Advertisement

Transcription factor Ptf1a in development, diseases and reprogramming

  • Kangxin JinEmail author
  • Mengqing XiangEmail author
Review
  • 235 Downloads

Abstract

The transcription factor Ptf1a is a crucial helix–loop–helix (bHLH) protein selectively expressed in the pancreas, retina, spinal cord, brain, and enteric nervous system. Ptf1a is preferably assembled into a transcription trimeric complex PTF1 with an E protein and Rbpj (or Rbpjl). In pancreatic development, Ptf1a is indispensable in controlling the expansion of multipotent progenitor cells as well as the specification and maintenance of the acinar cells. In neural tissues, Ptf1a is transiently expressed in the post-mitotic cells and specifies the inhibitory neuronal cell fates, mostly mediated by downstream genes such as Tfap2a/b and Prdm13. Mutations in the coding and non-coding regulatory sequences resulting in Ptf1a gain- or loss-of-function are associated with genetic diseases such as pancreatic and cerebellar agenesis in the rodent and human. Surprisingly, Ptf1a alone is sufficient to reprogram mouse or human fibroblasts into tripotential neural stem cells. Its pleiotropic functions in many biological processes remain to be deciphered in the future.

Keywords

Pancreatic development Retinal development Transcriptional regulation Cell fate specification Acinar cells Inhibitory neurotransmitter GABAergic Glycinergic Glutamatergic Diabetes Somatic cell reprogramming Inheritable 

Notes

Acknowledgements

We thank Evelyn Shiang for help with the artwork and many online databases and resources for providing useful data and tools. Some of them are listed in the context. We thank all the colleagues working on related subjects and apologize for unintentional omission of many important findings. This work is supported in part by the National Key R&D Program of China (2017YFA0104100), National Basic Research Program (973 Program) of China (2015CB964600), National Natural Science Foundation of China (81670862 and 81721003), Science and Technology Planning Projects of Guangdong Province (2017B030314025), and the Fundamental Research Funds of the State Key Laboratory of Ophthalmology, Sun Yat-sen University to MX, and the National Natural Science Foundation of China (31871497) to KJ.

Funding

The authors declare no financial interests.

References

  1. 1.
    Murre C et al (1989) Interactions between heterologous helix–loop–helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58(3):537–544PubMedCrossRefGoogle Scholar
  2. 2.
    Chaudhary J, Skinner MK (1999) Basic helix–loop–helix proteins can act at the E-box within the serum response element of the c-fos promoter to influence hormone-induced promoter activation in Sertoli cells. Mol Endocrinol 13(5):774–786PubMedCrossRefGoogle Scholar
  3. 3.
    Grove CA et al (2009) A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 138(2):314–327PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Murre C et al (1994) Structure and function of helix–loop–helix proteins. Biochim Biophys Acta 1218(2):129–135PubMedCrossRefGoogle Scholar
  5. 5.
    Massari ME, Murre C (2000) Helix–loop–helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20(2):429–440PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Benezra R et al (1990) The protein Id: a negative regulator of helix–loop–helix DNA binding proteins. Cell 61(1):49–59PubMedCrossRefGoogle Scholar
  7. 7.
    Wang LH, Baker NE (2015) E proteins and ID proteins: helix–loop–helix partners in development and disease. Dev Cell 35(3):269–280PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cockell M et al (1989) Identification of a cell-specific DNA-binding activity that interacts with a transcriptional activator of genes expressed in the acinar pancreas. Mol Cell Biol 9(6):2464–2476PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rose SD et al (2001) The role of PTF1-P48 in pancreatic acinar gene expression. J Biol Chem 276(47):44018–44026PubMedCrossRefGoogle Scholar
  10. 10.
    Beres TM et al (2006) PTF1 is an organ-specific and Notch-independent basic helix–loop–helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Mol Cell Biol 26(1):117–130PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rose SD, MacDonald RJ (1997) Evolutionary silencing of the human elastase I gene (ELA1). Hum Mol Genet 6(6):897–903PubMedCrossRefGoogle Scholar
  12. 12.
    Masui T et al (2010) Replacement of Rbpj with Rbpjl in the PTF1 complex controls the final maturation of pancreatic acinar cells. Gastroenterology 139(1):270–280PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Masui T et al (2007) Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes Dev 21(20):2629–2643PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Perillo M et al (2016) A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva. BMC Evol Biol 16(1):117PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Weedon MN et al (2014) Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet 46(1):61–64PubMedCrossRefGoogle Scholar
  16. 16.
    Gonc EN et al (2015) Variable phenotype of diabetes mellitus in siblings with a homozygous PTF1A enhancer mutation. Horm Res Paediatr 84(3):206–211PubMedCrossRefGoogle Scholar
  17. 17.
    Mona B et al (2016) Regulating the dorsal neural tube expression of Ptf1a through a distal 3′ enhancer. Dev Biol 418(1):216–225PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lu CK et al (2012) Rbms3, an RNA-binding protein, mediates the expression of Ptf1a by binding to its 3′UTR during mouse pancreas development. DNA Cell Biol 31(7):1245–1251PubMedCrossRefGoogle Scholar
  19. 19.
    Hanoun N et al (2014) The E3 ubiquitin ligase thyroid hormone receptor-interacting protein 12 targets pancreas transcription factor 1a for proteasomal degradation. J Biol Chem 289(51):35593–35604PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Driscoll CA, Macdonald DW, O’Brien SJ (2009) From wild animals to domestic pets, an evolutionary view of domestication. Proc Natl Acad Sci USA 106(Suppl 1):9971–9978PubMedCrossRefGoogle Scholar
  21. 21.
    Masui T et al (2008) Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood. Mol Cell Biol 28(17):5458–5468PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Meredith DM et al (2009) Multiple transcriptional mechanisms control Ptf1a levels during neural development including autoregulation by the PTF1-J complex. J Neurosci 29(36):11139–11148PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Meredith DM et al (2013) Program specificity for Ptf1a in pancreas versus neural tube development correlates with distinct collaborating cofactors and chromatin accessibility. Mol Cell Biol 33(16):3166–3179PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Thompson N et al (2012) RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors. Mol Cell Biol 32(6):1189–1199PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Obata J et al (2001) p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes Cells 6(4):345–360PubMedCrossRefGoogle Scholar
  26. 26.
    Petcherski AG, Kimble J (2000) LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature 405(6784):364–368PubMedCrossRefGoogle Scholar
  27. 27.
    Kovall RA (2008) More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene 27(38):5099–5109PubMedCrossRefGoogle Scholar
  28. 28.
    Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kovall RA, Hendrickson WA (2004) Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J 23(17):3441–3451PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Krapp A et al (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12(23):3752–3763PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Krapp A et al (1996) The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix–loop–helix protein. EMBO J 15(16):4317–4329PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kawaguchi Y et al (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32(1):128–134PubMedCrossRefGoogle Scholar
  33. 33.
    Pan FC et al (2013) Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 140(4):751–764PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kim DY et al (2015) Functional regulation of FoxO1 in neural stem cell differentiation. Cell Death Differ 22(12):2034–2045PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Willet SG et al (2014) Dominant and context-specific control of endodermal organ allocation by Ptf1a. Development 141(22):4385–4394PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dong PD et al (2008) Graded levels of Ptf1a differentially regulate endocrine and exocrine fates in the developing pancreas. Genes Dev 22(11):1445–1450PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hesselson D, Anderson RM, Stainier DY (2011) Suppression of Ptf1a activity induces acinar-to-endocrine conversion. Curr Biol 21(8):712–717PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ahnfelt-Ronne J et al (2012) Ptf1a-mediated control of Dll1 reveals an alternative to the lateral inhibition mechanism. Development 139(1):33–45PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ghosh B, Leach SD (2006) Interactions between hairy/enhancer of split-related proteins and the pancreatic transcription factor Ptf1-p48 modulate function of the PTF1 transcriptional complex. Biochem J 393(Pt 3):679–685PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wiebe PO et al (2007) Ptf1a binds to and activates area III, a highly conserved region of the Pdx1 promoter that mediates early pancreas-wide Pdx1 expression. Mol Cell Biol 27(11):4093–4104PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Miyatsuka T et al (2007) Ptf1a and RBP-J cooperate in activating Pdx1 gene expression through binding to Area III. Biochem Biophys Res Commun 362(4):905–909PubMedCrossRefGoogle Scholar
  42. 42.
    Gao N et al (2008) Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev 22(24):3435–3448PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Holmstrom SR et al (2011) LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function. Genes Dev 25(16):1674–1679PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rodolosse A et al (2009) p/CAF modulates the activity of the transcription factor p48/Ptf1a involved in pancreatic acinar differentiation. Biochem J 418(2):463–473PubMedCrossRefGoogle Scholar
  45. 45.
    Jiang Z et al (2008) Exdpf is a key regulator of exocrine pancreas development controlled by retinoic acid and ptf1a in zebrafish. PLoS Biol 6(11):e293PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hoang CQ et al (2016) Transcriptional maintenance of pancreatic acinar identity, differentiation, and homeostasis by PTF1A. Mol Cell Biol 36(24):3033–3047PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hale MA et al (2014) The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis. Development 141(16):3123–3133PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Qu X et al (2015) Growth factor independence-1 (Gfi1) is required for pancreatic acinar unit formation and centroacinar cell differentiation. Cell Mol Gastroenterol Hepatol 1(2):233–247.e1PubMedCrossRefGoogle Scholar
  49. 49.
    Gao T et al (2013) Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology 144(7):1543–1553.e9PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bonal C et al (2009) Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 136(1):309–319.e9PubMedCrossRefGoogle Scholar
  51. 51.
    Chen NM et al (2015) NFATc1 links EGFR signaling to induction of Sox9 transcription and acinar-ductal transdifferentiation in the pancreas. Gastroenterology 148(5):pp. 1024–1034 e9CrossRefGoogle Scholar
  52. 52.
    Haumaitre C et al (2005) Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci USA 102(5):1490–1495PubMedCrossRefGoogle Scholar
  53. 53.
    Zaret KS (2008) Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nat Rev Genet 9(5):329–340PubMedCrossRefGoogle Scholar
  54. 54.
    Bhushan A et al (2001) Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128(24):5109–5117PubMedGoogle Scholar
  55. 55.
    Ye F, Duvillie B, Scharfmann R (2005) Fibroblast growth factors 7 and 10 are expressed in the human embryonic pancreatic mesenchyme and promote the proliferation of embryonic pancreatic epithelial cells. Diabetologia 48(2):277–281PubMedCrossRefGoogle Scholar
  56. 56.
    Jacquemin P et al (2006) An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev Biol 290(1):189–199PubMedCrossRefGoogle Scholar
  57. 57.
    Yoshitomi H, Zaret KS (2004) Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 131(4):807–817PubMedCrossRefGoogle Scholar
  58. 58.
    Campos ML et al (2013) ICAT is a novel Ptf1a interactor that regulates pancreatic acinar differentiation and displays altered expression in tumours. Biochem J 451(3):395–405PubMedCrossRefGoogle Scholar
  59. 59.
    Fujitani Y et al (2006) Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development 133(22):4439–4450PubMedCrossRefGoogle Scholar
  60. 60.
    Nakhai H et al (2007) Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134(6):1151–1160PubMedCrossRefGoogle Scholar
  61. 61.
    Dullin JP et al (2007) Ptf1a triggers GABAergic neuronal cell fates in the retina. BMC Dev Biol 7:110PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Jin K et al (2015) Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain 8:28PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Li S et al (2004) Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron 43(6):795–807PubMedCrossRefGoogle Scholar
  64. 64.
    Luo H et al (2012) Forkhead box N4 (Foxn4) activates Dll4-Notch signaling to suppress photoreceptor cell fates of early retinal progenitors. Proc Natl Acad Sci USA 109(9):E553–E562PubMedCrossRefGoogle Scholar
  65. 65.
    Xiang M, Li S (2013) Foxn4: a multi-faceted transcriptional regulator of cell fates in vertebrate development. Sci China Life Sci 56(11):985–993PubMedCrossRefGoogle Scholar
  66. 66.
    Lelievre EC et al (2011) Ptf1a/Rbpj complex inhibits ganglion cell fate and drives the specification of all horizontal cell subtypes in the chick retina. Dev Biol 358(2):296–308PubMedCrossRefGoogle Scholar
  67. 67.
    Liu H et al (2013) An isoform of retinoid-related orphan receptor beta directs differentiation of retinal amacrine and horizontal interneurons. Nat Commun 4:1813PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Menuchin-Lasowski Y et al (2016) Sip1 regulates the generation of the inner nuclear layer retinal cell lineages in mammals. Development 143(15):2829–2841PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wei W et al (2018) Requirement of the Mowat-Wilson syndrome gene Zeb2 in the differentiation and maintenance of non-photoreceptor cell types during retinal development. Mol Neurobiol.  https://doi.org/10.1007/s12035-018-1186-6
  70. 70.
    Xiao D, Jin K, Xiang M (2018) Necessity and sufficiency of Ldb1 in the generation, differentiation and maintenance of non-photoreceptor cell types during retinal development. Front Mol Neurosci 11:271Google Scholar
  71. 71.
    Jin K (2017) Transitional progenitors during vertebrate retinogenesis. Mol Neurobiol 54(5):3565–3576PubMedCrossRefGoogle Scholar
  72. 72.
    Bassett EA et al (2012) Overlapping expression patterns and redundant roles for AP-2 transcription factors in the developing mammalian retina. Dev Dyn 241(4):814–829PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Watanabe S et al (2015) Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. J Neurosci 35(20):8004–8020PubMedCrossRefGoogle Scholar
  74. 74.
    Goodson NB et al (2018) Prdm13 is required for Ebf3+ amacrine cell formation in the retina. Dev Biol 434(1):149–163PubMedCrossRefGoogle Scholar
  75. 75.
    Sapkota D et al (2014) Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development. Proc Natl Acad Sci USA 111(39):E4086–E4095PubMedCrossRefGoogle Scholar
  76. 76.
    Wu F et al (2013) Onecut1 is essential for horizontal cell genesis and retinal integrity. J Neurosci 33(32):13053–13065, 13065aPubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Poche RA et al (2007) Lim1 is essential for the correct laminar positioning of retinal horizontal cells. J Neurosci 27(51):14099–14107PubMedCrossRefGoogle Scholar
  78. 78.
    Margeta MA (2008) Transcription factor Lim1 specifies horizontal cell laminar position in the retina. J Neurosci 28(15):3835–3836PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jin K et al (2010) Early B-cell factors are required for specifying multiple retinal cell types and subtypes from postmitotic precursors. J Neurosci 30(36):11902–11916PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Jiang H, Xiang M (2009) Subtype specification of GABAergic amacrine cells by the orphan nuclear receptor Nr4a2/Nurr1. J Neurosci 29(33):10449–10459PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Riesenberg AN et al (2009) Rbpj cell autonomous regulation of retinal ganglion cell and cone photoreceptor fates in the mouse retina. J Neurosci 29(41):12865–12877PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zheng MH et al (2009) The transcription factor RBP-J is essential for retinal cell differentiation and lamination. Mol Brain 2:38PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Glasgow SM et al (2005) Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 132(24):5461–5469PubMedCrossRefGoogle Scholar
  84. 84.
    Huang M et al (2008) Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev Biol 322(2):394–405PubMedCrossRefGoogle Scholar
  85. 85.
    Todd AJ (1996) GABA and glycine in synaptic glomeruli of the rat spinal dorsal horn. Eur J Neurosci 8(12):2492–2498PubMedCrossRefGoogle Scholar
  86. 86.
    Todd AJ, Sullivan AC (1990) Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 296(3):496–505PubMedCrossRefGoogle Scholar
  87. 87.
    Wapinski OL et al (2013) Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155(3):621–635PubMedCrossRefGoogle Scholar
  88. 88.
    Hanotel J et al (2014) The Prdm13 histone methyltransferase encoding gene is a Ptf1a–Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Dev Biol 386(2):340–357PubMedCrossRefGoogle Scholar
  89. 89.
    Wildner H et al (2013) Genome-wide expression analysis of Ptf1a- and Ascl1-deficient mice reveals new markers for distinct dorsal horn interneuron populations contributing to nociceptive reflex plasticity. J Neurosci 33(17):7299–7307PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Borromeo MD et al (2014) A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development 141(14):2803–2812PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zainolabidin N et al (2017) Distinct Activities of Tfap2A and Tfap2B in the Specification of GABAergic Interneurons in the Developing Cerebellum. Front Mol Neurosci 10(281):281PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Li S et al (2005) Foxn4 acts synergistically with Mash1 to specify subtype identity of V2 interneurons in the spinal cord. Proc Natl Acad Sci USA 102(30):10688–10693PubMedCrossRefGoogle Scholar
  93. 93.
    Hoshino M et al (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47(2):201–213PubMedCrossRefGoogle Scholar
  94. 94.
    Pascual M et al (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA 104(12):5193–5198PubMedCrossRefGoogle Scholar
  95. 95.
    Yamada M et al (2014) Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci 34(14):4786–4800PubMedCrossRefGoogle Scholar
  96. 96.
    Millen KJ et al (2014) Transformation of the cerebellum into more ventral brainstem fates causes cerebellar agenesis in the absence of Ptf1a function. Proc Natl Acad Sci USA 111(17):E1777–E1786PubMedCrossRefGoogle Scholar
  97. 97.
    Sellick GS et al (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36(12):1301–1305PubMedCrossRefGoogle Scholar
  98. 98.
    Iskusnykh IY, Steshina EY, Chizhikov VV (2016) Loss of Ptf1a leads to a widespread cell-fate misspecification in the brainstem, affecting the development of somatosensory and viscerosensory nuclei. J Neurosci 36(9):2691–2710PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Yamada M et al (2007) Origin of climbing fiber neurons and their developmental dependence on Ptf1a. J Neurosci 27(41):10924–10934PubMedCrossRefGoogle Scholar
  100. 100.
    Fujiyama T et al (2009) Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development 136(12):2049–2058PubMedCrossRefGoogle Scholar
  101. 101.
    Fujiyama T et al (2018) Forebrain Ptf1a is required for sexual differentiation of the brain. Cell Rep 24(1):79–94PubMedCrossRefGoogle Scholar
  102. 102.
    Nakamura N et al (2016) Neonatal kisspeptin is steroid-independently required for defeminisation and peripubertal kisspeptin-induced testosterone is required for masculinisation of the brain: a behavioural study using Kiss1 knockout rats. J Neuroendocrinol 28.  https://doi.org/10.1111/jne.12409
  103. 103.
    Sasselli V, Pachnis V, Burns AJ (2012) The enteric nervous system. Dev Biol 366(1):64–73PubMedCrossRefGoogle Scholar
  104. 104.
    Wakayama K et al (2002) Localization of norepinephrine and serotonin transporter in mouse brain capillary endothelial cells. Neurosci Res 44(2):173–180PubMedCrossRefGoogle Scholar
  105. 105.
    Takanaga H et al (2001) GAT2/BGT-1 as a system responsible for the transport of γ-aminobutyric acid at the mouse blood–brain barrier. J Cereb Blood Flow Metab 21(10):1232–1239PubMedCrossRefGoogle Scholar
  106. 106.
    Pattyn A et al (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399(6734):366–370PubMedCrossRefGoogle Scholar
  107. 107.
    Watanabe Y et al (2013) Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol 379(1):92–106PubMedCrossRefGoogle Scholar
  108. 108.
    Memic F et al (2016) Ascl1 is required for the development of specific neuronal subtypes in the enteric nervous system. J Neurosci 36(15):4339–4350PubMedCrossRefGoogle Scholar
  109. 109.
    Lei J, Howard MJ (2011) Targeted deletion of Hand2 in enteric neural precursor cells affects its functions in neurogenesis, neurotransmitter specification and gangliogenesis, causing functional aganglionosis. Development 138(21):4789–4800PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Uribe RA, Gu T, Bronner ME (2016) A novel subset of enteric neurons revealed by ptf1a:GFP in the developing zebrafish enteric nervous system. Genesis 54(3):123–128PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Vlangos CN et al (2013) Next-generation sequencing identifies the Danforth’s short tail mouse mutation as a retrotransposon insertion affecting Ptf1a expression. PLoS Genet 9(2):e1003205PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Semba K et al (2013) Ectopic expression of Ptf1a induces spinal defects, urogenital defects, and anorectal malformations in Danforth’s short tail mice. PLoS Genet 9(2):e1003204PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lugani F et al (2013) A retrotransposon insertion in the 5′ regulatory domain of Ptf1a results in ectopic gene expression and multiple congenital defects in Danforth’s short tail mouse. PLoS Genet 9(2):e1003206PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Tutak E et al (2009) A Turkish newborn infant with cerebellar agenesis/neonatal diabetes mellitus and PTF1A mutation. Genet Couns 20(2):147–152PubMedGoogle Scholar
  115. 115.
    Al-Shammari M et al (2011) A novel PTF1A mutation in a patient with severe pancreatic and cerebellar involvement. Clin Genet 80(2):196–198PubMedCrossRefGoogle Scholar
  116. 116.
    Houghton JA et al (2016) Isolated pancreatic aplasia due to a hypomorphic PTF1A mutation. Diabetes 65(9):2810–2815PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Gabbay M et al (2017) Pancreatic agenesis due to compound heterozygosity for a novel enhancer and truncating mutation in the PTF1A gene. J Clin Res Pediatr Endocrinol 9(3):274–277PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Krah NM et al (2015) The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. Elife 4:e07125PubMedCentralCrossRefPubMedGoogle Scholar
  119. 119.
    Aichler M et al (2012) Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol 226(5):723–734PubMedCrossRefGoogle Scholar
  120. 120.
    Naqvi AAT, Hasan GM, Hassan MI (2018) Investigating the role of transcription factors of pancreas development in pancreatic cancer. Pancreatology 18(2):184–190PubMedCrossRefGoogle Scholar
  121. 121.
    Nair GG, Vincent RK, Odorico JS (2014) Ectopic Ptf1a expression in murine ESCs potentiates endocrine differentiation and models pancreas development in vitro. Stem Cells 32(5):1195–1207PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Xiao D et al (2018) Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat Commun 9(1):2865PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Ring KL et al (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Zhang J et al (2017) A role for dystonia-associated genes in spinal GABAergic interneuron circuitry. Cell Rep 21(3):666–678PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Seto Y et al (2014) Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun 5:3337PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Hamilton BA (2013) Retrotransposon activates ectopic Ptf1 expression: a short tail. PLoS Genet 9(2):e1003331PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat-sen UniversityGuangzhouChina

Personalised recommendations