Advertisement

The carotid body: a physiologically relevant germinal niche in the adult peripheral nervous system

  • Verónica Sobrino
  • Valentina Annese
  • Elena Navarro-Guerrero
  • Aida Platero-Luengo
  • Ricardo PardalEmail author
Review
  • 114 Downloads

Abstract

Oxygen constitutes a vital element for the survival of every single cell in multicellular aerobic organisms like mammals. A complex homeostatic oxygen-sensing system has evolved in these organisms, including detectors and effectors, to guarantee a proper supply of the element to every cell. The carotid body represents the most important peripheral arterial chemoreceptor organ in mammals and informs about hypoxemic situations to the effectors at the brainstem cardiorespiratory centers. To optimize organismal adaptation to maintained hypoxemic situations, the carotid body has evolved containing a niche of adult tissue-specific stem cells with the capacity to differentiate into both neuronal and vascular cell types in response to hypoxia. These neurogenic and angiogenic processes are finely regulated by the niche and by hypoxia itself. Our recent data on the cellular and molecular mechanisms underlying the functioning of this niche might help to comprehend a variety of different diseases coursing with carotid body failure, and might also improve our capacity to use these stem cells for the treatment of neurological disease. Herein, we review those data about the recent characterization of the carotid body niche, focusing on the study of the phenotype and behavior of multipotent stem cells within the organ, comparing them with other well-documented neural stem cells within the adult nervous system.

Keywords

Adult PNS stem cells Carotid body Hypoxia Neural crest Neurogenesis Angiogenesis Self-renewal Differentiation Plasticity Glial phenotype Glycolytic metabolism Intermediate progenitors Neuroblasts Sympathetic over activation-related diseases Neurological diseases 

Notes

Acknowledgements

This work was supported by grants from the Spanish Ministry of Economy and Competitiveness (SAF2016-80412-P, co-funded by FEDER funds) and the European Research Council (ERC Starting Grant to RP). We apologize to our peers whose work is not cited due to space constraints.

References

  1. 1.
    Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353(19):2042–2055PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lopez-Barneo J, Gonzalez-Rodriguez P, Gao L, Fernandez-Aguera MC, Pardal R, Ortega-Saenz P (2016) Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol 310(8):C629–642PubMedCrossRefGoogle Scholar
  3. 3.
    López-Barneo J, Pardal R, Ortega-Sáenz P (2001) Cellular mechanisms of oxygen sensing. Annu Rev Physiol 63:259–287PubMedCrossRefGoogle Scholar
  4. 4.
    De Castro F (1926) Sur la structure et l’innervation de la glande intercarotidienne (glomus caroticum) de l’homme et des mammifères, et sur un nouveau système d’innervation autonome du nerf glossopharyngien. Trab Lab Invest Biol Univ Madrid 24(365432):13Google Scholar
  5. 5.
    Ramón S, de Castro F (1933) Elementos de técnica micrográfica del sistema nervioso. Tipografía artística XII:409Google Scholar
  6. 6.
    Heymans C, Bouckaert J, Dautrebande L (1930) Sinus carotidien et réflexes respiratoires. II. Influences respiratoires reflexes de l’acidose, de l’alcalose, de l’anhydride carbonique, de l’ion hydrogene et de l’anoxémie: sinus carotidiens et échanges respiratoires dans les poumons et au dela des poumons. Arch Int Pharmacodyn Ther 39(2):400–408Google Scholar
  7. 7.
    Kameda Y (1996) Immunoelectron microscopic localization of vimentin in sustentacular cells of the carotid body and the adrenal medulla of guinea pigs. J Histochem Cytochem 44(12):1439–1449PubMedCrossRefGoogle Scholar
  8. 8.
    Lopez-Barneo J, Lopez-Lopez JR, Urena J, Gonzalez C (1988) Chemotransduction in the carotid body: K + current modulated by PO2 in type I chemoreceptor cells. Science 241(4865):580–582CrossRefGoogle Scholar
  9. 9.
    Urena J, Fernandez-Chacon R, Benot AR, Alvarez de Toledo GA, Lopez-Barneo J (1994) Hypoxia induces voltage-dependent Ca2 + entry and quantal dopamine secretion in carotid body glomus cells. Proc Natl Acad Sci USA 91(21):10208–10211PubMedCrossRefGoogle Scholar
  10. 10.
    Arias-Mayenco I, Gonzalez-Rodriguez P, Torres-Torrelo H, Gao L, Fernandez-Aguera MC, Bonilla-Henao V, Ortega-Saenz P, Lopez-Barneo J (2018) Acute O2 sensing: role of coenzyme QH2/Q ratio and mitochondrial ROS compartmentalization. Cell Metab 28(1):145–158PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Fernandez-Aguera MC, Gao L, Gonzalez-Rodriguez P, Pintado CO, Arias-Mayenco I, Garcia-Flores P, Garcia-Perganeda A, Pascual A, Ortega-Saenz P, Lopez-Barneo J (2015) Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling. Cell Metab 22(5):825–837PubMedCrossRefGoogle Scholar
  12. 12.
    Gao L, Gonzalez-Rodriguez P, Ortega-Saenz P, Lopez-Barneo J (2017) Redox signaling in acute oxygen sensing. Redox biology 12:908–915PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Rakoczy RJ, Wyatt CN (2018) Acute oxygen sensing by the carotid body: a rattlebag of molecular mechanisms. J Physiol 596(15):2969–2976PubMedCrossRefGoogle Scholar
  14. 14.
    Arias-Stella J, Valcarcel J (1976) Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Hum Pathol 7(4):361–373PubMedCrossRefGoogle Scholar
  15. 15.
    Wang ZY, Bisgard GE (2002) Chronic hypoxia-induced morphological and neurochemical changes in the carotid body. Microsc Res Tech 59(3):168–177PubMedCrossRefGoogle Scholar
  16. 16.
    Lopez-Barneo J, Ortega-Saenz P, Gonzalez-Rodriguez P, Fernandez-Aguera MC, Macias D, Pardal R, Gao L (2016) Oxygen-sensing by arterial chemoreceptors: mechanisms and medical translation. Mol Aspects Med 47–48:90–108PubMedCrossRefGoogle Scholar
  17. 17.
    Dhillon DP, Barer GR, Walsh M (1984) The enlarged carotid body of the chronically hypoxic and chronically hypoxic and hypercapnic rat: a morphometric analysis. Q J Exp Physiol 69(2):301–317PubMedCrossRefGoogle Scholar
  18. 18.
    Annese V, Navarro-Guerrero E, Rodriguez-Prieto I, Pardal R (2017) Physiological plasticity of neural-crest-derived stem cells in the adult mammalian carotid body. Cell Rep 19(3):471–478PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Pardal R, Ortega-Saenz P, Duran R, Lopez-Barneo J (2007) Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131(2):364–377PubMedCrossRefGoogle Scholar
  20. 20.
    Pearse AG, Polak JM, Rost FW, Fontaine J, Le Lievre C, Le Douarin N (1973) Demonstration of the neural crest origin of type I (APUD) cells in the avian carotid body, using a cytochemical marker system. Histochemie 34(3):191–203PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Anderson DJ (1993) Molecular control of cell fate in the neural crest: the sympathoadrenal lineage. Annu Rev Neurosci 16:129–158PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Saito D, Takase Y, Murai H, Takahashi Y (2012) The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science 336(6088):1578–1581PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Huber K (2006) The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol 298(2):335–343PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Le Douarin NM, Creuzet S, Couly G, Dupin E (2004) Neural crest cell plasticity and its limits. Development 131(19):4637–4650PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kameda Y (2002) Carotid body and glomus cells distributed in the wall of the common carotid artery in the bird. Microsc Res Tech 59(3):196–206PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Korkala O, Hervonen A (1973) Origin and development of the catecholamine-storing cells of the human fetal carotid body. Histochemie 37(4):287–297PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Diaz-Castro B, Pintado CO, Garcia-Flores P, Lopez-Barneo J, Piruat JI (2012) Differential impairment of catecholaminergic cell maturation and survival by genetic mitochondrial complex II dysfunction. Mol Cell Biol 32(16):3347–3357PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kameda Y (2005) Mash1 is required for glomus cell formation in the mouse carotid body. Dev Biol 283(1):128–139PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kameda Y, Saitoh T, Nemoto N, Katoh T, Iseki S (2012) Hes1 is required for the development of the superior cervical ganglion of sympathetic trunk and the carotid body. Dev Dyn 241(8):1289–1300PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kameda Y, Nishimaki T, Takeichi M, Chisaka O (2002) Homeobox gene hoxa3 is essential for the formation of the carotid body in the mouse embryos. Dev Biol 247(1):197–209PubMedCrossRefGoogle Scholar
  31. 31.
    Kameda Y, Ito M, Nishimaki T, Gotoh N (2008) FRS2 alpha 2F/2F mice lack carotid body and exhibit abnormalities of the superior cervical sympathetic ganglion and carotid sinus nerve. Dev Biol 314(1):236–247PubMedCrossRefGoogle Scholar
  32. 32.
    Furlan A, Adameyko I (2018) Schwann cell precursor: a neural crest cell in disguise? Dev Biol.  https://doi.org/10.1016/j.ydbio.2018.02.008 CrossRefPubMedGoogle Scholar
  33. 33.
    Kastriti ME, Adameyko I (2017) Specification, plasticity and evolutionary origin of peripheral glial cells. Curr Opin Neurobiol 47:196–202PubMedCrossRefGoogle Scholar
  34. 34.
    Uesaka T, Nagashimada M, Enomoto H (2015) Neuronal differentiation in schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J Neurosci 35(27):9879–9888PubMedCrossRefGoogle Scholar
  35. 35.
    Furlan A, Dyachuk V, Kastriti ME, Calvo-Enrique L, Abdo H, Hadjab S, Chontorotzea T, Akkuratova N, Usoskin D, Kamenev D, Petersen J, Sunadome K, Memic F, Marklund U, Fried K, Topilko P, Lallemend F, Kharchenko PV, Ernfors P, Adameyko I (2017) Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 357:6346CrossRefGoogle Scholar
  36. 36.
    Hockman D, Adameyko I, Kaucka M, Barraud P, Otani T, Hunt A, Hartwig AC, Sock E, Waithe D, Franck MCM, Ernfors P, Ehinger S, Howard MJ, Brown N, Reese J, Baker CVH (2018) Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Dev Biol.  https://doi.org/10.1016/j.ydbio.2018.05.016 CrossRefPubMedGoogle Scholar
  37. 37.
    Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6(11):1127–1134PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, Doetsch F (2014) Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82(3):545–559PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zurkirchen L, Sommer L (2017) Quo vadis: tracing the fate of neural crest cells. Curr Opin Neurobiol 47:16–23PubMedCrossRefGoogle Scholar
  42. 42.
    Li HY, Say EH, Zhou XF (2007) Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells 25(8):2053–2065PubMedCrossRefGoogle Scholar
  43. 43.
    Nagoshi N, Shibata S, Kubota Y, Nakamura M, Nagai Y, Satoh E, Morikawa S, Okada Y, Mabuchi Y, Katoh H, Okada S, Fukuda K, Suda T, Matsuzaki Y, Toyama Y, Okano H (2008) Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2(4):392–403PubMedCrossRefGoogle Scholar
  44. 44.
    Kruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ (2002) Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35(4):657–669PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Joseph NM, He S, Quintana E, Kim YG, Nunez G, Morrison SJ (2011) Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Invest 121(9):3398–3411PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kulkarni S, Micci MA, Leser J, Shin C, Tang SC, Fu YY, Liu L, Li Q, Saha M, Li C, Enikolopov G, Becker L, Rakhilin N, Anderson M, Shen X, Dong X, Butte MJ, Song H, Southard-Smith EM, Kapur RP, Bogunovic M, Pasricha PJ (2017) Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc Natl Acad Sci USA 114(18):E3709–E3718PubMedCrossRefGoogle Scholar
  47. 47.
    Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, Vanden Berghe P, Pachnis V (2011) Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest 121(9):3412–3424PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Yoshida S, Shimmura S, Nagoshi N, Fukuda K, Matsuzaki Y, Okano H, Tsubota K (2006) Isolation of multipotent neural crest-derived stem cells from the adult mouse cornea. Stem Cells 24(12):2714–2722PubMedCrossRefGoogle Scholar
  49. 49.
    Tomita Y, Matsumura K, Wakamatsu Y, Matsuzaki Y, Shibuya I, Kawaguchi H, Ieda M, Kanakubo S, Shimazaki T, Ogawa S, Osumi N, Okano H, Fukuda K (2005) Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J Cell Biol 170(7):1135–1146PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wong CE, Paratore C, Dours-Zimmermann MT, Rochat A, Pietri T, Suter U, Zimmermann DR, Dufour S, Thiery JP, Meijer D, Beermann F, Barrandon Y, Sommer L (2006) Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 175(6):1005–1015PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hanani M (2010) Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. Brain Res Rev 64(2):304–327PubMedCrossRefGoogle Scholar
  52. 52.
    Rubin de Celis MF, Garcia-Martin R, Wittig D, Valencia GD, Enikolopov G, Funk RH, Chavakis T, Bornstein SR, Androutsellis-Theotokis A, Ehrhart-Bornstein M (2015) Multipotent glia-like stem cells mediate stress adaptation. Stem Cells 33(6):2037–2051PubMedCrossRefGoogle Scholar
  53. 53.
    Santana MM, Chung KF, Vukicevic V, Rosmaninho-Salgado J, Kanczkowski W, Cortez V, Hackmann K, Bastos CA, Mota A, Schrock E, Bornstein SR, Cavadas C, Ehrhart-Bornstein M (2012) Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla. Stem Cells Transl Med 1(11):783–791PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Vukicevic V, Rubin de Celis MF, Pellegata NS, Bornstein SR, Androutsellis-Theotokis A, Ehrhart-Bornstein M (2015) Adrenomedullary progenitor cells: isolation and characterization of a multi-potent progenitor cell population. Mol Cell Endocrinol 408:178–184PubMedCrossRefGoogle Scholar
  55. 55.
    Diaz-Castro B, Pardal R, Garcia-Flores P, Sobrino V, Duran R, Piruat JI, Lopez-Barneo J (2015) Resistance of glia-like central and peripheral neural stem cells to genetically induced mitochondrial dysfunction–differential effects on neurogenesis. EMBO Rep 16(11):1511–1519PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lange C, Turrero Garcia M, Decimo I, Bifari F, Eelen G, Quaegebeur A, Boon R, Zhao H, Boeckx B, Chang J, Wu C, Le Noble F, Lambrechts D, Dewerchin M, Kuo CJ, Huttner WB, Carmeliet P (2016) Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. EMBO J 35(9):924–941PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rafalski VA, Mancini E, Brunet A (2012) Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J Cell Sci 125(Pt 23):5597–5608PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Burgess RJ, Agathocleous M, Morrison SJ (2014) Metabolic regulation of stem cell function. J Intern Med 276(1):12–24PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lisowski P, Kannan P, Mlody B, Prigione A (2018) Mitochondria and the dynamic control of stem cell homeostasis. EMBO Rep 19:5CrossRefGoogle Scholar
  60. 60.
    Wanet A, Arnould T, Najimi M, Renard P (2015) Connecting mitochondria, metabolism, and stem cell fate. Stem Cells Dev 24(17):1957–1971PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Zhang H, Menzies KJ, Auwerx J (2018) The role of mitochondria in stem cell fate and aging. Development 145:8Google Scholar
  62. 62.
    Beckervordersandforth R, Ebert B, Schaffner I, Moss J, Fiebig C, Shin J, Moore DL, Ghosh L, Trinchero MF, Stockburger C, Friedland K, Steib K, von Wittgenstein J, Keiner S, Redecker C, Holter SM, Xiang W, Wurst W, Jagasia R, Schinder AF, Ming GL, Toni N, Jessberger S, Song H, Lie DC (2017) Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron 93(3):560–573e566PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    d’Anglemont de Tassigny X, Sirerol-Piquer MS, Gomez-Pinedo U, Pardal R, Bonilla S, Capilla-Gonzalez V, Lopez-Lopez I, De la Torre-Laviana FJ, Garcia-Verdugo JM, Lopez-Barneo J (2015) Resistance of subventricular neural stem cells to chronic hypoxemia despite structural disorganization of the germinal center and impairment of neuronal and oligodendrocyte survival. Hypoxia (Auckl) 3:15–33Google Scholar
  64. 64.
    Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41(5):683–686PubMedCrossRefGoogle Scholar
  65. 65.
    Fuentealba LC, Obernier K, Alvarez-Buylla A (2012) Adult neural stem cells bridge their niche. Cell Stem Cell 10(6):698–708PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bond AM, Ming GL, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17(4):385–395PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3(3):265–278PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3(3):289–300PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Tong CK, Chen J, Cebrian-Silla A, Mirzadeh Z, Obernier K, Guinto CD, Tecott LH, Garcia-Verdugo JM, Kriegstein A, Alvarez-Buylla A (2014) Axonal control of the adult neural stem cell niche. Cell Stem Cell 14(4):500–511PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Baker SA, Baker KA, Hagg T (2004) Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20(2):575–579PubMedCrossRefGoogle Scholar
  71. 71.
    Freundlieb N, Francois C, Tande D, Oertel WH, Hirsch EC, Hoglinger GU (2006) Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. J Neurosci 26(8):2321–2325PubMedCrossRefGoogle Scholar
  72. 72.
    Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7(7):726–735PubMedCrossRefGoogle Scholar
  73. 73.
    Lennington JB, Pope S, Goodheart AE, Drozdowicz L, Daniels SB, Salamone JD, Conover JC (2011) Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone. J Neurosci 31(37):13078–13087PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    O’Keeffe GC, Barker RA, Caldwell MA (2009) Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle 8(18):2888–2894PubMedCrossRefGoogle Scholar
  75. 75.
    Young SZ, Taylor MM, Bordey A (2011) Neurotransmitters couple brain activity to subventricular zone neurogenesis. Eur J Neurosci 33(6):1123–1132PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29(3):450–460PubMedCrossRefGoogle Scholar
  77. 77.
    Brezun JM, Daszuta A (1999) Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 89(4):999–1002PubMedCrossRefGoogle Scholar
  78. 78.
    Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21(18):7153–7160PubMedCrossRefGoogle Scholar
  79. 79.
    Gu Y, Janoschka S, Ge S (2013) Neurogenesis and hippocampal plasticity in adult brain. Curr Top Behav Neurosci 15:31–48PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Zaben MJ, Gray WP (2013) Neuropeptides and hippocampal neurogenesis. Neuropeptides 47(6):431–438PubMedCrossRefGoogle Scholar
  81. 81.
    Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC (2004) Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42(4):535–552PubMedCrossRefGoogle Scholar
  82. 82.
    Brezun JM, Daszuta A (2000) Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons. Eur J Neurosci 12(1):391–396PubMedCrossRefGoogle Scholar
  83. 83.
    Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005) GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47(6):803–815PubMedCrossRefGoogle Scholar
  84. 84.
    Wang LP, Kempermann G, Kettenmann H (2005) A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Mol Cell Neurosci 29(2):181–189PubMedCrossRefGoogle Scholar
  85. 85.
    Song J, Zhong C, Bonaguidi MA, Sun GJ, Hsu D, Gu Y, Meletis K, Huang ZJ, Ge S, Enikolopov G, Deisseroth K, Luscher B, Christian KM, Ming GL, Song H (2012) Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489(7414):150–154PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Biscoe TJ, Stehbens WE (1966) Ultrastructure of the carotid body. J Cell Biol 30(3):563–578PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Platero-Luengo A, Gonzalez-Granero S, Duran R, Diaz-Castro B, Piruat JI, Garcia-Verdugo JM, Pardal R, Lopez-Barneo J (2014) An O2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia. Cell 156(1–2):291–303CrossRefGoogle Scholar
  88. 88.
    McDonald DM, Mitchell RA (1975) The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis. J Neurocytol 4(2):177–230CrossRefGoogle Scholar
  89. 89.
    Murali S, Nurse CA (2016) Purinergic signalling mediates bidirectional crosstalk between chemoreceptor type I and glial-like type II cells of the rat carotid body. J Physiol 594(2):391–406PubMedCrossRefGoogle Scholar
  90. 90.
    Faller DV (1999) Endothelial cell responses to hypoxic stress. Clin Exp Pharmacol Physiol 26(1):74–84PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Chen J, He L, Dinger B, Stensaas L, Fidone S (2002) Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 282(6):L1314–1323PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    McQueen DS, Dashwood MR, Cobb VJ, Bond SM, Marr CG, Spyer KM (1995) Endothelins and rat carotid body: autoradiographic and functional pharmacological studies. J Auton Nerv Syst 53(2–3):115–125PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Paciga M, Vollmer C, Nurse C (1999) Role of ET-1 in hypoxia-induced mitosis of cultured rat carotid body chemoreceptors. NeuroReport 10(18):3739–3744PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Bonano M, Tribulo C, De Calisto J, Marchant L, Sanchez SS, Mayor R, Aybar MJ (2008) A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification. Dev Biol 323(1):114–129PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, Yanagisawa M (1994) Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79(7):1267–1276PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Shin MK, Levorse JM, Ingram RS, Tilghman SM (1999) The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 402(6761):496–501PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7(2):150–161PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Panchision DM (2009) The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 220(3):562–568PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9(4):298–310PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    De Filippis L, Delia D (2011) Hypoxia in the regulation of neural stem cells. Cell Mol Life Sci 68(17):2831–2844PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Bishop T, Talbot NP, Turner PJ, Nicholls LG, Pascual A, Hodson EJ, Douglas G, Fielding JW, Smith TG, Demetriades M, Schofield CJ, Robbins PA, Pugh CW, Buckler KJ, Ratcliffe PJ (2013) Carotid body hyperplasia and enhanced ventilatory responses to hypoxia in mice with heterozygous deficiency of PHD2. J Physiol 591(14):3565–3577PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9(6):723–727PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Kohler SJ, Williams NI, Stanton GB, Cameron JL, Greenough WT (2011) Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months. Proc Natl Acad Sci USA 108(25):10326–10331PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Rochefort C, Gheusi G, Vincent JD, Lledo PM (2002) Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 22(7):2679–2689PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Sobrino V, Gonzalez-Rodriguez P, Annese V, Lopez-Barneo J, Pardal R (2018) Fast neurogenesis from carotid body quiescent neuroblasts accelerates adaptation to hypoxia. EMBO Rep 19:3CrossRefGoogle Scholar
  106. 106.
    Bronner-Fraser M (1986) Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Dev Biol 115(1):44–55PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Yagi H, Yanagisawa M, Suzuki Y, Nakatani Y, Ariga T, Kato K, Yu RK (2010) HNK-1 epitope-carrying tenascin-C spliced variant regulates the proliferation of mouse embryonic neural stem cells. J Biol Chem 285(48):37293–37301PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Fielding JW, Hodson EJ, Cheng X, Ferguson DJP, Eckardt L, Adam J, Lip P, Maton-Howarth M, Ratnayaka I, Pugh CW, Buckler KJ, Ratcliffe PJ, Bishop T (2018) PHD2 inactivation in Type I cells drives HIF-2alpha-dependent multilineage hyperplasia and the formation of paraganglioma-like carotid bodies. J Physiol 596(18):4393–4412PubMedCentralCrossRefGoogle Scholar
  109. 109.
    Chen J, He L, Liu X, Dinger B, Stensaas L, Fidone S (2007) Effect of the endothelin receptor antagonist bosentan on chronic hypoxia-induced morphological and physiological changes in rat carotid body. Am J Physiol Lung Cell Mol Physiol 292(5):L1257–1262PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Le Douarin NM, Calloni GW, Dupin E (2008) The stem cells of the neural crest. Cell Cycle 7(8):1013–1019PubMedCrossRefGoogle Scholar
  111. 111.
    Ii M, Nishimura H, Sekiguchi H, Kamei N, Yokoyama A, Horii M, Asahara T (2009) Concurrent vasculogenesis and neurogenesis from adult neural stem cells. Circ Res 105(9):860–868PubMedCrossRefGoogle Scholar
  112. 112.
    Wurmser AE, Nakashima K, Summers RG, Toni N, D’Amour KA, Lie DC, Gage FH (2004) Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430(6997):350–356PubMedCrossRefGoogle Scholar
  113. 113.
    Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD, Min W, McLendon RE, Rich JN, Bao S (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153(1):139–152PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Pezzolo A, Parodi F, Marimpietri D, Raffaghello L, Cocco C, Pistorio A, Mosconi M, Gambini C, Cilli M, Deaglio S, Malavasi F, Pistoia V (2011) Oct-4 +/tenascin C + neuroblastoma cells serve as progenitors of tumor-derived endothelial cells. Cell Res 21(10):1470–1486PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468(7325):824–828PubMedCrossRefGoogle Scholar
  116. 116.
    Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833PubMedCrossRefGoogle Scholar
  117. 117.
    Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128(7):1059–1068PubMedGoogle Scholar
  118. 118.
    Brown CB, Baldwin HS (2006) Neural crest contribution to the cardiovascular system. Adv Exp Med Biol 589:134–154PubMedCrossRefGoogle Scholar
  119. 119.
    Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127(8):1607–1616PubMedGoogle Scholar
  120. 120.
    Navarro-Guerrero E, Platero-Luengo A, Linares-Clemente P, Cases I, Lopez-Barneo J, Pardal R (2016) Gene expression profiling supports the neural crest origin of adult rodent carotid body stem cells and identifies CD10 as a marker for mesectoderm-committed progenitors. Stem Cells 34(6):1637–1650PubMedCrossRefGoogle Scholar
  121. 121.
    Anderson DJ (1993) Cell and molecular biology of neural crest cell lineage diversification. Curr Opin Neurobiol 3(1):8–13PubMedCrossRefGoogle Scholar
  122. 122.
    Bronner ME, LeDouarin NM (2012) Development and evolution of the neural crest: an overview. Dev Biol 366(1):2–9PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Fraser SE, Bronner-Fraser M (1991) Migrating neural crest cells in the trunk of the avian embryo are multipotent. Development 112(4):913–920PubMedGoogle Scholar
  124. 124.
    Dupin E, Sommer L (2012) Neural crest progenitors and stem cells: from early development to adulthood. Dev Biol 366(1):83–95PubMedCrossRefGoogle Scholar
  125. 125.
    Bixby S, Kruger GM, Mosher JT, Joseph NM, Morrison SJ (2002) Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 35(4):643–656PubMedCrossRefGoogle Scholar
  126. 126.
    Mosher JT, Yeager KJ, Kruger GM, Joseph NM, Hutchin ME, Dlugosz AA, Morrison SJ (2007) Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Dev Biol 303(1):1–15PubMedCrossRefGoogle Scholar
  127. 127.
    White PM, Morrison SJ, Orimoto K, Kubu CJ, Verdi JM, Anderson DJ (2001) Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals. Neuron 29(1):57–71PubMedCrossRefGoogle Scholar
  128. 128.
    Bronner M (2015) Confetti clarifies controversy: neural crest stem cells are multipotent. Cell Stem Cell 16(3):217–218PubMedCrossRefGoogle Scholar
  129. 129.
    Cramer JA, Wiggins RH, Fudim M, Engelman ZJ, Sobotka PA, Shah LM (2014) Carotid body size on CTA: correlation with comorbidities. Clin Radiol 69(1):e33–36PubMedCrossRefGoogle Scholar
  130. 130.
    Paton JFR, Sobotka PA, Fudim M, Engleman ZJ, Hart ECJ, McBryde FD, Abdala AP, Marina N, Gourine AV, Lobo M, Patel N, Burchell A, Ratcliffe L, Nightingale A (2013) The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension.  https://doi.org/10.1161/hypertensionaha.111.00064 (American Heart Association, Inc.) CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Bencini C, Pulera N (1991) The carotid bodies in bronchial asthma. Histopathology 18(3):195–200PubMedCrossRefGoogle Scholar
  132. 132.
    Iturriaga R, Del Rio R, Idiaquez J, Somers VK (2016) Carotid body chemoreceptors, sympathetic neural activation, and cardiometabolic disease. Biol Res 49:13PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Del Rio R, Marcus NJ, Schultz HD (2013) Carotid chemoreceptor ablation improves survival in heart failure: rescuing autonomic control of cardiorespiratory function. J Am Coll Cardiol 62(25):2422–2430PubMedCrossRefGoogle Scholar
  134. 134.
    Narkiewicz K, Ratcliffe LE, Hart EC, Briant LJ, Chrostowska M, Wolf J, Szyndler A, Hering D, Abdala AP, Manghat N, Burchell AE, Durant C, Lobo MD, Sobotka PA, Patel NK, Leiter JC, Engelman ZJ, Nightingale AK, Paton JF (2016) Unilateral carotid body resection in resistant hypertension: a safety and feasibility trial. JACC Basic Transl Sci 1(5):313–324PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ribeiro MJ, Sacramento JF, Gonzalez C, Guarino MP, Monteiro EC, Conde SV (2013) Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes 62(8):2905–2916PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kliewer KE, Wen DR, Cancilla PA, Cochran AJ (1989) Paragangliomas: assessment of prognosis by histologic, immunohistochemical, and ultrastructural techniques. Hum Pathol 20(1):29–39PubMedCrossRefGoogle Scholar
  137. 137.
    Arias-Stella J, Bustos F (1976) Chronic hypoxia and chemodectomas in bovines at high altitudes. Arch Pathol Lab Med 100(12):636–639PubMedGoogle Scholar
  138. 138.
    Astrom K, Cohen JE, Willett-Brozick JE, Aston CE, Baysal BE (2003) Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum Genet 113(3):228–237PubMedCrossRefGoogle Scholar
  139. 139.
    Saldana MJ, Salem LE, Travezan R (1973) High altitude hypoxia and chemodectomas. Hum Pathol 4(2):251–263PubMedCrossRefGoogle Scholar
  140. 140.
    Espejo EF, Montoro RJ, Armengol JA, Lopez-Barneo J (1998) Cellular and functional recovery of Parkinsonian rats after intrastriatal transplantation of carotid body cell aggregates. Neuron 20(2):197–206PubMedCrossRefGoogle Scholar
  141. 141.
    Luquin MR, Montoro RJ, Guillen J, Saldise L, Insausti R, Del Rio J, Lopez-Barneo J (1999) Recovery of chronic parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen. Neuron 22(4):743–750PubMedCrossRefGoogle Scholar
  142. 142.
    Arjona V, Mínguez-Castellanos A, Montoro RJ, Ortega A, Escamilla F, Toledo-Aral JJ, Pardal R, Méndez-Ferrer S, Martin JM, Pérez M, Katati MJ, Valencia E, García T, López- Barneo J (2003) Autotransplantation of human carotid body cell aggregates for treatment of Parkinson's disease. Neurosurgery 53(2):321–328PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Villadiego J, Mendez-Ferrer S, Valdes-Sanchez T, Silos-Santiago I, Farinas I, Lopez-Barneo J, Toledo-Aral JJ (2005) Selective glial cell line-derived neurotrophic factor production in adult dopaminergic carotid body cells in situ and after intrastriatal transplantation. J Neurosci 25(16):4091–4098PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Pardal R, Lopez-Barneo J (2012) Neural stem cells and transplantation studies in Parkinson’s disease. Adv Exp Med Biol 741:206–216PubMedCrossRefGoogle Scholar
  145. 145.
    Toledo-Aral JJ, Méndez-Ferrer S, Pardal R, Echevarría M, López-Barneo J (2003) Trophic restoration of the nigrostriatal dopaminergic pathway in long-term carotid bodygrafted parkinsonian rats. J Neurosci 23(1):141–148PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y BiofísicaSevillaSpain

Personalised recommendations