coupled odorant receptors are predicted from chemical features. J Phys Chem Lett 9(9):2235–2240.  https://doi.org/10.1021/acs.jpclett.8b00633 CrossRefPubMedGoogle Scholar
  30. 30.
    Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci Off J Soc Neurosci 25(7):1806–1815.  https://doi.org/10.1523/JNEUROSCI.4723-04.2005 CrossRefGoogle Scholar
  31. 31.
    Wheatley M, Wootten D, Conner MT, Simms J, Kendrick R, Logan RT, Poyner DR, Barwell J (2012) Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol 165(6):1688–1703.  https://doi.org/10.1111/j.1476-5381.2011.01629.x CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Audouze K, Tromelin A, Le Bon AM, Belloir C, Petersen RK, Kristiansen K, Brunak S, Taboureau O (2014) Identification of odorant-receptor interactions by global mapping of the human odorome. PLoS One 9(4):e93037.  https://doi.org/10.1371/journal.pone.0093037 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Charlier L, Topin J, Ronin C, Kim SK, Goddard WA 3rd, Efremov R, Golebiowski J (2012) How broadly tuned olfactory receptors equally recognize their agonists. Human OR1G1 as a test case. Cell Mol Life Sci CMLS 69(24):4205–4213.  https://doi.org/10.1007/s00018-012-1116-0 CrossRefPubMedGoogle Scholar
  34. 34.
    Sato T, Kawasaki T, Mine S, Matsumura H (2016) Functional role of the C-terminal amphipathic helix 8 of olfactory receptors and other G protein-coupled receptors. Int J Mol Sci.  https://doi.org/10.3390/ijms17111930 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Granier S, Kobilka B (2012) A new era of GPCR structural and chemical biology. Nat Chem Biol 8(8):670–673.  https://doi.org/10.1038/nchembio.1025 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Topin J, de March CA, Charlier L, Ronin C, Antonczak S, Golebiowski J (2014) Discrimination between olfactory receptor agonists and non-agonists. Chemistry 20(33):10227–10230.  https://doi.org/10.1002/chem.201402486 CrossRefPubMedGoogle Scholar
  37. 37.
    Dunkel A, Steinhaus M, Kotthoff M, Nowak B, Krautwurst D, Schieberle P, Hofmann T (2014) Nature’s chemical signatures in human olfaction: a foodborne perspective for future biotechnology. Angew Chem Int Ed Engl 53(28):7124–7143.  https://doi.org/10.1002/anie.201309508 CrossRefPubMedGoogle Scholar
  38. 38.
    Massberg D, Hatt H (2018) Human olfactory receptors: novel cellular functions outside of the nose. Physiol Rev 98(3):1739–1763.  https://doi.org/10.1152/physrev.00013.2017 CrossRefPubMedGoogle Scholar
  39. 39.
    Malki A, Fiedler J, Fricke K, Ballweg I, Pfaffl MW, Krautwurst D (2015) Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J Leukoc Biol 97(3):533–545.  https://doi.org/10.1189/jlb.2A0714-331RR CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dragon TS (2014) Software for Molecular descriptor calculation. 6.0, Talete Srl editor. http://www.talete.mi.it
  41. 41.
    Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191.  https://doi.org/10.1093/bioinformatics/btp033 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using modeller. Curr Protoc Bioinform.  https://doi.org/10.1002/0471250953.bi0506s15 CrossRefGoogle Scholar
  43. 43.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461.  https://doi.org/10.1002/jcc.21334 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schmidtke P, Bidon-Chanal A, Luque FJ, Barril X (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 27(23):3276–3285.  https://doi.org/10.1093/bioinformatics/btr550 CrossRefPubMedGoogle Scholar
  45. 45.
    Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40(Database issue):D370–D376.  https://doi.org/10.1093/nar/gkr703 CrossRefPubMedGoogle Scholar
  46. 46.
    Maestro (2018) Schrödinger Release 2018-1: Maestro S, LLC, New York. https://www.schrodinger.com
  47. 47.
    Zhuang H, Matsunami H (2008) Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protoc 3(9):1402–1413.  https://doi.org/10.1038/nprot.2008.120 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zhuang H, Matsunami H (2007) Synergism of accessory factors in functional expression of mammalian odorant receptors. J Biol Chem 282(20):15284–15293.  https://doi.org/10.1074/jbc.M700386200 CrossRefPubMedGoogle Scholar
  49. 49.
    Li YR, Matsunami H (2011) Activation state of the M3 muscarinic acetylcholine receptor modulates mammalian odorant receptor signaling. Sci Signal 4(155):ra1.  https://doi.org/10.1126/scisignal.2001230 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Chemistry - Nice, UMR CNRS 7272Université Côte d’AzurNiceFrance
  2. 2.Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA
  3. 3.Department of Neurobiology, Duke Institute for Brain SciencesDuke UniversityDurhamUSA
  4. 4.Department of Brain and Cognitive SciencesDGISTDaeguRepublic of Korea

Personalised recommendations